Асинхронный двигатель способ запуска

Способы пуска асинхронного двигателя — прямой пуск

При применении асинхронных короткозамкнутых электродвигателей, очень остро встает вопрос ограничения пусковых токов. Для ограничения пусковых токов применяются различные схемы пуска асинхронного двигателя.

Пусковой ток

При подаче на электродвигатель напряжения, в цепи статора двигателя возникают скачки тока, именуемые пусковым током или током заторможенного ротора. Пусковой ток при пуске трехфазного асинхронного двигателя может превышать в 5 – 7 раз выше номинального, хотя действует кратковременно. После окончания пуска двигателя, и выхода двигателя на номинальные обороты, ток падает до номинального, как показано на рис.

В каждом отдельном случае необходимо принимать меры, для снижения пусковых токов, используя различные способы пуска. Кроме этого необходимо принять специальные меры для стабилизации питающего напряжения.

Пусковые периоды

Рассматривая различные способы пуска трехфазного асинхронного двигателя, которые снизить пусковой ток, нужно следить за тем, чтобы период пуска не был слишком долгим. Потому что продолжительное время пуска двигателя может вызвать перегрев обмоток.

Способы пуска трехфазного асинхронного двигателя

Следует знать основные достоинства и недостатки различных способов пуска трехфазного асинхронного двигателя. В данной таблице представлены сравнительные характеристики часто используемых способов пуска.

Прямой пуск

Что такое прямой пуск? Как следует из названия, прямой пуск трехфазного асинхронного двигателя означает, что электродвигатель подключается к сети на номинальное напряжение. Прямой пуск в англоязычной аббревиатуре обозначается как (direct-on-line starting – DOL). Его обычно применяют при стабильном питании двигателя, если вал двигателя жестко привязан к приводу, например привод вентилятора или насоса.

Прямой пуск трехфазного асинхронного двигателя от сети (DOL), на сегодняшний день является самым дешёвым и простым. Поэтому он получил и самое большое распространение в промышленности. Кроме того, он даёт минимальное увеличение температуры электродвигателя при пуске по сравнению со всеми другими способами пуска. Если величина пускового тока не ограничивается специальными нормами, то такой способ является наиболее предпочтительным, но не самым экономичным. Если величина пускового тока ограничена параметрами сети, то необходимо выбирать другие способы пуска. Простейшая схема управления трехфазным асинхронным двигателем M включает в себя силовой контактор KM, устройство зашиты от перегрузок QF тепловое реле KT и кнопки управления SB1, SB2.

В схемах прямого пуска асинхронных двигателей пусковой момент составляет 150% -300% номинального, при этом пусковой ток может достигать 300% — 800% тока номинального.

Защита асинхронного двигателя – способы и схемы

Если правильно эксплуатировать асинхронный двигатель, он прослужит очень долго. Однако существуют факторы, способные сократить срок его службы, и их требуется нейтрализовать. В случае входа в аварийный режим электромотор должен быть быстро и своевременно отключен, иначе он сгорит.

К стандартным и часто встречающимся аварийным ситуациям относятся:

  • Короткое замыкание (КЗ). В этом случае срабатывает защита, которая отключает мотор от сети.
  • Перегрузка, из-за которой происходит перегрев двигателя.
  • Уменьшение или исчезновение напряжения.
  • Отсутствие напряжения на одной фазе.

Для защиты служат плавкие предохранители, магнитные пускатели или реле. Плавкие предохранители является одноразовыми, и после сгорания их приходится заменять. Автоматические переключатели с коммутациями срабатывают и при перегрузках, и при КЗ. Реле и магнитные пускатели бывают многократного действия с автоматическим самовозвратом или с ручным возвратом.

Защита от КЗ настраивается с учетом 10-кратного превышения номинального тока токами пуска и торможения. При местных замыканиях в обмотках мотора защита должна срабатывать, когда ток меньше, чем при пуске. В защите также предусматривают задержку отключения, и она срабатывает, если за это время потребляемый из сети ток сильно возрастет. Если защита от перегрузки действует слишком часто, скорее всего, мощность мотора не соответствует его назначению. Ложные срабатывания устраняют, соответственно выбирая и регулируя компоненты защиты.

