Алгоритм работы бензинового двигателя

Устройство и принцип работы бензиновых двигателей

Чаще всего при создании автомобилей используются бензиновые двигатели. Устройство получило применение во многих отраслях: им оборудованы быстроходные суда, авиатранспорт, автомобили, рабочая техника. Оно принадлежит к классу двигателей внутреннего сгорания, его принцип работы состоит в трансформировании энергии, высвобождающейся в момент горения топлива, в энергию вращения. В гильзе цилиндра уплотненная топливная смесь зажигается от искры. Дроссельной заслонкой контролируется воздушный поток, от силы которого зависит частота хода поршня и мощность.

Хотя работа любой разновидности бензинового ДВС основана на одних и тех же законах и во всех моделях есть неизменные детали, конструктивные особенности могут отличаться.

История

Работа над созданием двигателя внутреннего сгорания велась с 18 столетия.

Рабочая модель появилась в 1858 г. Ее изобрел инженер из Бельгии Ж.Ж. Этьен Ленуар. Для работы применялся угольный газ.

Устройство не отличала надежность – детали перегревались, нерационально использовалось масло и топливо. Но с его помощью передвигались трехколесные машины.

В 1876 г. изобретатель Николаус Отто разработал прототип, в основе которого находился довольно непростой принцип действия. Этот двухтактный двигатель был рассчитан на жидкие типы горючего, оборудован карбюраторным устройством для впрыска и искровым зажиганием. Приспособление успешно справлялось с задачей получения механического вращения.

Классификация

Разделяют такие типы двигателей внутреннего сгорания:

  • поршневые модели (автомобильные);
  • агрегаты роторно-поршневого вида;
  • турбинные устройства;

Наибольшее применение получили автомобильные ДВС поршневого типа, поэтому устройство и принцип функционирования логично рассмотреть на их примере.

Среди них бывают такие виды, как:

  • четырехтактный двигатель;
  • двухтактный.

По методу смешивания воздуха с бензином моторы бывают:

  • карбюраторными;
  • инжекторными.

Принцип действия

Принцип функционирования двигателя внутреннего сгорания прост. В процессе сжигания порций бензина в резервуаре ограниченной емкости высвобождается большой объем расширяющихся нагретых газов. После каждого впрыска из форсунок поршень оказывается в предельной верхней позиции, и в это время создается искра, от которой воспламеняется сжатое горючее.

Чтобы бензиновый двигатель непрерывно генерировал энергию вращения, поступления порций смеси бензина и воздуха (а также сжатия этих доз) должны производиться регулярно. Также должен вовремя осуществляться вывод выхлопных газов. От доли воздуха в смеси зависит частота хода поршня, которая влияет на то, с какой скоростью коленвал совершает обороты.

Чтобы перегрев каждой детали не превысил допустимую степень, используются оптимальные системы внутреннего охлаждения.

Бывают разные виды ДВС. В легковых автомобилях устанавливается четырехтактный. Зависимо от разновидности, различаются главные элементы и детали.

Устройство ДВС

Принцип, которым обусловлена работа двигателя внутреннего сгорания, достаточно прост.

Устройство включает следующие детали:

  • сложный корпус;
  • аппарат газового распределения;
  • кривошипно-шатунный механизм;
  • дополняющие системы (впускная и выпускная, топливная, зажигания и т. д.).

Кривошипно-шатунный механизм нужен для того, чтобы получать обороты коленвала из линейных движений поршней. Частота хода, обуславливающая скорость вращения, регулируется пропорциональным отношением воздуха и топлива.

Аппарат внутреннего распределения газов отвечает за своевременное выполнение впрыска в гильзы цилиндров и выброс продуктов горения.

Двухтактный двигатель составляют те же детали, которые, однако, несколько отличаются. На некоторые из них влияет температура, степень которой гораздо более высокая, что обуславливает особенности их конструкции и материалов.

Конструкция цилиндров

Цилиндры двигателей внутреннего сгорания являются рабочими камерами объемного вытеснения.

На внутренние и внешние детали действует высокая температура. Во избежание неравномерного расширения и сжатия они создаются из разных частей:

  • внутренняя — функциональный элемент, гильза;
  • наружная — рубашка (у двигателей с воздушным охлаждением дополнена теплоотводящими ребрами).

Зазоры между ними называют зарубашечным пространством. Автомобильные бензиновые двигатели с водяным типом охлаждения вместо ребер оборудованы каналами для циркуляции жидкости.

