Асинхронный двигатель класс изоляции f что это

Классы изоляции

Нагревостойкость изоляции

Нагревостойкость – это показатель, указывающий на способность того или иного материала сохранять свои свойства при повышении их температуры.

При сильном нагреве, многие материалы теряют свои свойства — разрушаются и обугливаются, это так же касается и изоляционных материалов.
Так как работа электрических машин сопровождается выделением тепла, то материалы, применяемые в качестве изоляционных, обязаны выдерживать эти температуры. При этом, важно сохранять изолирующие свойства.
Все изоляционные материалы, применяемые в электроэнергетике, разделяют на семь групп, в зависимости от нагревостойкости:

Разновидности классов изоляции

На рисунке ниже, показаны существующие классы изоляции и предельные температуры для них.

Класс Y — волокнистые материалы из целлюлозы, хлопка, натурального шёлка. В основном это – различные ткани (хлопковые, шелковые, хлопчатобумажные), бумажные (картон, бумага), пластмассы и древесина.

  • электрокартон

Класс A – как правило к такому классу относят материалы класса Y только пропитанные или погруженные в специальный жидкий диэлектрик, который усиливает диэлектрическую прочность, а еще повышает нагревостойкость. К этим жидким диэлектрикам относятся – трансформаторное масло, органические или натуральные смола, различные типы лаков и так далее.
При совмещении двух видов диэлектриков, мы получаем: лакобумаги, лакоткани, текстолит, гетинакс.

Класс E — синтетические органические материалы или простые сочетания этих материалов, при испытаниях которых было установлено, что они способны работать да уровня температуры соответствующей этому классу, то есть 120 градусов Цельсия. В основном это синтетические материалы, а также их сочетания.

Класс B — материалы на основе асбеста, слюды и стекловолокна, которые применяются в сочетании с различными органическими пропитывающими и связующими диэлектрическими составами.
К ним относят: миканиты, слюдиниты, стеклоткани, асбестовые пряжи и ткани.

Класс F – те же материалы, что и в классе B, но уже в сочетании с неорганическими пропитывающими и связующими в роли которых выступают термостойкие смолы и лаки.

Класс H – так же материалы класса B в сочетании с кремнийорганическими связующими и пропитывающими составами, кремнийорганические лаки, смолы и эластомеры.

Класс C – материалы с рабочей температурой свыше 180 градусов по Цельсию и к ним относятся: стекловолокнистые материалы, стекло, шифер, керамика, слюда, материалы из слюды, асбестоцемент, а также эти же материалы в сочетании с различными кремнийорганическими смолами и лаками.

Самыми распространенными классами изоляции стали: класс изоляции E, который применяется в электрических машинах малой мощности; классы изоляции F и B применяются в большинстве электрических машин; для изготовления ответственных электрических машин, работающих в тяжелых и сверхтяжелых условиях, применяется класс изоляции H.

При проектировании и выборе электрических машин, важно учитывать классы изоляции. Так как это может послужить причиной преждевременного выхода из строя электрической машины.

Класс изоляции электродвигателей

Основной фактор, влияющий на ускорение процесса старения систем изоляции и электроизоляционных материалов в электромеханических изделиях, — температурные показатели. Специалистам всегда необходимо оценивать стойкость электрической изоляции на изменение температур. Для упрощения этого процесса предусмотрены классы нагревостойкости изоляции.

Нагревостойкость по праву можно считать одним из влиятельнейших качеств материалов, отвечающих за электроизоляцию. Ведь опираясь на этот показатель можно определить максимально возможную нагрузку, которую выдержит электрическая машина или аппарат. Многие материалы не способны перенести высокие температуры, увеличение градусов ведёт к обугливанию, а сам материал начинает выполнять функцию проводника. Кроме того, все материалы при длительном воздействии высокой температуры становятся более хрупкими, подвержены разрешениям и потере изолирующих свойств. Такое процессы носят название теплового старения. Именно нагревостойкость указывает на то, какую максимальную температуру может выдержать материал и влияние на него резких смен температуры. Срок службы, который будут иметь электродвигатели, а также надёжность работы определяются именно по показателю нагревостойкости.
Существует 7 классов материалов, различающихся по нагревостойкости изоляции:

