Асинхронный двигатель максимальные обороты

Перекачивающие перистальтические насосы

Перекачивающие (базовые) модели приводов перистальтических насосов компании Longer Precision Pump., Co. Ltd с индексом “J” в конце наименования модели отличаются простым управлением посредством изменения скорости вращения ротора и не имеют опций калибровки расхода и функцией циклического дозирования. С помощью дополнительного внешнего модуля дозирования они могут работать в режиме циклического или однократного дозирования аналогично более “продвинутым” моделям. Цифра в наименовании модели привода перистальтического насоса обозначает максимальное число оборотов привода. Каждый насос этой серии отображает текущее значение оборотов привода, имеет отдельную кнопку включения максимальных оборотов для заполнение магистрали, кнопку смены направления вращения привода и возможность регулировки оборотов привода. Также насосы имеют вход для внешнего управления.

Компактный лабораторный насос готовый к работе из коробки, производительностью до 20 мл/мин.

В наличии на складе

Базовый насосный привод производительностью до 600 мл/мин и скоростью вращения двигателя 0,1-100 об/мин.

В наличии на складе

Базовый насосный привод производительностью до 1800 мл/мин и скоростью вращения двигателя 1-300 об/мин.

В наличии на складе

Базовый насосный привод производительностью до 3600 мл/мин и скоростью вращения двигателя 1-600 об/мин.

В наличии на складе

Базовый насосный привод производительностью до 12000 мл/мин, скоростью вращения двигателя 60-600 об/мин. и возможностью установки нескольких насосных головок одновременно.

В наличии на складе

Базовый насосный привод производительностью до 12000 мл/мин, скоростью 60-600 об/мин, возможностью установки нескольких насосных головок одновременно, степенью защиты IP55.

В наличии на складе

Промышленный насосный привод производительностью до 22000 мл/мин, скоростью 60-600 об/мин, возможностью установки двух насосных головок одновременно, степенью защиты IP 54.

В наличии на складе

Базовый насосный привод производительностью до 600 мл/мин, скоростью вращения двигателя 0,1-100 об/мин и степенью защиты IP65.

В наличии на складе

Промышленный перистальтический насос с производительностью до 35 л/мин, скоростью вращения 30-350 об/мин, асинхронным двигателем, степенью защиты IP 55.

ГЛАВА 5. Машины переменного тока.

Электрические машины переменного тока делятся на два основных типа: синхронные машины и асинхронные машины. И в том и другом случае в машинах переменного тока используется вращающееся магнитное поле.

В синхронных машинах скорость вращения ротора совпадает со скоростью вращения поля. В асинхронных машинах скорость вращения ротора несколько меньше скорости вращения поля.

Во всех машинах переменного тока используется вращающееся магнитное поле. Для получения вращающегося поля можно использовать двухфазную систему токов:

При протекании двух токов (I1, I2) по двум рамкам плоскости которых взаимно перпендикулярны возникает вращающееся магнитное поле величиной

Наиболее эффективно для создания вращающегося магнитного поля использовать трехфазную систему токов

При использовании трех катушек, расположенных под углом 120 0 , скорость вращения поля составляет 3000 оборотов в минуту.

5.1 Устройство асинхронного двигателя

Асинхронный двигатель состоит из двух основных частей:

Статор представляет собой полый металлический цилиндр, собранный из тонких пластин для уменьшения потерь в «стали». На внутренней поверхности цилиндра имеются пазы, в которых располагаются обмотки статора. Обмотки статора включаются либо звездой, либо треугольником в зависимости от напряжения, подводимого к статору ( 380 /220).

Ротор цилиндрической формы состоит из пластин электротехнической стали. На его внешней поверхности имеются пазы, в которых расположена обмотка ротора. Существует два типа обмоток ротора:

1)Короткозамкнутая обмотка состоит из стержней, расположенных в пазах ротора, замкнутых на его торцах двумя металлическими кольцами.

2) Фазная обмотка. На роторе с фазной обмоткой располагаются три обмотки, находящиеся в пазах ротора. Концы обмоток присоединяются к трем контактным кольцам, расположенным на валу ротора. Для создания тока в обмотках к кольцам прижаты графитовые щетки, соединенные со внешней электрической схемой, состоящей, как правило, из трех реостатов.

