Асинхронные двигатели режимы работ

§78. Режимы работы асинхронных двигателей

Режимы работы асинхронных двигателей.

Холостой ход.

Если пренебречь трением и магнитными потерями в стали (идеализированная машина), то ротор асинхронного двигателя при холостом ходе вращался бы с синхронной частотой n=n1 в ту же сторону, что и поле статора; следовательно, скольжение было бы равно нулю. Однако в реальной машине частота вращения ротора n при холостом ходе никогда не может стать равной частоте вращения n1, так как в этом случае магнитное поле перестанет пересекать проводники обмотки ротора и в них не возникнет электрический ток.

Поэтому двигатель в этом режиме не может развить вращающего момента и ротор его под влиянием противодействующего момента сил трения начнет замедляться. Замедление ротора будет происходить до тех пор, пока вращающий момент, возникший при уменьшенной частоте вращения, не станет равным моменту, создаваемому силами трения. Обычно при холостом ходе двигатель работает со скольжением s = 0,2-0,5 %.

При холостом ходе в асинхронном двигателе имеют место те же электромагнитные процессы, что и в трансформаторе (обмотка статора аналогична первичной обмотке трансформатора, а обмотка ротора—вторичной обмотке). По обмотке статора проходит ток холостого хода I0, однако его значение в асинхронном двигателе из-за наличия воздушного зазора между ротором и статором значительно больше, чем в трансформаторе (20—40 % номинального тока по сравнению с 3—10 % у трансформатора). Для уменьшения тока I0 в асинхронных двигателях стремятся выполнить минимально возможные по соображениям конструкции и технологии зазоры.

Например, у двигателя мощностью 5 кВт зазор между статором и ротором обычно равен 0,2—0,3 мм. Ток холостого хода, так же как и в трансформаторе, имеет реактивную и активную составляющие. Реактивная составляющая тока холостого хода (намагничивающий ток) обеспечивает создание в двигателе требуемого магнитного потока, а активная составляющая — передачу в обмотку статора из сети энергии, необходимой для компенсации потерь мощности в машине в этом режиме.

Нагрузочный режим.

Чем больше нагрузочный момент на валу, тем больше скольжение и тем меньше частота вращения ротора. Увеличение скольжения при возрастании момента объясняется следующим образом. При увеличении нагрузки на валу ротора он начинает тормозиться и частота его вращения т уменьшается.

При достижении равенства моментов М = Мвн торможение прекратится и двигатель будет снова вращаться с постоянной частотой вращения, но меньшей, чем до увеличения нагрузки. При уменьшении нагрузочного момента Мвн частота вращения ротора по той же причине будет увеличиваться. Обычно при номинальной нагрузке скольжение для двигателей средней и большой мощности составляет 2—4 %, а для двигателей малой мощности от 5 до 7,5 %.

При работе двигателя под нагрузкой по обмоткам его статора и ротора проходят токи i1 и i2. Частота тока в обмотках статора f1 и ротора f2 определяется частотой пересечения вращающимся магнитным полем проводников соответствующей обмотки. Обмотка статора пересекается магнитным полем с частотой n1, а обмотка вращающегося ротора — с частотой n1 — n. Следовательно,

Передача электрической энергии из статора в ротор происходит так же, как и в трансформаторе. Двигатель потребляет из сети электрическую мощность Pэл = 3U1I1cosφ1 и отдает приводимому им во вращение механизму механическую мощность Рмх (рис. 260).

Рис. 260. Энергетическая диаграмма асинхронного двигателя

В процессе преобразования энергии в машине имеют место потери мощности: электрические в обмотках статора ΔРэл1 и ротора ΔРэл2, магнитные ΔРм от гистерезиса и вихревых токов в ферромагнитных частях машины и механические ΔРмх от трения в подшипниках и вращающихся частей о воздух.

Из статора в ротор вращающимся электромагнитным полем передается электромагнитная мощность Pэм роторе она превращается в механическую мощность ротора Р’мх. Полезная механическая мощность на валу двигателя Pмх меньше мощности Р’мх на значение потерь мощности на трение ?Рмх.

