Асинхронный двигатель способ запуска

Пуск двигателя с короткозамкнутым ротором

При наличии электрической сети достаточной мощности, пуск асинхронных двигателей с короткозамкнутым ротором осуществляется путем прямого включения двигателя в сеть. Этот способ запуска наиболее прост, но он сопровождается повышенным значением тока, что должно быть учтено при расчете сети питания.

В таблице приведены соотношения между пусковыми и номинальными значениями токов и механических моментов для двигателей нормального исполнения с различной синхронной частотой вращения мощностью от 5 до 100 кВт.

n об./мин Iп / Iн Mп/ Mн Mmax/ Mн
6,5 … 6 1,4…1,1 1,8
1,3…1,1 1,8
5,5 1,1 1,6

Из таблицы следует, что пусковой ток асинхронных двигателей больше номинального в 6…7 раз. В зависимости от величины пускового тока и длительности запуска проектируется система защиты двигателей от перегрузок и различных аварийных ситуаций, поэтому иногда необходимо создавать устройства ограничения пускового тока.

Ограничение пускового тока двигателей с фазным ротором может быть достигнуто использованием схемы запуска, описанной в предыдущем разделе. Для этого достаточно увеличить сопротивления резисторов, включенных последовательно с обмоткой ротора. Но не следует забывать о том, что при дальнейшем увеличении сопротивлений, включенных последовательно с обмоткой ротора, снижается пусковой механический момент асинхронного двигателя.

Ограничение пускового тока асинхронных двигателей с короткозамкнутым или фазным ротором можно получить различными способами. В простейшем случае на время пуска двигателя последовательно с обмоткой статора включается трехфазный резистор определенного сопротивления. Величина этого сопротивления выбирается из условия, получения пускового тока большего номинального в 2…2,5 раза. Пуск двигателя может проводиться в несколько этапов. На рис. 6.43 представлена схема пуска двигателя с ограничением тока с помощью резисторов.

На рис. 6.44 представлена временная диаграмма срабатывания контакторов схемы управления двигателем.

В момент времени срабатывает контактор , подключая своими контактами обмотку двигателя к сети питания. Контакты контакторов и разомкнуты, и последовательно с двигателем включены резисторы и . В момент времени срабатывает контактор , шунтируя резистор . В момент времени срабатывает контактор , шунтируя резистор . Величина сопротивлений и , а также длина отрезков времени и рассчитываются исходя из параметров двигателя и условий запуска.

Наиболее эффективным является пуск двигателей с помощью автотрансформатора (рис. 6.45).

Перед подключением автотрансформатора к сети напряжение на выходе , равное напряжению на статорной обмотке двигателя , должно быть в 3…4 раза меньше номинального.
В такое же число раз уменьшается и пусковой ток. После подключения к питающей сети напряжение на зажимах увеличивается постепенно с таким условием, чтобы ток статора двигателя не превышал допустимого значения.

Мощность автотрансформатора схемы запуска может быть несколько меньшей мощности двигателя, так как он работает кратковременно, лишь во время пуска. После запуска двигателя автотрансформатор может быть отключен.

Таким образом, уменьшение пускового тока достигается умень­шением напряжения на обмотке статора при его запуске. Снижение напряжения на статорной обмотке при пуске двигателя можно получить путем переключения ее со «звезды» на «треугольник» (рис. 6.46).

Речь идет о двигателях, статорная обмотка которых в нормальном режиме работы соединена «треугольником». Если линейное напряжение сети питания равно 380 В, то таким способом
могут быть запущены двигатели с номинальным напряжением D/Y– 380/660 В. Схема запуска такого двигателя изображена
на рис. 6.46.

Временная диаграмма срабатывания контакторов изображена на рис. 6.47.

В момент времени срабатывают одновременно контакто-
ры и . При замкнутых контактах обмотка двигателя соединена «звездой». Фазные напряжения в этом случае меньше линейного в раз. В момент времени размыкаются контакты контактора и замыкаются контакты контактора . Обмотка двигателя в этом случае соединена «треугольником», так как контактами соединен с , — с и — с . Фазный ток увеличивается в раз, а линейный ток — в 3 раза. Таким образом, такой способ запуска двигателя позволяет уменьшить пусковой ток в 3 раза. Но не следует забывать о том, что и пусковой момент двигателя в этом случае уменьшается.