5.2 Принцип действия асинхронного двигателя.

При включении в сеть обмотки статора возникает трехфазная система токов, создающая вращающееся магнитное поле.

2. Вращающееся магнитное поле создает в обмотке ротора переменную ЭДС, которая будет максимальна при покоящемся роторе. Возникающая в роторе ЭДС создает в обмотке ротора значительные токи, которые порождают магнитное поле, неподвижное в начальный момент времени.

3. При взаимодействии вращающегося поля статора и неподвижного поля ротора возникают силы взаимодействия, а следовательно, крутящий момент. Под действием крутящего момента ротор приводится во вращение. При увеличении скорости вращения ротора уменьшается скорость пересечения силовыми линиями магнитного поля обмотки ротора, что приводит к уменьшению ЭДС, а следовательно, тока и крутящего момента. Поэтому ротор при вращении достигает скорости несколько меньшей скорости вращения поля.

4. При увеличении тормозного момента, действующего на ротор, уменьшается число оборотов, что приводит к увеличению ЭДС, возникающей в обмотке ротора, магнитного поля ротора, что вызывает увеличение крутящего момента при любой постоянной скорости вращения:

Читать еще:  Ямз 238 как отмыть двигатель

Мкр.= Мторм &nbsp &nbsp &nbsp &nbsp(5.1)

Обозначим: n1 — cкорость вращения поля, n2 — cкорость вращения ротора, s — скольжение (проскальзывание):

&nbsp &nbsp &nbsp &nbsp (5.2)

6. При неподвижном роторе частота индуктируемой в его обмотке ЭДС равна частоте тока в сети f1=50 Гц.

>При увеличении скорости вращения ротора относительная скорость поля и ротора уменьшается, что приводит к уменьшению частоты ЭДС, возникающей в роторе: f2 =S f1 , где f2 — частота ЭДС возникающей в роторе, f1 частота сети, s — скольжение.

Для практических применений асинхронных двигателей большое значение имеет зависимость частоты вращения от тормозного момента Мторм, которая называется механической характеристикой.

С увеличением механической нагрузки (тормозного момента Мторм.), число оборотов незначительно уменьшается (“жесткая” характеристика), а затем двигатель останавливается (рис.5.2а). На рис. 5.2б показана обратная зависимость М=f(n, s) момента от числа оборотов n или скольжения s . На этом графике приведена зависимость тока, потребляемого двигателем, от числа оборотов или скольжения. В момент пуска (n=0, s=1) пусковой момент Мпуск должен быть больше, чем начальный момент Мторм, если двигатель пускается под нагрузкой. Ток, потребляемый двигателем в момент пуска, приобретает максимальное значение, в 5-7 раз большее номинального тока. С ростом числа оборотов или уменьшения скольжения, крутящий момент сначала растет до критического значения, а затем уменьшается до нуля (при s=0). Также до нуля уменьшается и ток, потребляемый двигателем.

Одним из недостатков асинхронного двигателя является значительный пусковой ток. Для его уменьшения используются следующие способы:

1) Использование двигателя с фазным ротором имеющим на роторе три обмотки, концы которой, соединяются с контактными кольцами, с которыми соприкасаются графитовые щетки, связанные с реостатами:

В момент пуска сопротивление реостатов устанавливают максимальным, что приводит к значительному уменьшению тока в обмотках ротора, а, следовательно, тока потребляемого двигателем.

2) Первоначальное соединение обмоток двигателя звездой, а затем переключение их после пуска на соединение треугольником. В этом случае пусковые токи уменьшаются в три раза.

Еще одним недостатком асинхронных двигателей является невозможность плавного изменения их скорости вращения, которая определяется скоростью вращения магнитного поля и зависит от частоты тока и от числа пар полюсов обмотки статора.