Читать еще:  Двигатель 651 тех характеристики

К классу Y относятся материалы из бумаги, текстиля, хлопка, целлюлозы, натурального шёлка, полиамидов, пластмассы, содержащей органические наполнители, а также древесины. Температура стойкости изоляции — 900С.
Класс А – это материалы предыдущего класса, которые специально пропитаны изоляционным составом, погружены в такие диэлектрики, как натуральные смолы, лаки асфальтовые, масляные, эфирцеллюлозные, термопластичные компаунды, трансформаторное масло. Также список можно дополнить лакотканями, изоляционными лентами, лакобумагой, электрокартоном, гетинаксом, текстолитом, пропитанным деревом, древесными слоистыми пластиками, отдельными типами синтетических пленок, изоляцией проводов, в основе которой находится хлопчатобумажная ткань, шелк, лавсан, изоляцией из эмали. Температура — 1050С.
В класс Е входят волокна, синтетические плёнки, лакоткани, в основе которых находятся синтетические лаки, компаунды и синтетические смолы. Температура — 1200С.
Класс В – это материалы, содержащие слюду, стекловолокно, асбестовые волокна, пленкостеклопласт, пластмасса без органического наполнителя, слоистые пластики. Температура — 1300С.
В класс F входят те же элементы, но имеющие неорганическую подложку или вовсе без подложки. Также можно отнести сюда пленкостеклопласт, изоляция из стекловолокна или асбеста типов ПСДТ, ПСД, изоляция из эмали, в основе которой находится капрон. Температура — 1550С.
Класс Н вмещает в себя материалы класса В, содержащие слюду, стекловолокно, асбест и имеющие неорганическую подложку или вовсе созданные без подложки. Список дополняют эластомеры из органического кремния, изоляция из стекловолокна, асбеста, эмали. Температура — 1800С.
В класс С входит стекло, слюда, материалы из стекловолокна, кварц, керамика электротехническая, шифер, слюдяные материалы без подложки и с подложкой из стекловолокна. Температура — свыше 1800С.
Чаще всего в производстве можно встретить электромашины с изоляцией классов F и В. Практически не производится изоляция А-класса, а класс Е можно применять только в машинах, имеющих малую мощность. Для машин, необходимых для работы в жёстких условиях, подходит изоляция класса А. Использование материалов, стойко переносящих высокие температуры, позволяет сделать, например, асинхронный двигатель более компактным.

Наибольшая нагревостойкость у слюдяных и стекловолокнистых материалов, которые имеют в своём составе связующие из органического кремния, а также пропитывающие составы.
Однако несмотря на исследование параметров нагревостойкости определить, какую максимальную температуру способна выдержать самая нагретая деталь в мотор-редукторе, крайне сложно. Стандарты температур – это самые низкие допустимые пределы. Степень изоляции также зависит и от температурных показателей окружающей среды.

Температура электродвигателей во время их ремонта или эксплуатации определяется с использованием термометров расширения, термопар, терморезисторов. С их помощью можно измерить не только температурный показатель обмотки, но других элементов двигателя. Может также применяться косвенный метод – в этом случае измеряется сопротивление при постоянном уровне тока. Электродвигатель может выйти из строя, если увеличить рабочий ток и создать перегрев обмоток. Для того, чтобы этого не произошло, и осуществляется проверка температуры нагрева. Класс изоляции и определяет допустимую температуру. Также причина может крыться в ухудшении условий охлаждения: обращайте внимание на исправность вентилятора, загрязнения в двигателе и внешние предметы на нём. Перегрузка может привести к выводу электродвигателя из строя: вместе с увеличением тока квадратично повышается температура. При длительной перегрузке может произойти порча изоляции обмоток.

Выбор двигателей для частотно-регулируемого электропривода

Для правильного проектирования системы управления частотно­-регулируемого привода, необходимо учитывать специфику работы привода в целом. Основными задачами при выборе асинхронного двигателя с частотным управлением являются:

  • Определение диапазона регулирования скорости;
  • Построение нагрузочной диаграммы;
  • Расчет допустимого длительного момента;
  • Расчет максимального кратковременного момента в переходных режимах;
  • Проверка по нагреву электродвигателя и преобразователя.
Читать еще:  Верхнеклапанный двигатель что это

Важное значение имеют характеристики самого двигателя, которые должны отвечать общим техническим требованиям, предъявляемым к электрическим машинам. Эти характеристики тесно связаны со способами охлаждения двигателя, его нагревом и режимами работы.