Рубашки создаются в форме единой отливки на весь ряд гильз и называются «блок цилиндров». Так обеспечивается надежность конструкции и стабильная температура.

Внутри гильзы поршень выполняет линейные движения, затем преобразующиеся в обороты коленвала.

Сверху в цилиндре (если мотор четырехтактный) сделаны три отверстия. В них помещаются клапаны (для вывода выхлопных газов и подачи топлива), которые последовательно активируют кулачки распределительного вала. Также здесь устанавливается свеча зажигания. Существуют моторы с 4 или 5 клапанами на каждом цилиндре. Размещение на одной и той же плоскости большего количества открывающихся распредвалом отверстий позволяет улучшить наполнение камеры сгорания топливом и удаление из него продуктов горения.

Для новых моделей автомобилей применяется принцип составления топливной смеси при помощи форсунок. Они могут быть закреплены возле основания впускного трубопровода или внутри последнего, перед дроссельной заслонкой. При использовании непосредственного типа впрыска топлива форсунка устанавливается в самой стенке цилиндра, и доставляет бензин сразу в рабочую камеру.

Двухтактный двигатель лишен клапанов и вала, которыми оборудован четырехтактный вариант, поэтому конструкция отличается системой продувки.

Как работает четырехтактный двигатель

В большинстве автомоделей используется четырехтактный двигатель. Энергия, получаемая после сгорания топлива, почти полностью преобразуется в полезную. Если ДВС двухтактный, бензин расходуется не так экономно.

Четырехтактный агрегат повторяет тот же принцип работы, но цикл вращения коленвала выполняется за большее количество фаз, среди которых:

  1. такт впрыска;
  2. фаза сжатия;
  3. рабочая фаза;
  4. такт выпуска.

Первостепенную роль в устройстве играет поршень, соединенный с коленвалом шатуном. Частота его хода обуславливает скорость вращения, в которую кривошипно-шатунный механизм превращает линейные движения.

Поршень устремляется в обратном от свечи направлении и выступами распредвала открываются клапаны впрыска в резервуары цилиндров горючей смеси. Она составляется внутри карбюратора (или с помощью форсунок). Когда достигнута нижняя крайняя степень, клапан закрывается.

Поршень снова поднимается, уплотняя свежую порцию смеси. Температура последней возрастает. Когда достигается верхняя точка, свеча зажигает сжатое топливо.

Отношение рабочего объема цилиндра в нижней позиции поршня и камеры сгорания при максимальном приближении поршня к свече называется степень сжатия. Чем она существеннее, тем более высокое октановое значение должно быть у бензина, чтобы не произошла детонация. Степень определяется измерением. Расчеты затрудняются сложностью формы камеры сгорания.

Степень сжатия – важнейший параметр: от его значения зависит экономичность двигателя. Чем оно выше, тем меньший объем занимает уплотненная смесь, тем быстрее и полнее она сгорает, а через выпускной клапан выбрасывается меньшее количество неотработанного топлива.

Смесь горит, поршень толкается вниз возрастающим объемом газов. Форсунка и отверстие выпуска заблокированы клапанами.

Коленвал не прекращает вращения, поршень по инерции направляется в верхнюю позицию. Открывается клапан выпуска. Поршень осуществляет вытеснение выхлопных газов. Когда он подходит к верхнему положению, выпускной клапан закрывается.

Распределительный вал и клапаны имеет в своей конструкции лишь четырехтактный двигатель.

Как работает двигатель двухтактный

Такой бензиновый двигатель, выполняя обороты коленвала, совершает полноценный цикл во время каждого из них. Остаются лишь фазы сжатия и расширения из тактов, которые производит четырехтактный тип. Этапы впрыска топлива и выпуска выхлопных газов уступают место продувке камеры возле нижней крайней позиции поршня, когда новая рабочая смесь заменяет собой остаток отработанных газов. Она выполняется через проемы в стенке цилиндра. Отпадает необходимость устройства клапанов и пружин, ограничивающих максимальные скорости вращения.

Двухтактный двигатель и принцип его работы следует рассмотреть подробнее.