Рабочие характеристики асинхронного двигателя приведены на рис. 5.3а. Они получены при номинальной частоте сети и номинальном напряжения питания U 1

Известно, что механическая мощность P2 определяется соотношением P2= M w где w — частота вращения ротора, M — крутящий момент. С ростом мощности P2 , развиваемой на валу двигателя, возрастает и крутящий момент M . Вследствие того, что асинхронный двигатель обладает «жесткой» характеристикой, скольжение s лишь немного возрастает, поэтому крутящий момент практически линейно увеличивается с ростом P2 так как частота вращения w лишь немного уменьшается. С ростом P2 возрастает также электрическая мощность P1 потребляемая двигателем от сети, а, следовательно, и потребляемый ток. I1 Величина h , как и в трансформаторе, определяется соотношениями потерь в «стали» и в «меди», и при их равенстве оказывается максимальным.

Важным параметром асинхронных двигателей является cos j где j — фазовый сдвиг между напряжением U 1 приложенным к статору и током I 1 возникающим в этих обмотках. Этот фазовый сдвиг растет с ростом нагрузки, достигая максимума при номинальной нагрузки, а затем несколько уменьшается.

5.3 Однофазный асинхронный двигатель

На статоре размещается одна, рабочая, обмотка, которая питается переменным током, и которая создает пульсирующее магнитное поле. Подобное пульсирующее поле можно представить в виде двух вращающихся в противоположном направлении магнитных потоков и (рис. 5.3б). При неподвижном роторе возникают два крутящих момента, одинаковые по величине и противоположно направленные, поэтому результирующий крутящий момент равен нулю. При предварительной раскрутке ротора в нем будет возбуждаться две ЭДС. Одна ЭДС будет возбуждаться тем магнитным потоком, который следует за ротором, а другая противоположным.

Частота одной ЭДС- мала (

1ГЦ), а частота другой ЭДС- велика(

100 ГЦ). Поэтому индуктивное сопротивление

ХL= L (5.3)

в первом случае будет очень мало. Это, в свою очередь, порождает значительный ток при малых сопротивлениях, а следовательно, создает максимальный крутящий момент действующий в сторону предварительной раскрутки.

Для пуска подобных двигателей на статоре располагается вторая пусковая обмотка которая питается током сдвинутым по фазе на 90 0 , для этого она питается через конденсатор, который и создает фазовый сдвиг близкий к 90 0 (рис.5.4).

5.4 Синхронный генератор.

Статор машины состоит из трех обмоток, которые располагаются точно также как на статоре трехфазного асинхронного двигателя. В обмотках статора создается трехфазная ЭДС, с помощью ротора. Для этой цели ротор должен обладать постоянным магнитным полем, для чего на роторе располагаются обмотка, концы которой присоединяются к двум контактным кольцам, располагающимся на роторе: с кольцами соприкасаются графитовые щетки к которым подключается источник постоянного тока (рис.5.5). Подобная обмотка ротора носит название обмотки возбуждения. При вращении ротора в статоре возбуждается трехфазная переменная ЭДС, которая пропорциональна величине магнитного потока Ф, создаваемого ротором и пропорциональна числу оборотов п ротора.

Читать еще:  Шаговый двигатель 24в схема

E = C Фn (5.4)

где C — конструктивный коэффициент пропорциональности, Ф -магнитный поток, n- число оборотов ротора.

Синхронные генераторы широко распространены и используются на электростанциях для получения переменного тока промышленной частоты, а также для получения постоянного напряжения на автомобилях, тракторах, мотоциклах и т.п. Для этого они снабжаются встроенными трехфазными выпрямителями.

5.5. Синхронный двигатель.

Статор подобного двигателя устроен точно также как и статор трехфазного асинхронного двигателя (три обмотки питаются трехфазным током) и создает вращающееся магнитное поле.

В качестве ротора используется электромагнит, поле которого создается постоянным током, который подводится к обмотке с помощью двух контактных колец и щеток (аналогично ротору синхронного генератора).

Взаимодействие вращающегося магнитного поля статора и постоянного магнитного поля ротора приводит к появлению крутящего момента.

Таким образом, скорость вращения ротора соответствует скорости вращения магнитного поля, что приводит к появлению жесткой механической характеристики (т.е. независимости числа оборотов ротора от тормозного момента).

