Винт с изменяемым шагом

Воздушный Винт Изменяемого Шага (ВИШ)

конструктор этого проекта на нашем предприятии Олег Юрьевич Ермаков, к сожалению, так рано ушедший от нас.

Именно с его подачи начались работы по проектированию, изготовлению и испытаниям новых конструкций винтов изменяемого шага.

У хороших ВИШ есть только один недостаток – они дороги. Очень дороги. Потому, что производятся в европейских странах по каким-то абсолютно секретным и неприменимым на просторах Среднерусской возвышенности технологиям.

Но – Господь есть, и Он любит летунов, может быть, потому, что они стремятся ввысь. Только этим фактом можно объяснить, что «Авиаспектр-плюс» в этом кризисе явил мечту отечественного летчика – винт изменяемого шага по абсолютно разумной цене. И при этом не экономя на материалах и комплектующих, в лучших традициях советского авиапрома.

Чем же отличается наш, родной ВИШ от разработок западных инженеров? Слово имеет главный конструктор ВИШей Кулагин Игорь Юрьевич:

— В первую очередь стоит отметить, что сама конструкция наших ВИШей направлена на уменьшение износа трущихся деталей. Основным преимуществом является минимизация люфтов за счет повсеместного использования подшипников качения. Также мы разработали оригинальную конструкцию заделки лопасти в стакан, надежность которой была испытана на оборудовании Самарского Аэрокосмического университета.

Да и наша ступица ничем не уступает лучшим заграничным образцам: дюралевая заготовка (Д16Т), которой придается окончательная форма с помощью обработки на станке с ЧПУ. Управляющая винтовая пара: нержавейка — бронза. Электроника же выполнена в лучших традициях отечественного приборостроения – проста и надежна.

Данную модель ВИШа мы делаем в 3-х лопастном варианте, лопасти изготовлены из углепластика, что дает меньшую массу каждой лопасти, и, следовательно, дает уменьшение нагрузки на исполняющий механизм более чем в 2 раза и увеличение срока службы каждой лопасти. Мы работаем над разработкой ВИШей уже более трех лет, и за это время успели сделать конструкцию очень надежной.

— Спасибо, Игорь Юрьевич. Эта информация важна для принятия правильного решения об установке ВИШа.

Третья модель ВИШа (с 2016 г. в серийном производстве) успешно эксплуатируется в двух модификациях правого и левого вращения. Испытания второго ВИШа – ноябрь 2012 года. Этот ВИШ отработал 320 часов, потом улетел на Север.
Основные технические данные ВИШ AVS-PROP

Максимальная мощность двигателя до 135 л.с.
Количество лопастей 3
Максимальный диаметр винта 1900 мм (тянущий вариант); 1870 мм (толкающий вариант)
Диапазон углов 10 – 85 градусов на R 0,75
Масса винта 11,5 кг
Масса кока 0,5 кг
Максимально допустимые обороты 2650 об/мин
Возможная конфигурация Правый, левый, тянущий, толкающий
Тип лопасти AVS-PROP
Удлинитель опционально
Кок опционально
Тип двигателя Rotax 912ULS, 912is, 914
Гарантийный срок службы ВВ 12 месяцев со дня приобретения ВВ
Назначенный ресурс лопасти 450 летных часов с продлением по состоянию

В дополнение к полетным углам возможен режим флюгирования

Лопасти изготовлены из углеволокна с эпоксидным компаундом методом горячего формования при давлении 10 атм. Лопасть имеет оковку – латунь 0,5 мм

Если Вы хотите купить воздушный винт изменяемого шага от производителя, можете смело обращаться к нам.


ПОСЛУШНЫЙ ВИНТ

Многие читатели, строящие аэросани и глиссеры с воздушными винтами, в своих письмах в редакцию просят рассказать, как устроены винты изменяемого шага и какими преимуществами они обладают. Выполняя эту просьбу, публикуем материал, подготовленный консультантом общественного КБ «М-К» по снегоходной технике И. Н. Ювенальевым.

Тяговое усилие, развиваемое любым винтом, зависит от его диаметра, скорости вращения, угла атаки лопастей по отношению к плоскости вращения и от профиля поперечного сечения лопасти, создающего подъемную силу. Вот пример.