При сжимании топлива в гильзе поршень направляется к свече, чем обуславливает понижение давления в кривошипном резервуаре. Там активируется клапан, впуская бензин. Когда поршень движется в обратную сторону, степень давления в кривошипном резервуаре увеличивается, и вход блокируется. Почти достигнув нижнего положения, поршень прекращает заслонять проем для выпуска. Продукты горения выходят в коллектор. Температура агрегата повышается, поэтому двухтактные устройства должны хорошо охлаждаться. Поршень перестает заслонять собой проем, который находится ближе к впускному коллектору. Смесь, вытесняемая из кривошипной камеры поршнем, проникает в рабочую емкость цилиндра и устраняет лишние газы. Некоторое количество неиспользованного топлива может попадать в выпускной коллектор. При такте сжатия новая порция смеси входит в кривошипную камеру.

Читать еще:  Шевроле эванда характеристика двигателя

Так как весь поршневой механизм омывается топливовоздушной смесью, к ней примешивается некоторое количество масла. Для его очищения от частиц металла с изношенных деталей устанавливается фильтр. По необходимости, систему дополняет охлаждающий радиатор, так как во время работы температура масла может принимать максимальные значения.

Степень сжатия высчитывается так же, как для моторов автомобилей.

ДВС отличает то, что линейный ход поршней в них превращается в поворотные движения при помощи коленвала.

Как устроен коленчатый вал

Впервые принцип работы коленвала изложил средневековый ученый Аль-Джазари. Описание датируется 13 веком.

Это сложный конструктивный элемент (или объединенные воедино детали), имеющий шейки для фиксации шатунов двигателя внутреннего сгорания, усилия которых устройство преобразует в обороты и передает для вращения колес автомобилей.

Коленвал объединяет несколько коренных и шатунных шеек так называемыми «щеками». Эти массивные детали похожи на диски неправильной формы, расширяющиеся с одной стороны для выполнения функции противовеса. Шатунные шейки смещены к узким сторонам щек относительно общей оси вала. Противовесы, расположенные с обратной от них стороны, уравновешивают вес поршней, обеспечивая надежность и плавность вращения.

Шатун, прикрепленный к шейке с помощью подшипника скольжения (который также называют «вкладышем»), вынужден вести ее по кругу, через центр которого проходит ось вала, вращающегося в опорах.

На расположение колен влияет предполагаемое число цилиндров, порядок их действия и частота хода поршней (которой соответствуют обороты двигателя).

Коленвал является неизменно присутствующим элементом ДВС, не зависимо от того, четырехтактный он, или нет. Это общая деталь для всех автомоделей.

Карбюраторные и инжекторные разновидности

Разница состоит в способе смешивания топлива до впрыска в камеру сгорания.

В двигателях внутреннего сгорания устаревших автомоделей приготовление горючей смеси до сжатия поршнем осуществлялось в карбюраторе. Так называется устройство, с помощью которого определенные объемы топлива смешиваются с воздухом, засасываемым в процессе работы поршня. Самые простые виды карбюраторов представляют собой конструкцию из двух элементов: поплавковой и смесительной камер. Клапан в первом из отделов регулирует уровень топлива, а во втором его нужное количество смешивается с порцией воздуха, для дозировки которого в смесительной камере установлен диффузор.

Во время впуска давление и температура в гильзе понижаются. Воздух втягивается в нее, проходя сквозь смесительный отдел карбюратора и трубопровод впрыска. В новых автомобилях данная система не применяется.

В инжекторном двигателе осуществление впрыска является задачей детали, которая носит название «форсунка». К ней топливо поступает под давлением. Дозирование с помощью форсунок выполняется электронным блоком управления. С определяемой компьютером периодичностью подается импульс тока. Эти сигналы активируют работу форсунок. Инжекторным может быть не только четырехтактный двигатель, хотя для таких конструкций электронное управление более актуально.

Переход от карбюраторных двигателей к моделям с использованием форсунок произошел из-за возрастания требований к экологичности выхлопных газов. Возникла необходимость устанавливать нейтрализаторы вредных веществ в бензиновые машины.

Форсунка для впрыска топлива, регулируемая программой блока управления, обеспечивает оптимальные показатели стабильности состава продуктов сгорания, поступающих в катализатор. Такое постоянство необходимо для нормальной работы последнего. Принцип действия катализатора позволяет ему работать в узком диапазоне этого состава, требуется определенная степень содержания кислорода.

Инжекторный двигатель

Инжекторный двигатель — что мы о нем знаем? Именно им оснащается любая современная машина. Реализация ресурса такого двигателя внутреннего сгорания (ДВС) рассчитана на экономный расход топлива, минимизацию его выхлопа в окружающую среду. Проведем небольшой экскурс по изучению агрегата.