При возрастании механической нагрузки на валу двигателя увеличивается ток I2. В соответствии с этим возрастает и ток I1 в обмотке статора.

Электромагнитный момент М создается в асинхронном двигателе в результате взаимодействия вращающегося магнитного поля с током I2, индуцируемым им в проводниках обмотки статора. Однако в создании его участвует не весь ток I2, а только его активная составляющая I2cosφ2 (здесь φ2 — угол сдвига фаз между током I2 и э. д. с. Е2 в обмотке ротора).

Фт — амплитуда магнитного потока, созданного обмоткой статора;

cм — постоянная, определяемая конструктивными параметрами данной машины и не зависящая от режима ее работы.

Поясним физический смысл формулы (84). На рис. 261 изображен ротор двухполюсного асинхронного двигателя в развернутом виде, на котором кружками показаны поперечные сечения проводников.

Крестики и точки внутри проводников обозначают направление в них тока i2, а под проводниками — направление индуцированных э. д. с. e2, которые пропорциональны индукции В в данной точке воздушного зазора между статором и ротором. Кривая В показывает распределение вдоль окружности ротора индукции, создаваемой вращающимся магнитным полем, кривая i2 — распределение тока в проводниках, а кривая f — распределение электромагнитных сил, возникающих в результате взаимодействия тока (а с вращающимся магнитным полем.

Электромагнитный вращающий момент М, создаваемый в результате совместного действия всех сил f, будет пропорционален среднему значению электромагнитной силы fср. Легко заметить, что к проводникам, лежащим на дуге, равной 180° — φ2, приложены силы f, увлекающие ротор за вращающимся магнитным полем, а на дуге φ2 — тормозящие силы. Поэтому при неизменном токе I2 среднее значение электромагнитной силы fср, а следовательно, и электромагнитный момент М будут тем больше, чем меньше угол φ2. Электромагнитный момент М зависит от скольжения s.

Рис. 261. Распределение индукции В, тока i2 и электромагнитных сил f, действующих на проводники асинхронного двигателя

Так, при увеличении скольжения возрастает э. д. с. Е2 в обмотке ротора и ток I2. Однако одновременно уменьшается cosφ2, так как активное сопротивление обмотки ротора R2 остается неизменным, а реактивное Х2 увеличивается (возрастает частота тока f2 в обмотке ротора).

Асинхронные двигатели режимы работ

Асинхронная машина — электрическая машина переменного тока, частота вращения ротора которой не эквивалентна частоте вращения электромагнитного поля, создаваемого током медной обмотки статора. Асинхронные машины — это довольно распространённые электрические машины. Асинхронный означает не одновременный, что имеется ввиду, что частота вращения магнитного поля статора всегда больше частоты вращения ротора у асинхронных двигателей. Работают асинхронные двигатели от сети переменного тока.

Читать еще:  Что это за двигатель ваз 343 дизель

Статор обладает цилиндрической формой, собранный из листов стального материала. В пазах сердечника статора уложены обмотки статора, выполненных из обмоточного провода. Оси этих обмоток находятся в пространстве и сдвинуты на угол 120° относительно друг друга. Концы таких обмоток соединяются треугольником или звездой в зависимости от подаваемого напряжения.

Статор асинхронного электродвигателя имеет невыраженные полюсы, т. е. поверхность статора является абсолютно гладкой изнутри. Для того, чтобы сбавить потери на вихревых токах, сердечник статора собирают из тонких штампованных листов стали. Ранее собранный сердечник статора нужно закрепить в корпусе из стали. В пазах статора укладывают обмотку из проволоки из меди. Начала и концы обмоток выводятся на специальный изоляционный щиток, из-за того, что фазовые обмотки статора электродвигателя соединяются «звездой» или «треугольником». Такое устройство статора является очень удобным, так как его обмотки можно включать на различные стандартные напряжения. Когда осуществляется подача напряжения на обмотку статора, то в каждой фазе создаётся магнитный поток, изменяемый частотой подаваемого напряжения. Эти потоки сдвинуты на 120° относительно друг друга, как во времени, так и в пространстве. Результирующий поток будет при этом вращающимся.