Способы охлаждения асинхронного двигателя

В зависимости от наличия или отсутствия вентилятора различают:

  1. Асинхронные двигатели с естественным охлаждением, которые не имеют специальных вентиляторов их обычно применяется для открытых машин;
  2. Асинхронные двигатели с искусственным охлаждением, в таких машинах охлаждающий газ или жидкость прогоняется отдельным вентилятором. Они подразделяются на группы:

– Асинхронные двигатели с самовентиляцией, имеющие вентилятор на валу (защищенные или закрытые);

– Асинхронные двигатели с независимой вентиляцией, вентилятор которых приводится во вращение посторонним двигателем (обычно закрытые). Часто такие вентиляторы называются «наездниками»;

Поскольку при работе на скоростях ниже 0,5ω0 условия охлаждения двигателей с самовентиляцией ухудшаются, то это приводит к значительному уменьшению допустимого длительного момента.

Поэтому для частотно-регулируемого привода с постоянным моментом нагрузки предпочтительнее использовать двигатели с независимой вентиляцией.

Классы изоляции обмоток электродвигателей (нагревостойкости)

Электродвигатель в разрезе

Во время работы электродвигателей происходит их нагрев. Допустимый нагрев электрических двигателей зависит от класса изоляции обмоток. Нагрев электродвигателя является основным критерием выбора его мощности. Электродвигатель считается выбранным правильно, если он выполняет предназначенные ему функции и не перегревается, т.е. изоляция его обмоток выдерживает температуру нагрева, которая не превышает допустимого предела.

Этот предел зависит от срока службы машины и определяется классом изоляции обмоток (нагревостойкости) электродвигателя.

Температурой окружающего воздуха, при которой электродвигатель может работать с номинальной мощностью, считается 40ºС. При повышении температуры окружающего воздуха более 40ºС, нагрузка на электродвигатель должна быть снижена настолько, чтобы температура отдельных его частей не превышала допустимых значений.

Предельные допустимые превышения температуры активных частей электродвигателей (при температуре окружающей среды 40ºС и высоте над уровнем моря не более 1000 м):

  • Класс Y: допустимая температура нагрева до 90°C.
  • Класс A: допустимая температура нагрева до 105°C.
  • Класс E: допустимая температура нагрева до 120°C.
  • Класс B: допустимая температура нагрева до 130°C.
  • Класс F: допустимая температура нагрева до 130°C.
  • Класс H: допустимая температура нагрева до 180°C.
  • Класс C: допустимая температура нагрева свыше 180°C

В таблице приведены в качестве примера предельно допускаемые превышения температуры Tmax для отдельных частей электрических машин общего применения (О) и тяговых (Т) при продолжительном режиме работы при измерении температуры обмоток по методу сопротивления (т. е. по измерению сопротивления соответствующей обмотки в результате нагрева), а температуры коллектора и контактных колец —с помощью термометров. Эти данные соответствуют температуре окружающей среды +40 °С для машин О и +25 °С для машин Т.

Если температура окружающей среды больше или меньше +40 или +25 °С, то стандарт разрешает определенные изменения допустимых превышений температур. При работе машины в горных местностях, где из-за понижения атмосферного давления ухудшается теплоотдача, стандарт предусматривает некоторое уменьшение допустимых превышений температуры.

У асинхронных двигателей, вместе с уменьшением напряжения питающей сети, в квадрате уменьшается мощность на валу двигателя. Кроме того, уменьшение напряжения ниже 95% от номинального приводит к значительному росту тока двигателя и нагреву обмоток.

Рост напряжения выше 110% от номинального также ведет к росту тока в обмотках двигателя, увеличивается нагрев статора за счет вихревых токов.

Каждое превышение допустимой температуры обмоток на 10°С может сократить срок службы изоляции вдвое. Это иллюстрирует номограмма, приведенная ниже.

Читать еще:  Что такое холостой оборот двигателя

Чем выше класс изоляции, тем интенсивнее использование электродвигателя по нагреву и тем меньше его размеры при той же мощности. В настоящее время в электрических машинах применяются изоляционные материалы классов Е, В и F. Материалы класса Н используются значительно реже.