За счет чего он работает?

Инжекторные двигатели работают тактами; каждый такт обеспечивает операцию:

  1. Заполнение горючим цилиндров.
  2. Сжатие его поршнем для сгорания.
  3. Рабочий ход — получение механической энергии путем детонации горючего вещества.
  4. Вывод переработанного сырья в атмосферу.

Наиболее востребованными автопромом являются 4-х тактные ДВС на бензиновой тяге. На их примере изучим принцип работы инжекторного двигателя.

При первом такте поршень максимально опускается вниз — через клапан подается перемешанный с воздухом бензин. Далее, поршень поднимается до упора, закрывая клапан и сжимая смесь. После этого свеча отсекает искру — она запускает детонацию сдавленного вещества.

Повышение температуры в камере и образование газов продвигают поршень вперед, а коленвал за счет инерции возвращает его на верхнюю позицию. При высокой скорости оборотов давление нагнетается еще больше, открывается выходной клапан. Продукты переработки бензина устремляются к нему.

Для более рационального функционирования используется комплекс датчиков, которые определяют получаемую на механизмы нагрузку, рассчитывают порции компонентов детонирующей смеси для обеспечения движения с циклом, равным такту.

Программная «начинка» их устроена так, что каждый срабатывает параллельно режимам мотора, отслеживает изменения в циклах и подстраивается под них. Такая функциональность позволяет подстраивать расход горючего под индивидуальный стиль вождения, повысить КПД.

В чём особенности устройства?

Изучение конструкции позволит подробнее разобраться, как работает инжекторный двигатель. Компоненты, характерные для этого типа:

  • Блок электронного управления (ЭБУ);
  • Регулятор давления;
  • Форсунки;
  • Бензонасос;
  • Датчики.

Взаимодействие перечисленного: датчики получают данные о состоянии механики или процессах, их обрабатывает процессор и передает управляющие команды. Форсункам выделяется ограниченный заряд, который их открывает. Результат — смесь из топливного отдела попадает в отсек впускного коллектора.

Чтобы схема этого процесса стала более понятной, проведем краткий экскурс по устройству некоторых узлов, из которых состоит двигатель инжектор.

Основная его функция — бесперебойно выдавать команды составляющим автомобиля на основании обработанной информации. В нее входят:

  • факторы окружающей среды (температура, влажность, пр.);
  • степень нагрузки на механику (при подъеме на горку, передвижение по плохой дороге, др.);
  • режим мотора (холостой/скоростной ход, учет нагрузки при переходе на полный привод, т. д.).

При несовпадениях исходной программе компьютер задает исполняющим элементам корректировки. Блок способен проводить диагностику. Об отказе любого механизма-исполнителя, его некорректном функционировании водитель оповещается путем индикации CheckEngine на приборной панели. Сведения об ошибках собираются в памятном отделе, что при серьезных поломках помогает их оперативному обнаружению и устранению.

Виды заложенных устройств памяти:

  • Однократно программируемое постоянное запоминающее (ППЗУ) — содержит базовый программный код («мозг» автомашины). Его чип находится на плате панели, при выходе из строя легко меняется новым. При любых сбоях вложенные коды остаются храниться на нем.
  • Оперативное запоминающее (ОЗУ) — временный резервуар, применяемый для обработки задач по текущему сеансу. Устройство впаяно к плате; по прекращению подачи электричества из аккумулятора вся информация с него стирается.
  • Электрически программируемое (ЭПЗУ) — содержит временные данные и кодировку средств защиты от угона. В качестве питания использует вшитый аккумулятор, подзаряжаемый при движении. Через него сравниваются вшитые коды электронной блокировки и те же параметры иммобилайзера. При их несовпадении запуск инжекторного двигателя невозможен.

Форсунки

Через них производится выплеск порций топливной массы в коллекторное и цилиндровое отделения, причем открытие/закрытие клапана в течение секунды повторяется многократно.