Своим вращением поток создаёт в проводниках ротора ЭДС. Из-за того, что обмотка ротора входит в замкнутую электрическую цепь, в ней возникает ток, взаимодействующий с магнитным потоком статора, тем самым создавая пусковой момент двигателя, который стремится направить ротор в сторону вращения магнитного поля статора. Ротор начнет вращаться, когда пусковой момент двигателя достигнет значения тормозного момента ротора, а затем превысит его. При этом возникает так называемое скольжение.

Скольжение является крайне важной величиной. При начальном моменте времени скольжение равно единичному значению, но относительная разность частот становится меньше по мере возрастания частоты вращения ротора, из-за чего в проводниках ротора уменьшаются ЭДС и ток, которые влекут за собой уменьшение вращающего момента. Во время режима холостого хода, т.е. когда двигатель совершает работу без нагрузки на валу, скольжение является минимальным значением, но оно возрастает до величины критического скольжения, путем увеличением статического момента. При превышении данного значения, может произойти опрокидывание двигателя, что, впоследствии, приведет к его нестабильной работе. Значение скольжения лежит в диапазоне от 0 до 1, для двигателей общего назначения в номинальном режиме оно составляет 1 — 8 %.

При наступлении равновесия между электромагнитным моментом, который вызывает вращение ротора, и тормозным моментом, который создает нагрузку на валу двигателя, процессы изменения величин прекратятся.

Из этого следует, что принцип работы асинхронного двигателя заключен во взаимодействии токов, наводящимся магнитным полем в роторе и самим вращающимся магнитным полем статора. Когда вращающий момент возникает тогда, когда существует разность частот вращения магнитных полей.

Ротор асинхронного двигателя, как и статор, собирается из штампованных стальных листов. В пазах ротора укладывается обмотка из медных стержней. Торцы этих стержней соединены при помощи медного кольца. Такая обмотка является обмоткой типа «беличьей клетки». При этом медные стержни в пазах не являются изолированными.

В зависимости от конструкции ротора асинхронные электродвигатели различаются на 2 типа: с короткозамкнутым ротором и фазным ротором.

Короткозамкнутый ротор представляет собой сердечник, собранный из стальных листов. В пазах этого сердечника заливается расплавленный алюминий, из-за чего образуются стержни, замкнутые накоротко торцевыми кольцами. Данная конструкция называется «беличьей клеткой». В двигателях с большой мощностью заливаться медь.

Фазный ротор содержит трёхфазную обмотку, практически не отличающуюся от обмотки на статоре. В большинстве случаев концы обмоток фазного ротора соединены звездой, где свободные концы подводятся к контактным кольцам. При помощи щёток, подключенных к кольцам, можно ввести дополнительный резистор в цепь обмотки ротора. Этот резистор нужен для того, чтобы изменять активное сопротивление в цепи ротора, которое способствует уменьшению больших пусковых токов.

Асинхронный двигатель с фазным ротором обычно применяется в электродвигателях с большой мощностью и в случаях, во время начала движения с места, электродвигатель создавал большое усилие, когда это необходимо. Достигается это путем включения в обмотки фазного двигателя пускового реостата.

Короткозамкнутые асинхронные двигатели запускаются двумя способами:

1) Подключением трехфазного напряжения сети к статору двигателя.

2) Снижением напряжения, подводимого к обмоткам статора.

Пуск двигателя в ход происходит с соединения «звездой» обмоток статора, а когда ротор достигает нормального числа оборотов, соединение переключается на форму «треугольника».

При этом способе ток пуска двигателя в подводящих проводах уменьшается в 3 раза если сравнивать с тем током, что возникал бы во время пуска двигателя прямым включением в сеть с обмотками статора, соединенными «треугольником». Но данный способ пригоден лишь в тех случаях, когда статор предназначен для нормальной работы при его соединении «треугольником».