Основным недостатком синхронного двигателя является сложность пуска: для пуска нужно раскрутить ротор в сторону вращения магнитного поля создаваемого статором. Для этой цели наиболее часто используют короткозамкнутую обмотку, которая дополнительно располагается на роторе и поэтому в момент пуска двигатель работает как асинхронный. Когда скорость ротора приближается к скорости вращения поля, ротор входит в синхронизм и далее двигатель работает как синхронный.

Сайт ориентирован на работу в INTERNET EXPLORER 4.0 и выше.
Разрешение 800х600 и больше. Используйте кнопку F11

Скорость вращения шпинделя

Частота вращения шпинделя относится к характеристикам фрезерного станка и имеет обозначение в об/мин. Это скорость, с которой вращается шпиндель вместе с цанговым патроном и фрезой.

Шпиндели принято разделять на ременные и моторшпиндели (электрошпиндели). Первые характеризуются меньшим крутящим моментом. Конструкция классического шпинделя с ременным приводом имеет в составной части шпиндельный вал с подшипниками. Данный вал способен зажимать либо разжимать фрезу. Мощность и динамика передаются шпинделю от наружного мотора, который инсталлирован рядом с приспособлением посредством ременной передачи. Мощность, вращающий момент и скорость шпинделя зависят от характеристик внешнего двигателя и самой ременной передачи. За счет внешней инсталляции можно варьировать размеры мотора, тем самым изменяя обороты и мощность шпинделя, как в меньшую, так и в большую сторону. Применение шпинделей с ременной передачей возможно для задач, где требуемая скорость вращения шпинделя не превышает значение 12 000 – 15 000 об/мин. Из минусов – это ограничение по скорости в сравнении с электрошпинделем. Также натяжение ремня формирует излишнюю нагрузку на задние подшипники шпинделя, тем самым исчерпывая их ресурс.

Электрошпиндель — это приспособление, которое имеет в своей конструкции три ключевых звена: электрический асинхронный двигатель, патрон для зажима фрезы и подшипник. Предельные частоты вращения электрошпинделей — до 180 тысяч об/мин. Эти шпиндели являются более дорогостоящими по сравнению с ременными.

По количеству оборотов, шпиндели подразделяются:

  • Высокой мощности от 5 кВт и более: применяются в основном на крупногабаритных станках. Обороты составляют 12000…18000 об/мин. Предназначены для высокопроизводительных работ. Такое количество оборотов является большим минусом при работе с твёрдосплавными фрезами при фрезеровании тонкими фрезами, что существенно снижает общий КПД фрезерного станка.
  • Средней мощности 1.2…5 кВт: используются во фрезерных станках средних габаритов. Применяются для фрезерования пластиков, дерева и мягких металлов. Обороты составляют 18000…24000 об/мин. Идеально подходят для мелких гравировальных работ.
  • Малой мощности 0.8 кВт и менее: используются во фрезерных станках малых габаритов. Обороты составляют до 60000…70000 об/мин.

Скорость вращения вычисляется по формуле:

, где

d – диаметр режущей части инструмента (мм),

П – число Пи, постоянная величина равная 3.14;

V – скорость резания (м/мин) – это путь, пройденный точкой режущей кромки фрезы в единицу времени.

d – диаметр режущей части инструмента (мм),

П – число Пи, постоянная величина равная 3.14;

V – скорость резания (м/мин) – это путь, пройденный точкой режущей кромки фрезы в единицу времени.

Если у станка есть преимущество в виде преобразователя частоты (т.е. можно с легкостью варьировать скорость вращения шпинделя), то скорость мотора выбирается исходя из выбора диаметра фрезы и материала заготовки. Но важно знать, что при стремительном снижении скорости вращения потерю момента не миновать. В некоторой степени эта потеря возмещается инвертором благодаря функции поддержания крутящего момента при понижении скорости вращения шпинделя. Можно использовать данные из таблицы при выборе параметров соотношения количества оборотов двигателя к диаметру фрезы:

Читать еще:  Что подсыпать в бензобак чтобы испортить двигатель

График мощности и крутящего момента

На написание данной статьи подвигла частая путаница между такими понятиями как мощность и крутящий момент.

График мощности и крутящего момента — о чем он говорит?

Пример графика мощности и крутящего момента, полученный со стенда для испытания двигателей PowerTest.