Поместим в воздушный поток иод некоторым углом атаки плоскую пластинку (рис. 1А). Набегающий поток давит на ее нижнюю поверхность с силой Р1. Одновременно на верхней поверхности из-за несимметричности обтекания воздушный поток завихряется, возникает разрежение, создающее силу Р2. Эти силы направлены в одну сторону, действуют перпендикулярно плоскости пластины и приложены в ее геометрическом центре. Они могут быть заменены одной — равнодействующей силой Р. Если же последнюю разложить на вертикальную и горизонтальную составляющие, то получим соответственно подъемную силу Т (или тягу) и силу сопротивления воздуха X.

Величина интересующей нас силы Т зависит от угла атаки и скорости, с которой пластина движется в потоке.

Если рассматривать соотношение сил Т и X в зависимости от угла атаки при постоянной скорости, то окажется, что сопротивление постепенно увеличивается и достигает максимума при вертикальном положении пластины. Сила же тяги сначала растет (до наивыгоднейшего для данной скорости движения угла атаки), а затем резко уменьшается. Следовательно, для каждой скорости может быть только одни наивыгоднейший угол атаки.

Рис. 1. Силы, действующие на прямую пластинку и аэродинамический профиль при движении в воздушном потоке:

V — скорость набегающего потока, X — сила сопротивления воздуха, а — угол атаки, Р1 — сила давления, Р2 — сила разрежения, Р — равнодействующая, Т — сила тяги, нлн подъемная сила, I2 — длина верхней части профиля, I1 — длина нижней части.

Рис. 2. Типы воздушных винтов:

А — деревянный блочный, Б — металлический блочный, В — винт с установкой лопастей на месте с контровочной гайкой, Г — винт с разрезной втулкой и стяжными хомутами.

1 — втулка, 2 — лопасть, 3 — контргайка, 4 — стяжной хомут, 5 — болт с гайкой.

Рис. 3. Схема воздушного винта изменяемого шага с механическим управлением:

1 — промежуточная качалка, 2 — ось, 3 — скользящая муфта, 4 — тяга управления, 5 — рычаг лопасти, 6 — гайка крепления втулки, 7 — втулка винта, 8 — противовес, 9 — лопасть, 10 — шарнир тяги, 11 — приводной вал, 12 — рычаг управления изменением шага винта в кабине водителя, 13 — фиксатор рычага управления, 14 — зубчатый сектор, 15 — тяга.

А — ход муфты, Б — ход рычагов лопасти, В — ход промежуточной качалки, Г — ручка в положении малого шага, Д — ручка в положении большого шага, Е — ручка в положении реверса.

Если пластина не плоская, а выполнена в виде аэродинамического профиля (см. рис. 1Б), то в зависимости от его формы величина подъемной силы при прочих равных условиях значительно возрастает. Аэродинамический профиль более выгоден, чем прямая пластина. Скорость обтекания его верхнего и нижнего обводов различны, а следовательно, неоднозначно и давление. Поэтому такой профиль даже при нулевом угле атаки создает подъемную силу. В то же время сопротивление его меньше, чем у прямой пластины такой I толщины.

Важным параметром, определяющие назначение воздушного винта, является величина его шага (Н). Шаг определяется по углу атаки поперечного сечения лопасти, расположенного на 0,75 радиуса винта. Выражается Н расстоянием, которое проходит винт за один полный оборот. Винт образно можна сравнить с гайкой, наворачиваемой на болт. Расстояние, которое гайка проходит по резьбе за один полный оборот есть шаг. Он определяется по формуле:

где: R — радиус винта, α — угол атаки (установки) профиля.

Но болт и гайка — твердые тела. Воздушный же винт вращается в сжимаемой среде, имеющей малую плотность. При этом он проскальзывает продвигается вперед на значительно меньшее расстояние, чем его расчетный шаг.

Чем больше нагрузка на винт, больше величина скольжения и больше фактический шаг винта. Фактический шаг определяет нагрузку на приводной двигатель и влияет на экономичность.