Следует помнить, что любые способы и схемы защиты асинхронного электродвигателя должны быть не только просты, но и надежны.

Короткие замыкания, а также защита от перегрузок

Плавкие вставки – простейшая защита от коротких замыканий для моторов мощностью до 100 кВт. Если перегорят не все 3 предохранителя, могут отключиться только 1 или 2 фазные обмотки.

Если переходный процесс длится 2-5 секунд, номинальный ток предохранителя не должен быть меньше 40 % величины пускового тока, а если 10-20 секунд – то минимум 50 %. При неизвестной величине пускового тока и мощности Р мотора меньше 100 кВт примерная величина номинального тока I вставки выбирается так:

  • при U 500 вольт I = 4,5 Р;
  • при U 380 вольт I = 6 Р;
  • при U 2200 вольт I = 10,5 Р.
Читать еще:  Что означает масло для двигателей без фильтров сажевых частиц

Тепловая защита

Тепловое реле – это биметаллическая пластина, нагреваемая током обмоток мотора. Деформируясь, она активизирует контакты, отключающие мотор. Тепловые реле могут встраиваться в магнитные пускатели. Следует принимать в расчет максимальное напряжение в сети, при котором допускается применение теплового реле, и ток, при котором реле работает долгое время и не активизируется.

Тепловое реле не может реагировать на токи короткого замыкания. Не действуют на него и недолгие перегрузки, которые недопустимы. Поэтому рекомендуется совмещать использование теплового реле с плавкими вставками.

Специальный датчик тепла защищает электромотор от перегрева еще успешнее. Он устанавливается на самом электромоторе. Некоторые двигатели имеют встроенный биметаллический датчик, представляющий собой контакт, который подключен к защите.

Понижение напряжения и исчезновение фазы

Если асинхронный электромотор работает с полной нагрузкой, а напряжение при этом понижено, то он начинает быстро нагреваться. Если в него встроен температурный сенсор, включится тепловая защита.

Если же температурного сенсора не имеется, надо обеспечить защиту электродвигателя от падения напряжения. В таком случае используются реле. Когда уменьшается напряжение, они срабатывают и подают сигнал на отключение электродвигателя. Исходное состояние защиты может восстанавливаться вручную или автоматически; при этом происходит задержка во времени для каждого электромотора при их группе. В противном случае при одновременном групповом запуске после восстановления напряжение в сети может снова понизиться, и произойдет новое отключение.

Правила устройства и эксплуатации электроустановок требуют защиты от исчезновения фазы тока только в случаях экономически нецелесообразных последствий. Экономически выгоднее не изготавливать и устанавливать такую защитную систему, а устранить причины, приводящие к режиму работы только на двух фазах.

Новейшими устройствами для защиты электромоторов можно назвать автоматические выключатели, способные к воздушному гашению дуги. В некоторых конструкциях совмещаются возможности рубильника, контактора, максимального реле и термореле. В подобных моделях мощная взведенная пружина размыкает контакты. Ее освобождение зависит от того, каков исполнительный элемент – электромагнитный или тепловой.

Таким образом, защита асинхронного двигателя, способы и схемы которой изложены выше, должна реализовываться пользователем в обязательном порядке.

Запуск электродвигателя по схеме «звезда-треугольник»

Практически любое производство в наши дни не обходится без мощного асинхронного электродвигателя. При запуске такого двигателя пусковой ток в 3-8 раз превышает значение номинального тока, необходимого для работы в нормально-устойчивом режиме.