6.21. Двигатели со специальной роторной обмоткой
и улучшенными пусковыми характеристиками

Основным недостатком асинхронных двигателей является малая величина механического момента на его валу, в момент пуска равная 1,1…1,3 номинального момента.

Рис. 6.48

Пусковые характеристики двигателя могут быть улучшены. Как следует из вышеприведенных теоретических соотношений, момент можно увеличить за счет увеличения сопротивления обмотки ротора при малых частотах вращения или при скольжениях, больших » 0,3. При скорости, близкой к номинальной, желательно иметь минимальное сопротивление роторной обмотки, а при запуске двигателя — увеличенное. Эффект изменения активного сопротивления ротора получают путем использования специальной роторной обмотки в форме двойного беличьего колеса. При изготовлении обмотки ротора в каждом пазу укладывается по два проводника, расположенных на разной глубине. Внешняя обмотка служит для пуска; внутренняя обмотка, выполненная тоже в форме беличьего колеса, обеспечивает нормальный режим работы. Активные стороны внешнего беличьего колеса выполнены проводом меньшего сечения, обеспечивая большее сопротивление по отношению
к сопротивлению внутреннего беличьего колеса. Сопротивление внешнего беличьего колеса в 4-5 раз больше внутреннего. Индуктивное сопротивление внутренней обмотки больше, чем индуктивность внешней, так как поток рассеяния вокруг этих проводников встречает на своем пути большое сопротивление воздушного зазора (рис. 6.48).

На рис. 6.48 проводник « » обмотки ротора в виде двойного беличьего колеса имеет меньшее сечение, чем проводник . Активное сопротивление проводника « » в 4-5 раз больше. Часть магнитного потока этого проводника, расположенного в открытом пазу, замыкается через воздушный зазор по статору. Магнитный поток внутреннего проводника « » замыкается практически по магнитопроводу ротора.

Таким образом, эффективное активное сопротивление внешнего проводника больше, а его индуктивность меньше, чем соответствующие параметры внутреннего проводника « ». Кроме обмотки ротора, называемой «двойным беличьим» колесом, для улучшения механических характеристик используют обмотки роторов с углубленными пазами (рис. 6.49).

На этом рисунке представлены различные формы пазов роторов асинхронных двигателей. Физические процессы, происходящие в роторе с углубленными пазами, аналогичны вышеописанным процессам.

В момент пуска двигателя, когда ротор еще не вращается ( ), частота тока обмотки ротора равняется частоте сети.
В этом случае полное сопротивление внутренней обмотки определяется большим реактивным индуктивным сопротивлением. В это же время полное сопротивление внешней обмотки определяется
в основном резистивным сопротивлением.

Ток внутренней обмотки реактивный и не участвует в создании механического момента. Ток внешней обмотки создает большой пусковой момент. При увеличении частоты вращения частота токов обмоток уменьшается, и влияние реактивного индуктивного сопротивления внутренней обмотки на распределение токов тоже уменьшается. При номинальной частоте вращения большая часть суммарного тока ротора проходит по внутренней обмотке и результирующее сопротивление ротора мало.

Рис. 6.50

Механическую характеристику асин­хронного двигателя с углубленными пазами (кривая 3 на рис. 6.50) можно рассматривать как сумму характеристик двигателя с относительно большим сопротивлением ротора (кривая 1 на рис. 6.50)
и двигателя с относительно малым сопротивлением роторной обмотки (кривая 2
на рис. 6.50).

Читать еще:  Rs550 12v двигатель характеристики

Двигатели с углубленными пазами проще в изготовлении, чем двигатели с двойным беличьим колесом.

Запуск асинхронного электродвигателя от однофазной сети

В момент запуска электродвигателя в его обмотках протекает электрический ток, превышающий номинальный в несколько раз. Это пусковой ток, величина которого зависит от конструкции самого электродвигателя, нагрузки его ротора, характеристики электрической линии и питающего электродвигатель напряжения и тока.

Для применения трёхфазного двигателя в качестве однофазного необходимо убедиться в типе соединения обмоток статора, обмотки которых рассчитаны на напряжение 127/220v и 220/380v. Данные указаны в паспортной табличке.

Вот, когда Вы обнаружите не три и не шесть выводов в клеммной коробке, а более, то перед Вами многоскоростной электродвигатель и подключение его к однофазной сети вызовет определённую трудность. Необходимо будет ‘прозвонить’ каждую обмотку и определить для неё начало и конец либо согласовать дополнительные выводы каждой обмотки.