По способу аппаратного управления и используемого количества деталей подразделяют на категории:

  1. Дроссельный моновпрыск (TBI)— подача сырья для детонации осуществляется одной деталью. Подаваемая струя не синхронизируется со срабатыванием клапана впуска. Управляющие сигналы на форсуночное сообщение производятся из внутриколлекторного чипа. Принцип распространен на старых моторах 90-х годов выпуска.
  2. Впрыск с распределением (MFI) — используется во всех современных автомобилях с бортовым компьютером. Передача горючего происходит комплектно: одна форсунка — один цилиндр. Форсунковый блок крепится поверх коллектора, а весь процесс синхронизируется с ЦБУ, согласно с тем, как работает система зажигания инжекторного двигателя. При сравнении сводных характеристик предшественников — КПД увеличен до 10%.
Читать еще:  Датчик оборотов двигателя енисей

MFI-элементы по подаче струи бывают: электрогидравлические, электромагнитные, пьезоэлектрические. Они применяются при распределении впрыска:

  • Одновременном (синхронное наполнение всех цилиндров);
  • Попарно-параллельном — одна пара поршней принимает нижнее положение, другая — верхнее. Залив топлива и вывод продуктов сгорания производятся так же;
  • Двухстадийном (фазовом)— передача горючего в камеры сгорания производится в две операции.
  • Непосредственном — применяется в конструкциях моторов, подразумевающих сжигание сверхобедненного кислородом состава.

Важный факт: технология TBI сегодня практически не распространена, так как она менее экономичная и ненадежная!

Каталитический нейтрализатор

Это устройство позволяет сократить в выводимых газах содержание веществ, как окиси углерода и азота, за счет преобразования их в углеводороды. Не управляется ЭБУ, но взаимодействует с центром обработки через датчик, определяющий процент кислорода в выхлопных скоплениях. При избыточной подаче горючего контроллер получает сведения от датчика и корректирует ее.

В нейтрализаторе установлены керамические элементы со встроенными катализаторами:

  • окислительными (платиновый и палладиевый);
  • восстановительным родиевым;
  • селективными;
  • накопительными.

На заметку: этилированный бензин губителен для работы нейтрализаторов, а заправочные вещества с высоким содержанием серы приведет в негодность элементы накопительной катализации!

Датчики

Слаженную работу всех механизмов инжекторных двигателей обеспечивают показания мини-приборов, закрепляемых на агрегатных исполнителях. Каждое устройство замеряет параметры контролируемого участка и передает их в ЭБУ.

  1. ДМРВ (R массового расхода воздуха) — крепится на входе в воздушный фильтр. Функционирует по принципу сравнения показаний. Через 2 нити платины поступает ток. Меняется сопротивление (зависит от температуры). При этом одна нить свободно обдувается, вторая — герметично укрыта. За счет появившейся разницы ЭБУ производит подсчет.
  2. ДАД (R абсолютного давления и температуры в двигателе) — комбинируется или ставится отдельно от предыдущего. Состоит из 2 камер: одна герметична (внутри вакуум), вторая подводится напрямую к камере коллекторного впуска. Промеж камер проходит диафрагма, закреплены пьезоэлементы, которые создают напряжение при ее движении.
  3. ДПКВ (R положения коленчатого вала) — устанавливается в виде магнитной гребенки на шкиве коленвала. Он обустроен 58 зубцами и 2 зазорами, равными шагу зуба. Зубцы движутся в медной обмотке, что при взаимодействии с намагниченным сердечником образует индукционное напряжение — оно зависит от скорости оборотов шкива.
  4. ДФ (R фаз) — содержит диск с катушкой и прорезь. Прорезь обращается к прибору — выходное напряжение уравнивается с нулем. Одновременно достигается верхняя мертвая точка сжатия в первом цилиндре. Благодаря этому, центральный блок выдает напряжение в нужный цилиндр для зажигания, управляет тактами.
  5. ДД (R детонации) — им обустроен блок цилиндров. В момент детонации по нему проходит вибрация. В основе передачи информации лежит генерация напряжения свободного тока — оно увеличивается при большей вибрации.
  6. ДПДЗ (R положения дроссельной заслонки) — при опорном напряжении в 5 V происходит его увеличение или падение, за счет изменения поворотного угла заслонки.
  7. ДТОЖ (R температуры охлаждающей жидкости).
  8. Датчик кислорода — для разных конструкций внедряется единично или парой. Снимает замеры свободного кислорода в продуктах выхлопа. Его функция позволяет ЭБУ определить: обогатить или обеднить топливную смесь.