Большой пусковой ток необходим для того, чтобы раскрутить ротор из состояния покоя. Для этого необходимо приложить гораздо больше усилий, чем для дальнейшего поддержания постоянного числа оборотов в заданный промежуток времени. Значительные величины пусковых токов у асинхронных двигателей являются весьма нежелательным явлением, поскольку это может приводить к кратковременной нехватке энергии для другого подключенного к этой же сети оборудования (падению напряжения). Масса примеров такого влияния встречается как на производстве, так и в быту. Первое, что вспоминается — это «мигание» электрической лампочки при работе сварочного аппарата, но бывают случаи серьезнее: просадка напряжения может стать причиной бракованной партии товара на производстве, что ведет к большим финансовым и трудовым затратам. Большой пусковой ток также может вызвать ощутимые тепловые перегрузки обмотки электродвигателя, в результате чего происходит старение изоляции, ее повреждение и в конечном итоге может произойти сгорание двигателя.

Все это послужило мотивом для поиска решения по минимизации токов пуска. Одним из таких решений является метод запуска двигателя по схеме «звезда-треугольник». Для начала разберемся что же такое «звезда», а что — «треугольник», и чем они отличаются друг от друга. Звезда и треугольник являются самыми распространенными и применяемыми на практике схемами подключения трехфазных электродвигателей. При включении трехфазного электродвигателя «звездой» (см. Рисунок 1) концы обмоток статора соединяются вместе, соединение происходит в одной точке, называемой нулевой точкой или нейтралью. Трехфазное напряжение подается на начало обмоток.

Рисунок 1 — Схема подключения «звезда»

При соединении обмоток статора «звездой», соотношение между линейным и фазным напряжениями выражается формулой:

где:
Uл — напряжение между двумя фазами;
Uф — напряжение между фазой и нейтральным проводом;
Значения линейного и фазного токов совпадают, т. е. Iл = Iф.

При включении трехфазного электродвигателя по схеме «треугольник» (см. Рисунок 2) обмотки статора электродвигателя соединяются последовательно. Таким образом, конец одной обмотки соединяется с началом следующей, напряжение в этом случае подается на точки соединения обмоток. При соединеии обмоток статора «треугольником» напряжение на фазе равно линейному напряжению между двумя проводами: Uл = Uф.

Читать еще:  Toyota vitz обороты двигателя

Рисунок 2 — Схема подключения «треугольник»

Однако ток в линии (сети) больше, чем ток в фазе, что описывается формулой:

где:
Iл — линейный ток;
Iф — фазный ток.

Получается, что соединяя обмотки «звездой», мы уменьшаем линейный ток, чего изначально и добивались. Но есть и обратная сторона этой схемы: как мы видим из формулы, пусковой момент двигателя прямо пропорционален фазному напряжению:

где:
U — фазное напряжение обмотки статора;
r1 — активное сопротивление фазы обмотки статора
r2 — приведенное значение активного сопротивления фазы обмотки ротора;
x1 — индуктивное сопротивление фазы обмотки статора;
x2 — приведенное значение индуктивного сопротивления фазы обмотки неподвижного ротора;
m — количество фаз;
p — число пар полюсов.

Чтобы было нагляднее, давайте рассмотрим пример: предположим, что рабочей схемой обмотки асинхронного электродвигателя является «треугольник», а линейное напряжение питающей сети равно 380 В, сопротивление обмотки статора Z = 10 Ом. Если обмотки во время пуска подключены «звездой», то уменьшатся напряжение и ток в фазах:

Фазный ток равен линейному току и равен:

После того, как двигатель набрал необходимые обороты, т. е. разогнался, переключаем обмотки со «звезды» на «треугольник», в этом случае получаем совершенно другие значения тока и напряжения:

Соответственно, при пуске двигателя по схеме «звезда», фазное напряжение в √3 раз меньше линейного, а по схеме «треугольник» — они равны. Отсюда следует, что момент при пуске по схеме «звезда» в 3 раза меньше, а значит, запуская двигатель по этой схеме, мы не сможем добиться выхода двигателя на номинальную мощность. Решая одну проблему возникает вторая, не менее острая, чем повышенные пусковые токи. Но единое решение все-таки есть: необходимо скомбинировать схемы подключения двигателя так, чтобы при пуске мощного двигателя не было больших токов в сети, а после того, как двигатель выйдет на необходимые для его работы обороты, происходит переключение на схему «треугольник», что позволяет работать со 100% нагрузкой без каких-либо проблем.