Пульсирующее магнитное поле электродвигателя.

А если наш трёхфазный электродвигатель двумя выводами подключить к линии однофазного переменного тока, то вращающего магнитного поля в статоре образовываться не будет.

Нет. Магнитное поле всё-таки в нём появляется, но оно является результатом сложения двух магнитных полей, которые вращаются в статоре в противоположные стороны и с одинаковым числом оборотов. В данном случае это поле пульсирующее и оно никак не сдвинет ротор электродвигателя с места, разве что Вы не придадите ему начальное вращение.

Ток потребления в данном случае максимален и приравнивается к току короткого замыкания подобного трансформатора с приближёнными характеристиками к обмоткам электродвигателя.

Другими словами могу сказать, если в подобном пульсирующем электромагнитном поле статора асинхронного двигателя будет находится короткозамкнутый ротор, то оба поля, прямое и обратное, будут стараться повернуть ротор в свою сторону, а в данном случае эти стороны противоположны, и неподвижный ротор не может сам начать вращение. А так как эти электромагнитные поля создают свои моменты, которые компенсируют друг друга, то непосредственно сам пусковой момент такого асинхронного электродвигателя будет равен нулю.

Значит, что бы запустить трёхфазный электродвигатель от однофазной сети, необходимо что бы токи в его обмотках не были симметричными и активная мощность по фазам распределялась неравномерно. То есть подключить к электродвигателю некое электрическое устройство, которое сместило бы фазы токов, что вызовет их несимметрию и в статоре электродвигателя образуется вращающее магнитное поле. Ротор начнёт вращаться.

Механический запуск электродвигателя.

Иногда у некоторых умельцев в быту имеются установки, на которых установлены трёхфазные электродвигатели, запускаемые в работу от однофазной сети раскручиванием вала в ручную.

Предварительно на вал отключенного электродвигателя наматывают прочный шнур. Для запуска электродвигателя этим шнуром раскручивают его ротор, затем сразу на обмотки статора подают электрическое напряжение. Как только электродвигатель войдёт в режим холостого хода, на его вал подают нагрузку.

Электродвигатель в таких установках может закрепляться как на подвижной платформе, так и жёстко. Нагружают электродвигатель плавным опусканием платформы, на которой установлен двигатель и под действием силы тяжести(вес электродвигателя) шкив вала электродвигателя плотно сцепляется с ремнём, который передаёт вращающий момент далее.

Когда электродвигатель установлен жёстко, то для передачи крутящего момента используют натяжной ролик или натяжной шкив. После запуска электродвигателя плавно натягивают ремень между шкивом вала электродвигателя и шкивом рабочей установки.

Можно использовать вариатор, центробежную муфту сцепления, но конструкция в таком случае усложнится, а нам нужно как проще.

В таких случаях можно сказать, что при включенном в сеть электродвигателе раскручиванием ротора мы смещаем фазы токов ротора относительно фаз токов статора, уменьшаем скольжение и тормозящий момент двигателя. Вращающий момент увеличивается и электродвигатель плавно, но уверенно запускается.

Данный метод очень прост, но неудобен. Применяют его для электродвигателей небольшой мощности и запуска без нагрузки на валу. Есть двигатели, которые легко можно запустить ‘от руки’.

Но наш быт настолько разнообразен, что не обходится без какого-либо электрического аппарата, агрегата или устройства, в котором используются электродвигатели и заметьте без всяких там шнуров для их запуска.

Если электродвигатель асинхронный, то для его запуска всегда используют электрический фазосдвигающий элемент, либо применяют расщепление полюсов для создания пускового момента.

Что такое расщепление полюсов.

В электроприборах или аппаратах небольших по размеру или малой производительности и небольшой электрической мощности применяют однофазные электродвигатели со средней мощностью около 100wt. В электроаппаратах старого выпуска применялись однофазные конденсаторные электродвигатели( магнитофоны, проигрыватели, мясорубки и др.). В подобных устройствах необходим был большой пусковой момент при малой электрической мощности и при малом габарите электрического аппарата.

А вот в аппаратах, где не было необходимости хорошего момента при запуске и не предъявлялись требования к скольжению использовались однофазные электродвигатели с расщеплёнными полюсами(вентиляторы бытовые, электрополотенце, фены). Наверное, замечали как плавно запускались электродвигатели таких устройств.