Более простым, дешевым и довольно надежным является асинхронный двигатель с короткозамкнутым ротором, правда этот двигатель имеет некоторые недостатки — малое усилие во время трогания с места и большим пусковым током. Данные недостатки в значительной мере можно устранить путем применения фазного ротора, правда такое применение значительно повысит двигатель в его стоимости и будет требовать пусковой реостат.

Самое большое применение получили машины с трехфазной симметричной разноименно полюсной обмоткой на статоре, которая питается от сети переменного тока. Также применение нашли асинхронные машины с трехфазной или многофазной симметричной разноименно полюсной обмоткой на роторе. Обычно асинхронные машины используются как двигатели, когда как генератор они применяются очень редко.

Асинхронный двигатель ­­­является самым распространенным типом двигателя переменного тока. Если ротор асинхронной машины находится в неподвижном состоянии, либо же частота вращения ротора меньше синхронной, то вращающееся электромагнитное поле проходит через электрические проводники медной обмотки ротора и соответственно индуцирует в них электродвижущую силу, под воздействием которой по медной обмотке ротора двигателя течёт ток. На электрические проводники с током данной обмотки ротора, находящимся в электромагнитном поле медной обмотки возбужденного состояния, действуют силы магнитного воздействия определённого размера. Из-за прикладываемого усилия порождается магнитный вращающий момент, который тянет ротор за электромагнитным полем [2].

Если данный вращающий момент достаточно велик, то ротор электрической машины приходит в динамическое вращение, и его средняя рабочая частота вращения соответствует равенству имеющегося магнитного момента тормозному, созданного механической нагрузкой на валу электродвигателя, механическими силами вентиляции, трения в подшипниках и т.д. Частота вращения ротора электрической машины не соответствует частоте вращения электромагнитного поля, т.к. в этом случае угловая скорость вращения электромагнитного поля по сравнению с токопроводящей обмоткой ротора становится равна нулю, в следствии этого электромагнитное поле не будет индуцировать в уже доступной обмотке ротора электродвижущую силу и создавать крутящий момент.

Читать еще:  Двигатель honda gc160 характеристики

Если ротор электрической машины, которая включена в сеть, вращать при помощи двигателя в направлении вращающегося поля статора, тогда движение ротора по сравнению с полем статора изменится, из-за того, что ротор будет обгонять поле статора.

Скольжение же при этом станет отрицательным, а направления электродвижущей силы Е1, находящейся на обмотке статора, и тока I1 изменятся на противоположное. В результате этого электромагнитный момент ротора также изменит направление превратившись из вращающего в противодействующий. В этих условиях электрическая машина из двигательного режима переходит в генераторный режим, последствием преобразования механической энергии двигателя в электрическую [3].

В следствии того, что в режиме генератора электрической машины, условия создания вращающегося поля статора будут такими же, что и в двигательном режиме, и потребление намагничивающего тока I0 происходит от сети, то электрическая машина в генераторном режиме обладает определенными свойствами: потребление реактивной энергии от сети, которая необходима для создания вращающегося поля статора, но происходит отдача активной энергии в сеть, получаемой во время преобразования механической энергии двигателя [3]. Работа асинхронных генераторов возможна лишь тогда, когда она происходит в совместной работе с синхронными генераторами, необходимыми как источники реактивной энергии.

В отличие от синхронных генераторов, асинхронные не подвержены опасностям выпадения из синхронизма. Асинхронные генераторы не получили большого распространения. Это объясняется рядом их недостатков в сопоставлении с синхронными генераторами.

Одним из главных недостатков является то, что асинхронные генераторы обладают большой реактивной мощностью, затрачиваемой ими от сети. Величина этой мощности пропорциональна намагничивающему току и даже может достичь 25 – 45 % от номинальной мощности машины [4]. Следовательно, для работы нескольких асинхронных генераторов нужно использовать один синхронный генератор такой по величине мощности, которая равна мощности одного асинхронного генератора.

Без включения в общую сеть, асинхронный генератор может работать и в автономных условиях. Но в этом случае, чтобы получить реактивную мощность необходимую для намагничивания генератора, нужно использовать батарею конденсаторов, которые, в свою очередь, включены параллельно нагрузке на выводах генератора.