С поставленной задачей прекрасно справляется реле времени Finder 80.82. При подаче питания на реле, мгновенно замыкается контакт, который отвечает за подключение по схеме «звезда». После заданного промежутка времени, на котором обороты двигателя достигают рабочей частоты, контакт схемы «звезда» размыкается и замыкается контакт, который отвечает за подключение по схеме «треугольник». Контакты останутся в таком положении до снятия питания с реле. Наглядная диаграмма работы данного реле представлена на Рисунке 3.

Рисунок 3 — Временная диаграмма реле времени 80.82

Рассмотрим более подробно реализацию данной схемы на практике. Она применима только для двигателей, у которых на шильдике указано «Δ/Y 380/660В». На Рисунке 4 представлена силовая часть схемы «звезда-треугольник», в которой используется три электромагнитных пускателя.

Рисунок 4 — Силовая часть схемы «звезда-треугольник»

Как было описано ранее, для управления переключением со схемы «звезда» на схему «треугольник» необходимо воспользоваться реле Finder 80.82. На Рисунке 5 представлена схема управления с помощью данного реле.

Разберем алгоритм работы данной схемы:

После нажатия кнопки S1.1, запитывается катушка пускателя КМ1, в результате чего, замыкаются силовые контакты КМ1 и при помощи дополнительного контакта КМ1.1 реализуется самоподхват пускателя. Одновременно подается напряжение на реле времени U1. Замыкаются контакты реле времени 17-18 и включается пускатель КМ2. Таким образом, происходит запуск двигателя по схеме «звезда». По истечении времени Т (см. Рисунок 3), контакт реле времени 17-18 мгновенно разомкнется, пройдет задержка времени Tu, и замкнется контакт 17-28. Вследствие чего, сработает пускатель КМ3, который осуществляет переключение на схему «треугольник». Нормально замкнутые контакты пускателей КМ2.2 и КМ3.2 используется для предотвращения одновременного включения пускателей КМ2 и КМ3. Чтобы защитить двигатель от перегрузки, в силовой цепи установлено тепловое реле КК1. В случае перегрузки, тепловое реле разомкнет силовую цепь и цепь управления через контакт КК1.1. Остановка двигателя происходит при нажатии кнопки S1.2, которая разрывает цепь самоподхвата и обесточит катушку пускателя КМ1.

Обобщая написанное, можно сделать вывод, что для облегчения пуска мощного электродвигателя, рекомендуется изначально запускать его по схеме «звезда», что позволяет значительно снизить пусковые токи, уменьшить просадку напряжения в сети, но не позволяет двигателю выйти на номинальный режим работы. Для выхода двигателя на номинальный режим необходимо осуществить переключение обмоток статора на схему «треугольник». Схема переключения обмоток со «звезды» в «треугольник» реализована с помощью реле времени Finder 80.82, в котором устанавливается время разгона электродвигателя.

Читать еще:  Вортекс тинго двигатель чип тюнинг

Список использованной литературы:

  1. ГОСТ 11828-86 «Определение вращающих моментов и пусковых токов».
  2. Вешеневский С. Н. Характеристики двигателей в электроприводе. // Издание 6-е, исправленное — Москва, Издательство «Энергия», 1977
  3. Войнаровский П. Д. Электродвигатели // Энциклопедический словарь Брокгауза и Ефрона: в 86 т. (82 т. и 4 доп.) — СПб., 1890—1907

Пуск Асинхронного Двигателя.
Способы Запуска Электродвигателя.

Тема — Пуск Асинхронного Двигателя. Способы Запуска Электродвигателя.