Применение винтов изменяемого шага позволяет получить наибольший коэффициент полезного действия (КПД), а следовательно, и наибольшую тягу. Правда, только на одном, соответствующем этому шагу, расчетном режиме. Конструкторы аэросаней чаще всего изготавливают воздушные винты блочными, выполненными из цельного или склеенного деревянного бруса (рис. 2). Подобный винт можно сделать и из металла.

На практике в зависимости от дорожных условий желательно варьировать величину шага. При движении с места надо получить максимальную тягу (шаг винта при этом должен быть малым), а с увеличением скорости шаг надо увеличивать.

На рисунке изображены винты с шагом, изменяемым на месте. Такие винты получили большое распространение на самодельных аэросанях. Они могут быть двух-, трех- и четырехлопастными. Втулка и лопасти делаются отдельно. Втулка из стали или дюралюминия снабжается посадочным конусом со шпоночной канавкой для установки на приводной вал двигателя и имеет гнезда под лопасти винта. Гнезда могут быть резьбовыми (рис. 2В) или с проточенными кольцевыми канавками, если втулка разъемная (рис. 2 Г). Число гнезд соответствует количеству лопастей. Лопасти изготавливаются из дерева, пластика с усиленной комлевой частью или из металла. Если они крепятся на резьбе, то комлевая часть заканчивается резьбовым хвостовиком.

Для точной установки лопастей на нужный угол атаки на их хвостовики наносят контрольные риски, а на торцевой части каждого гнезда во втулке по транспортиру градуируют шкалу углов в нужном для данного винта диапазоне, например: от 3°—5° до 25°—30°. При сборке все лопасти устанавливаются на одинаковый угол и контрятся гайками.

Имея такой винт, водитель может в зависимости от предполагаемого режима работы аэросаней заранее установить лопасти на нужный угол атаки.

Удобнее иметь винт с изменяемым во время движения шагом. Их можно разделить на два типа: двухдиапазонные, которые могут по желанию водителя устанавливаться в два предельных положения — «малый» или «большой шаг», и с принудительной установкой лопастей на нужный шаг во всем диапазоне. Изменение шага осуществляется механическим приводом. Несмотря на большое разнообразие конструкций, все они в основном сводятся к принципиальной схеме, изображенной на рисунке 3.

В этой схеме винт имеет металлическую втулку с гнездами, в которые на шарикоподшипниках устанавливаются попасти. На комлевой части каждой лопасти есть рычаг, соединенный тягой со скользящей по приводному валу муфтой. При перемещении муфта поворачивает тяги лопасти, переводя их с большого шага на малый. Продвигаясь дальше, муфта может установить лопасти в положение реверса, то есть создать винтом обратную тягу для торможения саней.

Скользящая муфта перемещается по валу специальным рычагом из кабины водителя. Для фиксации рычага в нужном положении имеется зубчатый сектор. От рычага тягой или тросом усилие передается на промежуточную качалку, которая и передвигает скользящую муфту но приводному валу. Обычно управление изменением шага одностороннее — перевод лопастей возможен только в одну сторону: с большого шага на малый и в положение реверса. На большой шаг винт переходит сам под действием аэродинамических сил и моментов, создаваемых противовесами, установленными на комлевых частях лопастей.

Оригинально выполнен винт АВ-6 на двухместных аэросанях К-36 конструкции Н. И. Камова (рис. 4). Его лопасти поворачиваются траверсой, расположенной внутри вала редуктора. На комлевых частях лопастей вместо рычагов установлены штыри с надетыми на них сухарями, входящими в прорези траверсы.

Рис. 4. Воздушный винт АВ-6:

1 — корпус втулки винта, 2, 6 — болт, 3, 7 — контровочная шайба, 4 — гайка, 5 — крышка, 8 — траверса, 9 — упорное кольцо реверса, 10 — шпонка, 11 — шплинт, 12 — гайка, 13 — шайба, 14 — противовес, 15 — болт противовеса, 16 — лопасть, 17 — балансировочный груз, 18 — глухая шайба, 19 — крепежная разрезная шайба, 20 — уплотнительная манжета, 21 — сепаратор, 22 — шарики, 23 — сухарь, 24 — стакан лопасти, 25 — контровочная втулка, 26 — стопорное кольцо, 27 — винт натяга, 28 — пята, 29 — дно стакана, 30 — шпонка противовеса.