Наличие остаточного намагничивания является одним из условий работы асинхронных генераторов, которое необходимо для самовозбуждения генератора. Электродвижущая сила создает небольшой реактивный ток как в обмотке статора, так и в цепи конденсатора, усиливающий остаточный поток. Далее процесс развивается также, как и в генераторе постоянного тока параллельного возбуждения. С помощью изменения емкости конденсаторов можно регулировать величину намагничивающего тока, а также, и величину напряжения генераторов [5]. Из-за чрезмерных величин и высоких стоимостей конденсаторных батарей, асинхронные генераторы с самовозбуждением не получили большого распространения. Следовательно, такие генераторы применяются лишь на вспомогательных электростанциях, в таких как ветросиловые установки.

Тормозной режим электрической машины применяется лишь при необходимости быстрой остановки момента вращения ротора двигателя. Данный режим создается противовключением двигателя. Чтобы его совершить, нужно направить вращение магнитного поля статора в противоположную сторону. Для этого достаточно переключить любую пару проводов, которые соединяют обмотку статора с сетью, посредством изменения порядка следования фаз на зажимах статора. В начальный период времени, после переключения проводов, инерциальные силы вращающихся частей двигателя и исполнительного механизма продолжают совершать вращение ротора в прежнем направлении, когда вращающееся поле статора начинает вращаться в противоположном направлении [1].

В итоге получаем, что электромагнитная мощность машины в режиме тормоза составляет лишь малую долю электрических потерь в роторе. Когда большая часть этих потерь уходит на вращающиеся по инерции части двигателя и исполнительного механизма.

К недостаткам данного способа торможения следует отнести: большие потери энергии, значительные броски тока во время переключения проводов на обмотках статора. Двигатели с контактными кольцами включают сопротивление, чтобы ограничить бросок тока при торможении. Кроме того, во время торможения двигателя данным способом нужно отключить его от сети в момент его остановки, иначе ротор начнет вращаться в другом направлении.

Таким образом, существуют три режима работы асинхронной машины: движущий режим, генераторный режим и режим тормоза. Каждому из данных режимов соответствует определенный диапазон изменения коэффициента скольжения: когда в двигательном режиме скольжение может изменяться от нуля до единицы, в генераторном – от нуля до минус бесконечности, а в тормозном – от единицы до плюс бесконечности.

7.2 Режимы работы асинхронной машины

Характерной особенностью асинхронной машины является неравенство частот вращения магнитного поля статора n1 и ротора n2, так как только в этом случае вращающееся магнитное поле наводит в обмотке ротора ЭДС и на роторе возникает электромагнитный момент.

В соответствии с принципом обратимости асинхронные машины могут работать в двигательном, генераторном режимах и режиме электромагнитного торможения.

Двигательный режим. При включении обмотки статора в сеть трехфазного тока возникает вращающееся магнитное поле, которое, сцепляясь с короткозамкнутой обмоткой ротора, наводит в ней ЭДС. При этом в стержнях обмотки ротора появляются токи.

В результате взаимодействия этих токов с вращающимся магнитным полем на роторе возникают электромагнитные силы. Эти силы создают электромагнитный вращающий момент, под действием которого ротор приходит во вращение с частотой

где n1 – частота вращающегося поля статора; n2 – частота вращения ротора.

Если вал асинхронного двигателя механически соединить с валом какого-либо мexaнизма, то вращающий момент двигателя М, преодолев противодействующий момент, приведет его во вращение. Таким образом, электрическая мощность Р1 поступающая из сети, преобразуется в механическую мощность Р2 и передается исполнительному механизму.

Важным параметром является скольжение – величина, характеризующая разность частот вращения ротора и вращающегося поля статора:

Скольжение выражают в долях единицы или в процентах.