Запуск асинхронного двигателя прямым включением в электросеть. Данным вариант запуска отличается от иных своей простотой. Но в момент включения асинхронного двигателя к электросети в цепи обмоток статора появляется большой пусковой ток. Он в 5-7 раз выше номинального тока асинхронного двигателя. При малой инерционности применяемого механизма скорость асинхронного двигателя довольно быстро увеличивается до установленного значения, а большой ток спадает, достигая значения нормальной нагрузке электродвигателя.

В подобных условиях пусковая сила тока не представляет особой опасности для асинхронного двигателя, так как он быстро спадает и не может создать чрезмерного перегрева обмоток машин. Но этот большой бросок тока в электроцепи асинхронного двигателя влияет на питающую электросеть и при слабой мощности последней данное влияние легко может отобразиться в значительных колебаниях напряжения электросети. Хотя при современных мощных энеросистемах и электросетях асинхронные двигатели с короткозамкнутым ротором, обычно, пускаются на полное напряжение.

Существует несколько вариантов снижения напряжения в момент пуска асинхронного двигателя. Для асинхронных двигателей, функционирующих при соединении статорной обмотки треугольником, у которых напряжение приравнивается напряжению электросети, вполне может быть использован запуск непосредственным переключением статорной обмотки со звезды на треугольник. Во время подключения асинхронного двигателя к электросети переключатель ставят в положение «звезда», при котором статорная обмотка асинхронного двигателя оказывается соединенной по схеме «звезда».

В данном варианте напряжение на статоре двигателя снижается. Уменьшается и сила тока в фазных обмотках асинхронного двигателя. При соединении статорных обмоток двигателя звездой линейный ток будет приравниваться фазному, а во время соединения треугольником он больше фазного. Поэтому, использование метода пуска асинхронного двигателя переключением обмотки статора со звезды на треугольник дает снижение пускового тока в 3 раза.

Как только ротор асинхронного двигателя наберёт обороты и разгонится до скорости, близкой к номинальной, можно осуществить переключение статорной обмотки в положение «треугольник». Появившийся при этом некоторый бросок тока невелик и особо не влияет на работу электросети. Хотя описанный вариант запуска имеет весомый недостаток. Уменьшение фазного напряжения в 3 раза при запуске несёт за собой понижение пускового момента в 3 раза, поскольку пусковой момент асинхронного двигателя прямо пропорционален квадрату напряжения. Это уменьшение пускового момента значимо ограничивает использование данного варианта запуска для асинхронных двигателей, что включаются под нагрузкой.

Уменьшение напряжения при пуске асинхронного двигателя может быть осуществлено при помощи автотрансформатора или реактора. В данном случае пусковой ток асинхронного двигателя, измеренный на выходе автотрансформатора, снижается в несколько раз. Сила тока, измеренная на входе автотрансформатора, сниженная по сравнению с пусковым током электродвигателя при прямом подключении электродвигателя в электросеть. Смысл в том, что в понижающем автотрансформаторе первичная сила тока в несколько раз меньше вторичной силы тока, поэтому снижение пускового тока при автотрансформаторном запуске составляет довольно значительное понижение.

Таким образом, автотрансформаторный запуск работает 3-мя ступенями. На первой ступени к электродвигателю подключают напряжение, которое равно 50-70% от номинального значения; на второй ступени, где электрический трансформатор служит реактором, электрическое напряжение составляет около 70-80% от номинального напряжения. Поскольку использование автотрансформатора дает снижение пускового тока в несколько раз.

Автотрансформаторный метод пуска асинхронных электродвигателей, как и иные варианты запуска, основанные на снижении подаваемого напряжения, протекает с уменьшением пускового момента. С точки зрения пусковых моментов и пусковых токов, автотрансформаторный вариант запуска выгоднее реакторного, поскольку при одинаковом снижении напряжения тока пуска при реакторном методе запуска снижается в U’1/U1н раз, а при автотрансформаторном варианте запуска – в (U’1/U1н)2 раз. Но трудность пусковой операции и высокая цена системы заметно ограничивают использование автотрансформаторного метода запуска асинхронных двигателей.

Ссылка на основную публикацию