Ротор у таких электродвигателей короткозамкнутый, обмотка статора разделена на две части, расположенные напротив друг друга. Полюса статора, на которых размещены обмотки, разрезаны на две части, на одной из которых уложен короткозамкнутый виток. Для чего?

В момент подачи напряжения на обмотку статора, образующееся магнитное поле охватывает короткозамкнутый виток, в котором индуцируется электрический ток большой величины. А так как в витке есть электрический ток, то он создаёт своё магнитное поле, но сдвинутое по фазе от основного поля статора электродвигателя. Что получается?

Та часть статора, на котором размещён виток имеет своё магнитное поле, которое не совпадает по фазе с основным полем и как следствие, ослабляет в своей части поле второй половины статора. И получается, что взаимодействие двух магнитных потоков полюсов каждого статора создают направленное вращающее магнитное поле. Правда, оно не круговое, а больше похоже на эллипс. Для нас это не так уж и важно. Электродвигатель начинает раскручиваться медленно, но уверенно.

Малый пусковой момент — плавный запуск; два полюса на статоре — частота вращения ротора электродвигателя близка к максимально возможной для асинхронных электродвигателей с короткозамкнутым ротором(

Способы запуска трехфазных асинхронных двигателей

Доброго времени суток, уважаемые читатели блога nasos-pump.ru

В рубрике «Общее» рассмотрим способы запуска трехфазных асинхронных двигателей с коротко замкнутым ротором. В настоящее время используются различные способы запуска асинхронных двигателей. При запуске двигателя должны удовлетворяться основные требования. Запуск должен происходить без применения сложных пусковых устройств. Пусковой момент должен быть достаточно большим, а пусковые токи как можно меньше. Современные электродвигатели являются энерго-эффективными двигателями и имеют более высокие пусковые токи, что заставляет уделять большее внимание их способам запуска. При подаче на двигатель напряжения питания возникает скачок тока, который называют пусковым током.

Пусковой ток обычно превышает номинальный в 5 – 7 раз, но действие его кратковременное. После того как двигатель вышел на номинальные обороты, ток падает до минимального. В соответствии с местными нормами и правилами, для снижения пусковых токов, и используются разные способы запуска асинхронных двигателей с коротко замкнутым ротором. Вместе с этим необходимо уделять внимание и стабилизации напряжения сетевого питания. Говоря о способах запуска, которые уменьшают пусковой ток, следует отметить, что период запуска не должен быть слишком долгим. Слишком продолжительные периоды запуска могут вызвать перегрев обмоток.

Читать еще:  Чем отогреть двигатель машины

Прямой запуск

Самый простой и наиболее часто применяемый способ запуска асинхронных двигателей – это прямой пуск. Прямой пуск означает, что электродвигатель запускается прямым подключением к сетевому напряжению питания. Прямой пуск применяется при стабильном питании двигателя, жестко связанного с приводом, например насоса. На (Рис.1) приведена схема прямого пуска асинхронного двигателя.

Подключение двигателя в электрическую сеть происходит при помощи контактора (пускателя). Реле перегрузки необходимо для защиты двигателя в процессе эксплуатации от перегрузки по току. Двигатели малой и средней мощности обычно проектируют так, чтобы при прямом подключении обмоток статора к сетевому питанию пусковые токи, возникающие при запуске, не создавали чрезмерных электродинамических усилий и превышений температуры на двигатель, с точки зрения механической и термической прочности. Переходной процесс в момент запуска характеризуется очень быстрым затуханием свободного тока, что позволяет пренебречь этим током и учитывать только установившееся значение тока переходного процесса. На графике (Рис. 1) приведена характеристика пускового тока при прямом запуске асинхронного двигателя с коротко замкнутым ротором.

Прямой запуск от сети питания является самым простым, дешёвым и наиболее часто применяемым способом запуска. При таком запуске происходит наименьшее повышение температуры в обмотках электродвигателя во время включения по сравнению со всеми остальными способами запуска. Если нет жестких ограничений по току, то такой метод запуска является наиболее предпочтительным. В разных странах действуют различные правила и нормы по ограничению максимального пускового тока. В таких случаях, необходимо использовать другие способы запуска.

Для небольших электродвигателей пусковой момент будет составлять от 150% до 300% от номинального момента, а пусковой ток будет составлять от 300% до 700% от номинального значения или даже выше.