При включении асинхронного двигателя в сеть в начальный момент времени ротор под влиянием сил инерции неподвижен (n2=0) и скольжение при этом равно единице. В режиме холостого хода ротор вращается с частотой немного меньшей синхронной частоты вращения (n2 n1) и скольжение практически не отличается от нуля. С увеличением нагрузочного момента на валу асинхронного двигателя частота вращения ротора n2 уменьшается. То есть скольжение асинхронного двигателя зависит от механической нагрузки и может изменяться в диапазоне . Скольжение, соответствующее номинальной нагрузке двигателя, называют номинальным скольжениемsном. Для двигатeлeй общего назначения sном = 1÷8 %, при этом для двигателей большой мощности sном= 1 %, а для двигателей малой мощности Sном = 8 %.

Читать еще:  Двигатель adr работает как дизель

Рисунок 7.2 – Режимы работы асинхронной машины

Генераторный режим. Если обмотку статора включить в сеть, а ротор асинхронной машины приводным двигателем вращать в направлении вращения магнитного поля статора с частотой n2>n1, то скольжение станет отрицательным, а ЭДС в обмотке ротора изменит свое направление. Электромагнитный момент на роторе также изменит свое направление, т. е. будет направлен встречно вращающемуся магнитному полю статора. В этом случае механическая мощность приводного двигателя будет преобразована в электрическую мощность P2.

Особенность асинхронного генератора в том, что вращающееся магнитное поле в нем создается реактивной мощностью Q трехфазной сети, в которую включен генератор и куда он отдает вырабатываемую активную мощность P2. Следовательно, для работы асинхронного генератора необходим источник переменного тока, при подключении к которому происходит возбуждение генератора (возбуждается вращающееся магнитное поле).

Режим торможения противовключением. Если у работающего трехфазного асинхронного двигателя поменять местами любую пару подходящих к статору из сети присоединительных проводов, то вращающееся поле статора изменит направление вращения на обратное. Но ротор асинхронной машины под действием сил инерции будет продолжать вращение в прежнем направлении, т. е. ротор и поле статора асинхронной машины будет вращаться в противоположных направлениях. Электромагнитный момент машины будет оказывать на ротор тормозящее действие.

Трехфазные асинхронные двигатели INNOVARI с тормозом

Трехфазные асинхронные электродвигатели INNOVARI MB – серия асинхронных электродвигателей с короткозамкнутым ротором со встроенным устройством торможения вала двигателя.

Электродвигатели предназначены для питания от трехфазной сети напряжения 230/400 В, 50 Гц, продолжительного (S1) и повторно-кратковременного (S4) режима работы при классе нагревостойкости изоляции F (фактическая температура до 155°С).

Конструктивно электродвигатели выполнены в вариантах фланцевого присоединения типов В5 и В14. Для последнего варианта предусматривается 8 крепежных отверстий, чтобы исключить присоединение к редуктору с углом поворота. Опционально возможно исполнение В3 с креплением на лапах. Обмотка статора двигателей 4-х полюсная, с синхронной скоростью, соответственно, 1500 об/мин.

Модельный ряд трехфазных асинхронных двигателей INNOVARI с тормозом

Основные модели и электромеханические характеристики трехфазных асинхронных двигателей серии INNOVARI со встроенным тормозом:

Исполнение n, об/мин Р, кВт In, А cos Ф КПД Мт, Нм Тип фланца
МВ63М 1400 об/мин 0,18 кВт 0,58 А 0,72 кпд 62 1,25 Нм фланец В14, В5
МВ71М 1400 об/мин 0,25 кВт 0,79 А 0,7 кпд 65 2 Нм фланец В14, В5
МВ71М 1400 об/мин 0,37 кВт 1,12 А 0,72 кпд 66 2 Нм фланец В14, В5
МВ80М 1400 об/мин 0,55 кВт 1,75 А 0,66 кпд 69 4 Нм фланец В14, В5
МВ80М 1400 об/мин 0,75 кВт 2,2 А 0,7 кпд 71 4 Нм фланец В14, В5
МВ90S 1400 об/мин 1,1 кВт 2,8 А 0,78 кпд 75 10 Нм фланец В14, В5
МВ90L 1400 об/мин 1,5 кВт 3,65 А 0,8 кпд 76 10 Нм фланец В14, В5
MB100LA 1400 об/мин 2,2 кВт 5,1 А 0,82 кпд 79 20 Нм фланец В14
MB100LB 1400 об/мин 3 кВт 6,8 А 0,82 кпд 80 20 Нм фланец В14
MB112M 1400 об/мин 4 кВт 8,7 А 0,83 кпд 82 40 Нм фланец В14
MB132S 1400 об/мин 5,5 кВт 11,5 А 0,83 кпд 83 60 Нм фланец В14
MB132M 1400 об/мин 7,5 кВт 15,5 А 0,83 кпд 86 60 Нм фланец В14
  • n — номинальная скорость двигателя при питании от промышленной сети;
  • Р – номинальная механическая мощность на валу двигателя;
  • Мт – тормозной момент на валу двигателя;
  • In- номинальный ток статора при номинальном моменте;