Инжектор значительно лучше карбюратора. Чтобы в этом убедиться, рассмотрим сравнение схожих моторных конструкций в таблице:

Параметры агрегата Значение для карбюратора Значение для инжектора
наименование ВАЗ 21083
Объем (л) 1.5 1.5
Мощность (л. с./кВт) 69/51.5 78/56.2
Частота вращения вала (об/мин) 750-800 800-900
Бензин (октановое число) 92-95

Принцип работы ДВС современного типа простыми словами

Автор: Дмитрий Сапко

Современные двигатели работают по достаточно простой схеме, которая была изобретена целый век назад. Единственное, что подверглось сильному изменению после производства первого двигателя внутреннего сгорания, это система питания. С карбюраторов и прочих не слишком эффективных средств подачи топлива промышленность перешла на инжектор для бензиновых двигателей. Дизельные агрегаты обладают отдельным типом впрыска через систему с повышенным давлением. Все последние разработки в технологиях работы ДВС являются мелочными дополнениями к уже известной конструкции, которые призваны обеспечить либо автоматическую регулировку определенных параметров работы, либо определенную экономию топлива.

Тем не менее, суть двигателя остается прежней. По части работы двигателя внутреннего сгорания сегодня мы обсудим отдельно службу бензинового и дизельного силового агрегата, а также обсудим некоторые особенности использования бензинового двигателя в гибридных устройствах. Также затронем тему турбины в различных агрегатах, ее типов и смысла использования. Ознакомившись со всеми тонкостями работы современных силовых агрегатов внутреннего сгорания, вы поймете, что нынешние ДВС фактически ничем не отличаются от классических устройств.

Содержание

  • Тонкости работы бензинового двигателя
  • Дизельный силовой агрегат
  • Бензиновый гибридный двигатель
  • Подводим итоги

Бензиновый двигатель внутреннего сгорания — тонкости работы

Двигатель на бензиновом топливе представляет собою классический вариант силового агрегата, который может работать только на очищенном и качественном бензине, производимом из нефти. Современные двигатели работают только на бензине с октановым числом 95 или даже 98. Залив в хороший агрегат бензин плохого качества, вы можете приобрести массу проблем.

Топливо подается в агрегат с помощью бензонасоса, а количество подачи регулируется специальной системой впрыска. Инжекторы обладают тонкими форсунками, которые распыляют топливо в системе, позволяя его полностью сжечь в камерах сгорания. После подачи топлива по трубке на систему инжектора происходят следующие процессы:

  • инжектор распыляет бензин, превращая его в облако пара, а также смешивает получившиеся частицы с воздухом;
  • смесь бензина и кислорода попадает дальше в камеру сгорания, где в верхней части поджигается свечей зажигания;
  • подожженный бензин быстро воспламеняется, формируя определенной мощности взрыв с конкретным давлением и усилием;
  • камера сгорания исключительно герметична, потому сила этого взрыва направляется на рабочую плоскость поршня;
  • от мощности удара поршень опускается вниз и приводит в движение коленчатый вал, на котором закреплены другие поршни;
  • с помощью неоднократного повторения такого процесса происходит постоянное вращение двигателя.

Если топливо не распыляется должным образом, поскольку форсунки забиты или поломаны, один из цилиндров не будет давать нужной мощности, поскольку топливо не сможет поджигаться и нормально выполнять свои функции. В таком случае двигатель теряет мощность и значительно увеличивает расход. Также в таком агрегате крайне важна фильтрация воздуха.

Турбина в бензиновых двигателях представляет собой механизм усиленной подачи воздуха, за счет чего на определенных режимах работы увеличивается мощность агрегата без увеличения потребления топлива. Интенсивная подача воздуха с разными значениями позволяет компаниям достигать невероятных технических характеристик вполне стандартных бензиновых агрегатов.

Дизельный силовой агрегат — второй тип ДВС

Еще один важный тип двигателя, который стал прекрасной альтернативой бензиновому агрегату в обыденной и коммерческой эксплуатации, — это дизельный силовой агрегат. Его стандартными преимуществами считается менее активный расход топлива и очень ощутимая тяга. Такие выгоды дают возможность полностью переформатировать стиль поездки, изменить привычки управления автомобилем.