Запуск «звезда – треугольник»

Запуск переключением «звезда – треугольник» используется для трёхфазных индукционных электродвигателей и применяется для снижения пускового тока. Следует отметить, что запуск переключением «звезда – треугольник» возможен только в тех двигателей, у которых выведены начала и концы всех трех обмоток. Пульт для запуска «звезда – треугольник» состоит и следующих комплектующих, трех контакторов (пускателей), реле перегрузки по току и реле времени, управляющего переключением пускателей. Чтобы можно было использовать этот способ запуска, обмотки статора электродвигателя, соединенные по схеме «треугольник», должны быть рассчитаны на работу в номинальном режиме. Обычно электродвигатели рассчитаны на напряжение 400 В при соединении по схеме «треугольник» (∆) или на 690 В при соединении по схеме «звезда» (Y). Такая унифицированная схема соединения может быть также использована для пуска электродвигателя при более низком напряжении. Схема запуска переключением «звезда – треугольник» показана на (Рис. 2)

Пуск звезда треугольник

В момент пуска электропитание к обмоткам статора подключено по схеме «звезда» (Y) Замкнуты контакторы К1 и К3. По истечении определённого периода времени, зависящего от мощности двигателя и времени разгона, происходит переключение на режим запуска «треугольник» (∆). При этом контакты пускателя K3 размыкаются, а контакты пускателя K2 замыкаются. Управляет переключением контактов пускателей K3 и K2 реле времени. На реле выставляется время, в течение которого происходит разгон двигателя. В режиме запуска «звезда – треугольник» напряжение, подаваемое на фазы обмотки статора, уменьшается в корень из трех раз, что приводит к уменьшению фазных токов тоже в корень из трех раз, а линейных токов в 3 раза. Соединение по схеме «звезда – треугольник» дает более низкий пусковой ток, составляющий всего одну треть тока при прямом запуске. Запуск «звезда – треугольник» особенно хорошо подходят для инерционных систем, когда происходит «подхватывание» нагрузки после того, как произошел разгон двигателя.

Запуск «звезда – треугольник» также понижает и пусковой момент, приблизительно на треть. Данный метод можно использовать только для индукционных электродвигателей, которые имеют подключение к напряжению питания по схеме «треугольник». Если переключение «звезда – треугольник» происходит при недостаточном разгоне, то это может вызвать сверхток, который достигает почти такого же значения, что и ток при «прямом» запуске. За время переключения из режима «звезда» в «треугольник» двигатель очень быстро теряет скорость вращения, для ее восстановления необходим мощный импульс тока. Скачок тока может стать ещё больше, так как на время переключения двигатель остается без сетевого напряжения.

Запуск через автотрансформатор

Данный способ запуска осуществляется при помощи автотрансформатора, последовательно соединённого с электродвигателем во время запуска. Автотрансформатор понижает подаваемое на электродвигатель напряжение (приблизительно на 50–80% от номинального напряжения), чтобы произвести запуск при более низком напряжении. В зависимости от заданных параметров напряжение снижается в один или два этапа. Понижение напряжения, подаваемого на электродвигатель одновременно, приведёт к уменьшению пускового тока и вращающего пускового момента. Если в определённый момент времени к электродвигателю не подаётся питание, он не потеряет скорость вращения, как в случае с запуском «звезда – треугольник». Время переключения от пониженного напряжения к полному напряжению можно корректировать. На (Рис. 3) приведена характеристика пускового тока при запуске асинхронного двигателя с коротко замкнутым ротором при помощи автотрансформатора.

Пуск через автотрансформатор тока

Помимо уменьшения пускового момента, способ запуска через автотрансформатор имеет и недостаток. Как только электродвигатель начинает работать, он переключается на сетевое напряжение, что вызывает скачок тока. Вращающий момент зависит от напряжения подаваемого на двигатель. Значение пускового момента пропорциональны квадрату напряжения.