Как правило, для частотно-регулируемого электропривода рекомендуется применять электродвигатели с изоляцией класса F.

Популярные товары

Низковольтные асинхронные электродвигатели

Асинхронные двигатели Siemens Низковольтные асинхронные электродвигатели

Низковольтные асинхронные двигатели Siemens – это высокотехнологичные машины модульного принципа построения мощностью до 1250кВт и напряжением питания до 1000В.
Инновационные технологии изготовления ротора, позволяют существенно повысить КПД и мощность двигателей.

Линейка асинхронных двигателей Siemens:

• Стандартные общепромышленные асинхронные двигатели с к.з. ротором
• Двигатели увеличенной мощности
• Многоскоростные двигатели
• Двигатели со стандартной изоляцией до 500 В,
• Двигатели со специальной изоляцией до 690 В
• Взрывозащищенные двигатели
• Двигатели морского исполнения
• Рольганговые двигатели
• Высокотемпературные двигатели для установок удаления дыма
• Однофазные двигатели
• Двигатели, разработанные под применение заказчика

Стандартные общепромышленные асинхронные двигатели Siemens с к.з. ротором:

В базовом оснащении двигатели выполнены по классу изоляции F, со степенью защиты IP55, опционально: IP56, IP65, класс изоляции Н
Пригодны для применения с преобразователем частоты
Работа при температуре окружающей среды: -20°C…+ 40°C, влажность 60%, высота установки до 1000м над уровнем моря
Опционально – 400С …+600С, влажность до 100%

Двигатели Siemens увеличенной мощности:

Имеют большую мощность в том же габарите, что и стандартные двигатели
Всегда выполняются и используются по классу F
Выполняются как в алюминиевом, так и в чугунном корпусах

Многоскоростные двигатели Siemens:

Выполняются на любые мощности и скорости (по запросу)
Всегда выполняются и используются по классу F
Выполняются как в алюминиевом, так и в чугунном корпусах
Множество двигателей являются складскими позициями

Взрывозащищенные двигатели Siemens:

Увеличенная безопасность – II 2G EEx e II
Температурный класс: T1-T3
Корпус: Алюминий или чугун

Взрывозащищенные – II 2G EEx de IIC
Корпус: Чугун или сталь
Температурные классы: T1-T4
Пригодны для работы с преобразователем частоты

Диапазон мощности:
EEx e: 0.12 до 165 кВт
EEx de: 0.25 до 900 кВт
Типоразмеры:
EEx e: 63 M до 315 L
EEx de: 71 M — 450

Искробезопасные двигатели
II 3G EEx nA II T3 (EN 50021)
Ex nA II T3 (IEC 60079-15)

Энергосберегающие двигатели Siemens EFF1 / EPACT и EFF2:

Алюминиевый и чугунный корпуса
Диапазон мощности:
(E)Ex n: 120 Вт до 1250 кВт
Пыль Ex: 60 Вт до 200 кВт
Типоразмеры: (E)Ex n: 63M . 450
Пыль Ex: 56 M до 315 L

Рольганговые двигатели Siemens:

Используются в реверсивных прокатных станах
Перпендикулярно ребристый корпус изготовлен из сферического чугуна
Пригодны для работы с ПЧ – 500В
Опционально до 690В
Диапазон мощности: 2,5 кВт до 66 кВт
Типоразмеры: 112 M до 400

Высокотемпературные двигатели Siemens для установок удаления дыма:

Серии двигателей универсальны при использовании в осевых и радиальных вентиляторах.
Диапазон мощности: 0.55 кВт до 200 кВт
Типоразмеры: 80 M до 315 L

Двигатели Siemens морского исполнения:

Сертифицированы в соответствиис требованиями:
Французского (BV)
Немецкого Lloyd (GL)
Британского Lloyds (LR)
Норвежского (DNV) регистров

Сертифицированы также энергосберегающие и взрывозащищенные двигатели,классы защиты EExe IIС T1-T3 и EExde IIC T1-T4.

Идея модульной технологии позволяет укомплектовать мотор различными дополнительными устройствами, такими как тормоз, встроенные термисторы, энкодер, принудительная вентиляция.

Ссылка на основную публикацию
Adblock
detector