Рис. 5. Схема управления воздушного винта АВ-6:

1 — тяга управления, 2 — рычаг, 3 — скользящая муфта, 4 — траверса, 5 — лопасть, 6 — противовес; А — положение лопасти «большой шаг», Б — «малый шаг», В — реверс.

АВ-6 — металлический, двухлопастный, толкающий, правого вращения (если смотреть в направлении движения) винт. Работает от двигателя МТ-8 мощностью 38—40 л. с. через редуктор. Частота вращения 2630 об/мин, Ø1600 мм.

По типу он — центробежно-механический, реверсивный, с фиксацией лопастей на прямой передаче 8°30′, на реверсе — 19° 30′, то есть рабочий диапазон их хода — 11°. Углы поворота лопастей замеряются на радиусе 600 мм.

Конструктивно винт состоит из стальной втулки и двух дюралюминиевых лопастей. Втулка устанавливается на фланец редуктора. Для крепления лопастей во втулке сделаны два гнезда, в которые вставлены специальные стаканы. Последние поворачиваются в сепараторах с шариками. Зазоры устраняются специальным винтом натяга. Лопасти поворачиваются траверсой, передвигающейся на шпонке внутри вала редуктора. На торцах лопастных стаканов эксцентрично расположены пальцы с надетыми на них сухарями, скользящими в прорезях траверсы.

Траверса передвигается в продольном направлении тягой, соединенной со скользящей муфтой, которая, в свои очередь, соединена тягой с рычагов управления (рис. 5). На выходящих иг втулки концах стаканов с лопастями установлены противовесы — центробежные грузы. Они располагаются под углом 20° ±1° и закреплены на шпонках.

Винт работает по прямой схеме: под действием центробежных моментов, создаваемых противовесами, лопасти автоматически устанавливаются на шаг необходимый для данного режима движения. Перевод лопастей в реверсное положение осуществляется принудительно специальным рычагом, расположенным в кабине водителя Выгодный КПД винта сохраняется во всем диапазон работ.

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter, чтобы сообщить нам.

Винты регулируемого шага

Для рыбопромысловых судов в эксплуатационных условиях характерны частые изменения буксировочного сопротивления, скорости и осадки при применении орудий лова, подъеме улова на борт, приеме и расходовании топлива и воды и других операциях. В этих изменяющихся условиях плавания ВФШ не позволяют снимать с двигателя полную мощность, что приводит к снижению скорости траления и свободного хода. Кроме того, на добывающих судах с ВФШ за одни сутки промысловой работы приходится десятки раз реверсировать двигатель, в результате чего резко снижается срок его службы. При дрифтерном и ярусном лове, подъеме улова и т.п. судно должно двигаться с малой скоростью, однако на судах с ВФШ это практически невозможно, так как минимально устойчивая частота вращения двигателя довольна велика. Поэтому приходится с интервалом в несколько минут запускать и останавливать двигатель. Такая работа двигателя вызывает ускоренный износ ее движущихся частей, т.е. уменьшает моторесурс двигателя.

Винты регулируемого шага (ВРШ), лопасти которых специальным механизмом поворачиваются относительно осей, перпендикулярных оси вала, не имеют большинства недостатков, присущих ВФШ. Путем разворота лопасти (изменив шаговое отношение), всегда можно привести винт в соответствие с двигателем; без изменения направления вращения двигателя осуществить реверс судна и получить самые малые, и даже нулевую скорости судна при любой частоте вращения винта.

Рисунок 5.14 − Принципиальная схема ВРШ

1– лопасть; 2 – ступица; 3 – ползун; 4 – штанга; 5 – гребной вал;

6 – поршень; 7 – цилиндр

ВРШ (рис. 5.14) состоит из ступицы, поворотных лопастей, механизма поворота лопастей, расположенного в ступице, механизма изменения шага (МИШ) и привода механизма поворота лопастей, располагаемого в валопроводе. Управление ВРШ осуществляется с местного поста и дистанционно. Пост дистанционного управления ВРШ устанавливается в ходовой рубке.