Плавный пуск

В устройстве «плавный пуск» используются те же IGBT транзисторы, что и в частотных преобразователях. Данные транзисторы через цепи управления, понижают начальное напряжение, поступающее на электродвигатель, что приводит к уменьшению пускового момента в электродвигателе. В процессе запуска «плавный пуск» постепенно повышает напряжение электродвигателя, что позволяет электродвигателю разогнаться до номинальной скорости вращения, не образуя большого момента и пиков тока. На (Рис. 4) приведена характеристика пускового тока при запуске асинхронного двигателя с коротко замкнутым ротором с помощью устройства «плавный пуск». Плавный запуск может использоваться также для управления торможением электродвигателя. Устройство «плавный пуск» дешевле преобразователя частоты. Использование устройства «плавного пуска» для асинхронных двигателей значительно увеличивают срок службы электродвигателя, а с ним и насоса находящегося на валу этого двигателя.

Диаграмма для плавного пуска двигателя

У «плавного пуска» существуют те же проблемы, что и у частотных преобразователей: они создают наводки (помехи) в систему электроснабжения. Данный способ также обеспечивает подачу пониженного напряжения к электродвигателю во время запуска. При плавном запуске электродвигатель включается при пониженном напряжении, которое затем увеличивается до напряжения сетевого питания. Напряжение в плавном пускателе уменьшается за счет фазового сдвига. Данный способ пуска не вызывает образования скачков тока. Время запуска и пусковой ток можно задавать.

Читать еще:  Opel astra j двигатель работает с перебоями

Запуск при помощи частотного преобразователя

Частотные преобразователи предназначены не только для запуска, но и управления электродвигателем. Инвертор позволяет снизить пусковой ток, так как электродвигатель имеет жесткую зависимость между током и вращающим моментом. На (Рис. 5) приведена характеристика пускового тока при запуске асинхронного двигателя с помощью частотного преобразователя.

Пуск двигателя с преобразователем частоты

Преобразователи частоты остаются все еще дорогими устройствами, и также как и плавный пуск, создают дополнительные помехи в сеть электропитания.

Заключение

Задача любого из способов запуска электродвигателя заключается в том, чтобы согласовать характеристики вращающего момента электродвигателя с характеристиками механической нагрузки, при этом необходимо, чтобы пиковые токи не превышали допустимых значений. Существуют различные способы запуска асинхронных двигателей, каждый их которых имеет свои плюсы и минусы. И в заключении приведена небольшая таблица, где в краткой форме указаны преимущества и недостатки наиболее распространённых способов запуска асинхронных электродвигателей.

Способы запуска

Преимущества

Недостатки

Запуск «звезда – треугольник»

Запуск через автотрансформатор

Запуск при помощи частотного преобразователя

Соединение обмоток электродвигателя: звезда и треугольник

Асинхронные двигатели имеют множество преимуществ, среди которых можно выделить высокий уровень производительности, надежность эксплуатации, сравнительно невысокую стоимость, невысокие требования в обслуживании и при ремонте. К тому же асинхронные двигатели достаточно хорошо переносят механические нагрузки. Все перечисленные преимущества обусловлены простотой конструкции. Но, несмотря на широкий ряд достоинств можно выделить и некоторые слабые стороны.

На практике при подключении двигателя можно применить один из двух трехфазных способов соединения с электросетью. К таковым способам относят подключение по типу «звезда» или по типу «треугольник».

При соединении трехфазного двигателя способом «звезда» соединение концов обмоток статора производится в одной точке. Трехфазное напряжение, в этом случае, подается на начала обмоток.

При выполнении соединения трехфазного двигателя способом «треугольник» обмотки статора присоединяют друг за другом в последовательном порядке. Начало следующей обмотки соединяют с концом предыдущей и т. д.

Если провести практический анализ теоретических и технических основ электротехники, то становится ясно, что электродвигатели, работающие от схемы «звезда» в эксплуатации запускаются более плавно и функционируют мягче сравнительно с двигателями, подключенными по схеме «треугольник». Но, в то же время асинхронные двигатели с обмотками соединенными способом «треугольник» набирают значительно большую мощность. При соединении звездой такого не достичь. При соединении «треугольник» электродвигатель способен функционировать на максимальной мощности, заявленной в технических характеристиках. Следует учесть, что пусковые токи здесь будут иметь высокие значения. Если сравнивать работу электродвигателей подключенных по разным схемам, можно сделать вывод, что при треугольнике мощность выдается на полтора раза выше, чем при подключении звездой.

Беря за основу вышеизложенную информацию, для снижения токов при запуске логично применять соединение обмоток в комбинационной схеме «звезда-треугольник». Данный вид подключения особенно актуален для асинхронных двигателей с высокой мощностью. При использовании схемы «звезда-треугольник» непосредственный запуск происходит по типу «звезда», а после того как набраны обороты происходит автоматическое переключение на схему «треугольник».