Где

  • ω — угловая скорость вращения вала
  • M — крутящий момент
  • π — число

3.1416

  • n — частота вращения, измеряемая в оборотах в единицу времени (в данном случае одна минута).
  • Важно отметить что мощность в этой формуле получается в ваттах, для получения результата в лошадиных силах мощность в кВт необходимо умножить на коэффициент 0,735499.

    КРУТЯЩИЙ МОМЕНТ (TORQUE) — это произведение силы в Н, которая приложена к валу не напрямую, а через рычаг (плечо) длиной 1 м, прикрепленный к валу (точка измерения крутящего момента), отсюда и единица измерения Н*м. При такой нагрузке происходит деформация вала ,только не изгиб, который был бы при нулевой длине плеча, а скручивание, при котором отдельные сечения вала не повторяют друг друга, а оказываются повернутыми друг относительно друга на определённые углы, тем большие, чем больше приложенная сила, или чем больше рычаг при одной и той же силе. По этой причине момент называют крутящим. Не следует ожидать, что вы увидите эту закрутку стального вала диаметром, например, 20 мм, нанеся перед нагрузкой на поверхность вала линии, параллельные его оси. Величина закрутки будет в реальности настолько мала, что её непросто измерить даже с помощью специальных приборов, измерителей крутящего момента.

    ОБОРОТЫ (RPM — Revolutions Per Minute) — здесь все еще проще, это число оборотов, которое совершает ВАЛ за одну минуту. Измеряется в об/мин.

    Часто кажется, что люди не вполне понимают разницу между МОЩНОСТЬЮ и МОМЕНТОМ, тем более, последние связаны друг с другом через еще один ключевой параметр, как на стенде испытаний двигателя, так и в условиях реальной эксплуатации. Это угловая скорость вращения вала.

    Например к нам часто приходят запросы «Нам нужно измерить параметры двигателя мощностью 200л.с.» или «какой гидротормоз вы посоветуете на 140 кВт?»

    Ответить на этот вопрос можно, но это не гарантирует что заказчик получит желаемый результат. Потому что в вопросе отсутствует информация о скоростных режимах испытываемого на стенде двигателя.

    Почему это важно?

    При выборе нагружающего устройства это критически важно, так как одну и ту же мощность двигатель может выдавать на стенде как при 1500 об/мин (дизельный двигатель), так и на 20 000 об/мин (двигатель гоночного мотоцикла). Для каждого типа двигателя необходимо подбирать соответствующее нагружающее устройство. А иногда даже не одно, а тандем из двух, первое из которых работает при низких оборотах, а второе при высоких. Если речь идет об испытаниях вновь создаваемых двигателей с широким скоростным диапазоном вращения вала.

    Что это означает на практике?

    Если отойти от теории, то график мощности и крутящего момента — это основные характеристики двигателя. Когда вы въезжаете на своем автомобиле в горку и пытаетесь поддерживать одну и ту же скорость, вам приходится сильнее нажимать на педаль газа. Многим при этом кажется, что мощность останется та же, т.к. скорость не меняется. Но это не так!

    При движении в горку двигатель выдает большую мощность при тех же оборотах.
    (при неизменной передаче). Это легко проверить, взглянув на текущий расход топлива.

    Также это объясняет, зачем двигателю нужна коробка передач, ведь для эффективного разгона и преодоления подъёмов нам необходимо поддерживать обороты в диапазоне максимальной мощности двигателя.

    А вот электромобили обходятся без нее. Кривая крутящего момента и мощности у электродвигателя намного более линейна, и к тому же электродвигатель выдает куда большую мощность на низких оборотах.

    Зачем измерять мощность и крутящий момент?

    Во-первых это необходимая процедура при разработке и сертификации любого нового двигателя.

    Во-вторых эти данные помогут при дальнейшей настройке и доработке двигателя, чтобы добиться наилучших эксплуатационных характеристик.

    В третьих кривая мощности и крутящего момента, если её сравнить с паспортной — это прямой показатель технического состояния любого двигателя.

    Графики мощности дизельного двигателя до ремонта и после ремонта, полученные с испытательного стенда на базе гидротормоза, который можно приобрести в нашей компании.

    Ссылка на основную публикацию
    Adblock
    detector