Дизельный силовой агрегат подает топливо также через форсунки со значительным распылением. Это требует высокой чистоты дизельного топлива и значительной безопасности работы системы подачи топлива, поскольку жидкость подается на форсунки в достаточно большом давлении. Принцип работы агрегата несколько отличается от бензинового:

  • топливо подается на распыление в гораздо большем давлении, оно прогревается еще до входа в камеры сгорания;
  • под воздействием значительного давления поршней в камерах сгорания топливо самовоспламеняется;
  • создаваемая при этом энергия производит толчок поршня в нижнее положение, выводя при этом другие поршни вверх;
  • для работы двигателя требуется меньше топлива, а вот подача воздуха имеет большое значение;
  • по данной причине в дизельных двигателях практически всегда присутствует турбина, распространены только турбодизели;
  • агрегат создает очень завидную мощность поршней, потому даже на низких оборотах он обладает большой тягой.
Читать еще:  Электросхема работы вентилятора охлаждения двигателя 13г гранта

Определенная специфика работы дизельного двигателя вызывает и некоторые особенности его эксплуатации. В частности, водителю придется научиться раньше переключать передачи, довольствоваться низкими оборотами и контролировать тягу машины. Современные турбодизели потребляют на 15-20 процентов меньше топлива на ту самую мощность, чем бензиновые агрегаты.

Объемистые и тяговитые дизельные двигатели в промышленности могут работать не только на продуктах нефтеобработки. Многие агрегаты приспособлены даже на сжигание сырой нефти, а также принимают в качестве топлива природные биомасла, которые воспламеняются при сильном давлении. Это может стать одним из будущих перспективных моментов автомобилестроения.

Бензиновый гибридный двигатель — электричество в моде

Не так давно на рынок начали поступать гибридные автомобили. Это машины, у которых силовой агрегат состоит из двух частей. Первая часть не отличается от стандартных бензиновых агрегатов, но зачастую не столь объемистая и мощная. А вторая часть представлена электродвигателями в разных количествах и расположениях.

Батареи для электродвигателя оснащены отдельным генератором, который заряжается от работы бензинового агрегата. Также энергия берется из рекуперации энергии торможения и прочих процессов, которые обычно теряются в стандартном исполнении. Гибрид работает по следующей схеме:

  • в стандартных ситуациях городской поездки используются только электромоторы, вы ведете электромобиль;
  • когда энергия батарей на исходе, в дело включается бензиновый двигатель, нагнетающий запас в аккумуляторах;
  • также при резком нажатии на педаль газа включаются сразу все двигатели, давая огромную энергию;
  • при полной разрядке батарей ДВС продолжает работать и весьма экономично везет вас в нужном направлении;
  • у некоторых гибридных автомобилей есть выход для зарядки батарей от обычной электрической сети.

Такие технологии являются дыханием будущего, поскольку экономия на гибридных автомобилях ощутима. Большой внедорожник с такой установкой может затрачивать всего 5-6 литров топлива, независимо от выбранного режима поездки. Хороший двигатель внутреннего сгорания обеспечивает быструю зарядку батарей.

Сегодня активно развивается применение гибридных установок на основе дизельного двигателя. В таком случае расход опускается до невероятных 2-3 литров на 100 километров. Впрочем, технологии гибридного использования знают и расход в 1 литр на 100 километров, который является эталонным для современных производителей автомобилей. Предлагаем изучить принцип работы гибридного двигателя на следующем видео:

Подводим итоги

Сегодня покупатель автомобилей имеет большой выбор технологий, которые для него будут оптимальными во всех отношениях. Подобрать лучшее решение будет непросто, поскольку производители расписывают преимущества своих предложений в самых неожиданных аспектах. Иногда правильно преподнесенная технология кажется нам самым важным элементом автомобиля, но на самом деле не занимает и части технического потенциала транспорта.

Потому многие покупатели просто становятся жертвами рекламного влияния, покупая те или иные технологии и оплачивая их в полной мере. Сегодня лучше отказаться от рекламы при выборе типа машины. Положитесь на собственные впечатления и ощущения, на решения, которые вам нравятся больше всего. В каждом типе двигателя и силовой установки есть свои преимущества и недостатки. Расскажите о главных преимуществах двигателя в вашем автомобиле.

Toyota Hybrid: принцип работы гибридной системы

Сегодня компания Toyota является одним из крупнейших производителей гибридных автомобилей в мире. Этот тип автомобилей становится все более популярным из-за высокую производительность, надежность, экологичность и низкие эксплуатационные расходы. Но чем основной принцип работы гибридной системы автомобилей Toyota отличается от бензиновых и электрических автомобилей?