Технические характеристики асинхронных двигателей INNOVARI с тормозом

  • Напряжение питания 230/400 В, частота 50 Гц
  • Класс изоляции F (155ºС)
  • Режим работы S1 (продолжительный), S4 (повторно-кратковременный ПВ 40%)
  • Класс защиты IP55 (пылевлагозащищённый)
  • Исполнение фланца B5/B14 (для версии B14 – 8 отверстий)
  • Напряжение питания тормоза 230/400 В, минимальное напряжение отключения 180В

Габаритные размеры

  • Электродвигатели с фланцевыми креплениями
  • Электродвигатели с креплением на лапах

Сопутствующие товары к асинхронным двигателям

Применение трехфазных асинхронных двигателей INNOVARI с тормозом

В основном трехфазные асинхронные электродвигатели INNOVARI с тормозом предназначены для применения в промышленных электрических приводах малой и средней мощности.

Спектр применения: устройства промышленной автоматики, манипуляторы, транспортировочные устройства и конвейеры, лифты, краны, тельферы и подъёмники, – везде, где необходим быстрый останов или удержание вала двигателя в неподвижном состоянии при приложении внешних сил. Преимущества применения трехфазных асинхронных двигателей с короткозамкнутым ротором INNOVARI с тормозом:

  • высокое качество изготовления и надежность в эксплуатации;
  • удобное присоединение к редуктору и электрический монтаж;
  • возможность работы от преобразователя частоты.

Принцип работы трехфазных асинхронных двигателей с короткозамкнутым ротором и со встроенным тормозом

В магнитную систему трехфазного асинхронного электродвигателя входят сердечники статора и ротора, выполняемые из листов электротехнической стали. Сердечник статора фиксируется в станине двигателя, которая неподвижно закрепляется на фундаменте. Сердечник ротора насаживается на вал двигателя, концы которого опираются на подшипники, расположенные в станине. В пазах статора размещается трехфазная многополюсная обмотка, питаемая от трехфазного источника напряжения. В пазах ротора располагается короткозамкнутая обмотка типа беличьей клетки. Между статором и ротором имеется небольшой воздушный зазор.

Трехфазная обмотка статора создает в воздушном зазоре вращающееся магнитное поле, скорость вращения которого принято называть синхронной. Вращающийся магнитный поток, пересекая витки обмотки ротора, индуцирует в ней электродвижущую силу и электрический ток, частота и величина которого зависит от разности скоростей – синхронной и механической скорости вращения ротора. В результате взаимодействия тока ротора с магнитным потоком в зазоре между ротором и статором, возникает электромагнитный момент, заставляющий ротор вращаться и приводить в движение нагрузку двигателя – трансмиссию и рабочий механизм. При этом скорость вращения ротора всегда остается меньше синхронной, поскольку при достижении ротором синхронной скорости в его обмотке прекращается индуцирование ЭДС и прекращается протекание тока. Исчезает электромагнитный вращающий момент.

Питание тормоза может осуществляться междуфазным напряжением непосредственно с присоединительных клемм двигателя, либо от внешнего источника через коммутирующее устройство. В случае работы двигателя от преобразователя частоты последнее обязательно.

Ссылка на основную публикацию