Также можно использовать еще одну схему управления асинхронным двигателем, которая заключается в следующем.

На контакт NC (нормально замкнутый) реле времени K1, а также на контакт NC реле K2, в цепи катушки пускателя КЗ, происходит подача напряжения питания.

После включения пускателя КЗ нормально закрытыми контактами КЗ происходит расцепление цепи катушки пускателя К2. Контакт К3 в цепи питания катушки пускателя К1 замыкается.

При запуске магнитного пускателя К1, в цепи питания его катушки замыкают контакты К1. В этот же период включается реле времени. Контакт данного реле К1 в цепи катушки пускателя К3 размыкается. А в цепи катушки пускателя K2 – замыкается.

Во время отключения обмотки пускателя К3 произойдет замыкание контакта К3 в цепи К2. При включении К2 произойдет размыкание цепи питания катушки пускателя К3.

Трёхфазное напряжение питания будет подано на начало каждой обмотки W1, U1 и V1 за счет силовых контактов пускателя К1. После срабатывания магнитного пускателя К3, за счет его контактов произойдет замыкание, затем между собой должны соединиться концы каждой обмотки двигателя W2, V2 и U2. Так происходит подключение обмоток по типу «звезда».

Спустя некоторый промежуток времени произойдет срабатывание реле времени с магнитным пускателем К1, затем отключится магнитный пускатель К3 и включится К2. Силовые контакты К2 замкнутся и питание пойдет на концы каждой обмотки двигателя. Двигатель заработает по схеме «треугольник».

Для запуска электродвигателя по типу «звезда-треугольник» у разных производителей выполнены специальные пусковые реле.

Типовую схему запуска «звезда-треугольник» рассмотрите на рисунке ниже.

Для снижения пусковых токов электродвигатель должен запускаться в определенной последовательности:

На пониженных оборотах по типу соединения «звезда»;

Переход на схему «треугольник».

Первоочередный пуск по типу «треугольник» создает максимальную нагрузку, а следующее соединение «звезда» с меньшим пусковым моментом продолжит работу в номинальном режиме. При наборе оборотов двигателя автоматически осуществится переход на соединение «треугольник». Важно понимать, что нагрузка, созданная перед запуском на валу, скажется на ослаблении при соединении схемой «звезда». Исходя из этого маловероятно, что такой способ запуска подойдет для двигателей с высокой нагрузкой, ведь при таких условиях они утрачивают работоспособность.

В качестве заключительного аккорда рассмотрим основные преимущества и недочеты каждого из способов подключения.

Преимущества подключения по типу «звезда»:

Устойчивость и возможность эксплуатации двигателя длительное время;

Высокий уровень надежности долговечности благодаря сниженной мощности электродвигателя;

Максимально плавный запуск электропривода;

Возможный допуск кратковременных перегрузок;

Исключен перегрев корпуса двигателя.

Есть типы оборудования, у которого концы обмотки соединены внутри. К колодке подводятся лишь три вывода, и использовать другой вид подключения нет возможности. Электроустановки такого типа не требуют работы узкого специалиста для соединения.

Преимущества подключения электродвигателя по типу «треугольник»:

Возможность увеличения до максимальных показателей уровня мощности электродвигателя;

Применение реостата для запуска;

Повышение вращающегося момента;

Высокие усилия тяги.

Отдельное внимание следует уделить и недостаткам:

Высокое потребление электроэнергии при пуске;

Перегрев двигателя в условиях длительной эксплуатации.

Основные преимущества комбинации:

Значительное продление срока эксплуатации электроустановки;

Исключение возникновения неравномерных нагрузок;

Сохранение механических элементов двигателя;

Наличие двухуровневой мощности.

Для соединений обмоток асинхронных двигателей необходимо использовать специальные термостойкие колодки. Компания «Термоэлемент» предлагает специально разработанные моторные колодки из стеатита для электродвигателей, которые предназначены именно для работы с данными электротехническими устройствами. Клеммные колодки со стеатитовым корпусом легко выдерживают температурную нагрузку до 800°С даже при длительной эксплуатации. У нас вы можете купить клеммные колодки в любом количестве и для любых высокотемпературных применений.

Ссылка на основную публикацию