Гибридная система Toyota использует бензиновый двигатель и электромотор. Это «полный» гибрид — автомобиль может передвигаться как по принципу совместного использования двигателя внутреннего сгорания (ДВС) и HV-батареи, так и исключительно на электроэнергии. Этим Toyota Hybrid отличается от других «мягких» гибридных систем, в которых электромотор работает только для повышения производительности бензинового двигателя и исключительно вместе с ним.

Система Toyota Hybrid состоит из:

  • бензинового двигателя, который работает по циклу Аткинсона. Самый эффективный ДВС при средних и высоких оборотах, имеет высокий КПД и низкие расход топлива и уровень шума
  • управляющего электромотора. Выполняет роль генератора энергии от ДВС для подзарядки высоковольтной батареи, а также роль стартера ДВС;
  • тягового электромотора. Предназначен для приведения автомобиля в движение. Также выполняет роль генератора при рекуперации;
  • гибридной трансмиссии. Представляет собой планетарную передачу, является делителем мощности и распределяет крутящий момент между тяговым электромотором и ДВС. Гибридная трансмиссия не является вариатором в классическом его понимании, поскольку в ней отсутствуют валы, фрикционы, ремни / цепи;
  • инвертора. Преобразует переменный ток (АС) с электродвигателя на постоянный (DC) для подзарядки батареи и наоборот. Также конвертирует напряжение 250В с HV-батареи в 650В для запуска и работы тягового электромотора;

высоковольтной батареи. Имеет высокую плотность энергии. Никель-металл-гидридных батарея обеспечивает стабильное подзарядки / разрядки от 30% до 90% для наиболее эффективной работы батареи, идеально подходит для работы при низких температурах и не требует внешнего подзарядки.

Toyota Hybrid может работать в трех режимах: CHARGE, ECO и POWER. В зависимости от режима движения и манеры управления водителя автомобиль определяет оптимальный режим и соответственно отображает его на индикаторе гибридной силовой установки.

CHARGE — автоматическая зарядка HV-батареи гибридной системы автомобиля происходит при плавном и стабильном торможении за счет рекуперации кинетической энергии. HV-батарея также автоматически заряжается при движении накатом. Накопленный заряд используется электромотором для дальнейшего движения, позволяет экономить на топливе. В режиме ECO гибридный привод используется максимально эффективно. Во время движения в городе в режиме ECO система часто позволяет двигаться исключительно на электротяге. POWER — при ускорении, обгоне или движении на высокой скорости автомобиль использует синергию мощности ДВС и гибридной системы для получения высоких динамических показателей.

Гибридная система в Toyota Camry HybridГибридна система в Toyota Camry Hybrid Description:

Применяя такой эффективный принцип совместного использования бензинового двигателя и электрических компонентов, автомобиль может преодолевать расстояния, и подзарядка не нужна. Благодаря этому гибридный автомобиль Toyota является оптимальным выбором как для передвижения по городу, так и для длительных путешествий. Современный водитель стремится стать владельцем автомобиля, который бы отвечал требованиям нового smart-стиля жизни и повышенным стандартам качества. Самозарядные бензиново-электрические гибриды Toyota удовлетворяют современные критерии эффективности, надежности и прогрессивности.

За дополнительной информацией о Toyota Hybrid, включая ценам на доступный модельный ряд, просим обращаться по телефону: (044) 537-54-54 или по адресу Харьковское шоссе 179.

Спешите обновить вашу мультимедийную систему и получить функции Apple CarPlay и Android Auto

НОВЫЙ LAND CRUISER: ПРОЕДЕТ ВЕЗДЕ И БЕЗОПАСНО ВОЗВРАТИТ ВАС ДОМОЙ *

Toyota представила новый LAND CRUISER 300-й серии

Украинские спортсмены стали лицом кампании Toyota Corolla

Начат прием предварительных заказов на новый фургон Proace City

В Тойота Центр Киев «Автосамит» начат прием предварительных заказов на коммерческие автомобили Toyota Proace.

Toyota RAV4 Plug-in Hybrid доступен на тест-драйве

В Украине стартуют продажи новой Toyota Camry

Уважаемые клиенты проверяйте информацию о розыгрышах

Новый Toyota RAV4 Plug-in Hybrid ― эффективный и дружественный к окружающей среде

Хотите быть в курсе последних новостей Toyota? Подпишитесь на рассылку:

Ссылка на основную публикацию
Adblock
detector