Механизм поворота лопастей управляется механизмом изменения шага. Наиболее распространенные механизмы поворота лопастей показаны на рис. 5.15. На морских судах применяются обычно механизмы двух последних типов, как наиболее надежные. В механизме кулисного типа (рис. 5.15, в) с поступательно движущейся штангой МИШ связан ползун, по направляющим которого перемещается сухарь. В сухарь вставлен эксцентрично закрепленный на лопасти палец. При поступательном движении штанги ползун передвигает палец и разворачивает лопасть. В механизме шатунного типа (рис. 5.15, г) движение штанги передается шатуну, который поворачивает лопасть.

Рисунок 5.15 − Механизм поворота лопастей: а – шестеренчатый;

б – винтовой; в – кулисный; г – шатунный

Механизмы изменения шага по типу привода могут быть ручными, механическими, гидравлическими, электромеханическими и электрогидравлическими. Ручные и механические приводы применяются на винтах небольших размеров. Большинство ВРШ имеют гидравлические приводы, так как они обладают простотой, высокой надежностью, малыми габаритами и развивают большие усилия. Механизм изменения шага винта размещают внутри ступицы, внутри валопровода и вне валопровода и винта. На промысловых судах МИШ устанавливается, как правило, в валопроводе, реже в ступице. На рис. 5.15 приведена схема ВРШ с МИШ, расположенным в валопроводе. Штанга, поворачивающая лопасть, проходит через полый гребной вал. Кормовой конец штанги связан с ползуном, носовой – с поршнем, который под давлением рабочей жидкости, подаваемой в одну из полостей цилиндра, передает через штангу поступательное движение ползуну. При большой длине штанги и значительных деформациях валопровода может возникнуть опасность несрабатывания механизма поворота лопастей и аварии МИШ. Этот недостаток устраняют, размещая МИШ в ступице несколько больших размеров или в кормовом подзоре судна.

ВРШ обладают следующими преимуществами по сравнению с ВФШ:

— обеспечивают полную мощность двигателя при широком диапазоне изменения скоростей, что важно при движении судна во льдах, при различных водоизмещениях, при тралении, при буксировке других судов и т.п.;

— обеспечивают любое значение скорости от наибольшего переднего до наибольшего заднего хода, без реверсирования двигателя и изменения направления и частоты вращения гребного винта;

— реализуют экономический ход судна по заданной оптимальной программе, обеспечивающей наилучшую комбинацию шага и частоты вращения.

Помимо перечисленных, ВРШ позволяют получить и другие менее принципиальные, но важные преимущества по сравнению с ВФШ, облегчающие управление судном с мостика. К ним относятся:

— существенное сокращение времени и расстояния, проходимого судном при экстренной остановке (в 1,5 раза меньше выбег) и реверсе;

— обеспечение только дистанционного управления с мостика;

— применение повышенного уровня автоматизации управления системой: судно — двигатель — ВРШ;

— повышение маневренных качеств судна, в частности облегчение швартовок, исключение рывков при буксировке и т.п.;

— облегчение пуска двигателей, который осуществляется при положении лопастей ВРШ в нулевом шаге; при этом уменьшается число пусков и увеличивается моторесурс двигателя;

— возможность судна, оборудованного ВРШ, продолжительное время стоять на месте в ожидании лоцмана, для ориентации в обстановке, не останавливая вращения гребных винтов и прогревая двигатели; это обеспечивается установкой шага лопастей в нулевое положение;

— возможность замены съемных лопастей, не выводя судно из эксплуатации.

К недостаткам ВРШ относятся следующие:

— КПД ВРШ на расчетном режиме за счет повышения диаметра ступицы ниже КПД ВФШ на 1 2%;

— масса ВРШ существенно превышает массу ВФШ;

— сложность конструкции и дороговизна.

Следует отметить, что повышенная стоимость ВРШ окупается за два — три года эксплуатации судна за счет основных преимуществ ВРШ.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: «Что-то тут концом пахнет». 8275 — | 7909 — или читать все.

188.64.169.166 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Читать еще:  Компрессор для лодки
Ссылка на основную публикацию
Adblock
detector