Avr схема управления двигателями

Автоматический ввод резерва

Автоматическое включение резерва — включение автоматическим устройством резервного оборудования взамен отключившегося основного. Широко применяется в энергетике, служит для обеспечения бесперебойного электроснабжения потребителей. [1] [2] [3]

Автоматический ввод резерва является частью сетевой автоматики (релейной защиты и автоматики) объектов энергетики. [4] [5]

В энергетике: автомат включения резерва (АВР) — автоматическое устройство, осуществляющее автоматический ввод резервных источников питания или включение выключателя, на котором осуществляется деление сети. [6] :78

Потребители: коммутационный аппарат переключения (переключатель питания) (англ. Transfer switch ) — аппарат для переключения одной или нескольких цепей нагрузки от одного источника к другому. [7] :п. 2.1.1

Отдельные установки: автоматическое включение электродвигателей резервных механизмов — включение резервного оборудования при выявлении нарушения технологического режима с помощью реле, реагирующих на неэлектрические величины. [6] :109

На 2018 год в России отсутствует единая терминология для сетей электроснабжения и электроэнергетики в области надежности электроснабжения. [8]

Нормативно оборудование для переключения питания с одного источника на другой делится на: [9]

  • с вентильными переключающими аппаратами переменного тока;
  • c релейно-контакторными переключающими аппаратами переменного тока (IEC 60947-6-1);
    • коммутационная аппаратура ручного переключения (РКАП);
    • коммутационная аппаратура дистанционного переключения (ДКАП);
    • коммутационная аппаратура автоматического переключения (КААП); [10]
  • для переключения источников постоянного тока;
  • коммутационные устройства с подключением к источнику бесперебойного энергоснабжения (IEC 62040).

Содержание

  • 1 Автомат включения резерва
    • 1.1 Принцип действия
  • 2 Коммутационный аппарат переключения (переключатель питания)
    • 2.1 Автоматический
  • 3 См. также
  • 4 Источники
  • 5 Примечания
  • 6 Ссылки

Автомат включения резерва [ править | править код ]

Автоматическое восстановление питания должно обеспечиваться для:

  • электроприемников первой категории — обеспечиваются электроэнергией от двух независимых взаимно резервирующих источников питания;
  • особая группа электроприемников первой категории — обеспечиваются электроэнергией от трех независимых взаимно резервирующих источников питания. [11]

Таким образом, кроме неудобств в повседневной жизни человека, длительный перерыв в электропитании может привести к угрозе жизни и безопасности людей, материальному ущербу и другим, не менее серьёзным последствиям. Гарантированное питание можно реализовать, осуществив электропитание каждого потребителя от двух источников одновременно (для потребителей I категории так и делают), однако подобная схема имеет ряд недостатков:

  • Токикороткого замыкания при параллельной работе источников питания гораздо выше, чем при раздельном питании потребителей.
  • В питающих трансформаторах выше потери электроэнергии
  • Релейная защита сложнее, чем при раздельном питании.
  • Необходимость учета перетоков мощности вызывает трудности, связанные с выработкой определённого режима работы системы.
  • В некоторых случаях не получается реализовать схему из-за того, что нет возможности осуществить параллельную работу источников питания из-за ранее установленной релейной защиты и оборудования.

В связи с этим возникает необходимость в раздельном электроснабжении и быстром восстановлении электропитания потребителей. Решение этой задачи и выполняет АВР. АВР может подключить отдельный источник электроэнергии (генератор, аккумуляторную батарею) или включить выключатель, разделяющий сеть, при этом перерыв питания может составлять всего 0.3 — 0.8 секунд.

При проектировании схемы АВР, допускающей включение секционного выключателя, важно учитывать пропускную способность питающего трансформатора и мощность источника энергии, питающих параллельную систему. В противном случае может получиться так, что переключение на питание от параллельной системы выведет из строя и её, так как источник питания не сможет справиться с суммарной нагрузкой обеих систем. В случае если невозможно подобрать такой источник питания, обычно предусматривают такую логику защиты, которая отключит наименее важных потребителей тока обеих систем.

АВР разделяют на:

  • АВР одностороннего действия. В таких схемах присутствует одна рабочая секция питающей сети, и одна резервная. В случае потери питания рабочей секции АВР подключит резервную секцию.
  • АВР двухстороннего действия. В этой схеме любая из двух линий может быть как рабочей, так и резервной.
  • АВР с восстановлением. Если на отключенном вводе вновь появляется напряжение, то с выдержкой времени он включается, а секционный выключатель отключается. Если кратковременная параллельная работа двух источников не допустима, то сначала отключается секционный выключатель, а затем включается вводной. Схема вернулась в исходное состояние.
  • АВР без восстановления.

АВР должен срабатывать однократно. Это требование обусловлено недопустимостью многократного включения резервных источников в систему с неустранённым коротким замыканием.

АВР должен срабатывать всегда, в случае исчезновения напряжения на шинах потребителей, независимо от причины. В случае работы схемы дуговой защиты АВР может быть блокирован, чтобы уменьшить повреждения от короткого замыкания. В некоторых случаях требуется задержка переключения АВР. К примеру, при запуске мощных двигателей на стороне потребителя, схема АВР должна игнорировать просадку напряжения.

Принцип действия [ править | править код ]

Реализацию схем АВР осуществляют с помощью средств РЗиА: реле различного назначения, цифровых блоков защит (контроллер АВР), переключателей — изделий, включающих в себя механическую коммутационную часть, микропроцессорный блок управления, а также панель индикации и управления.

В качестве измерительного органа для АВР в высоковольтных сетях служат реле минимального напряжения (реле контроля фаз), подключённые к защищаемым участкам через трансформаторы напряжения. В случае снижения напряжения на защищаемом участке электрической сети реле даёт сигнал в схему АВР. Однако, условие отсутствия напряжения не является достаточным для того, чтобы устройство АВР начало свою работу. Как правило, должен быть удовлетворён ещё ряд условий:

  • На защищаемом участке нет неустранённого короткого замыкания. Так как понижение напряжения может быть связано с коротким замыканием, включение дополнительных источников питания в эту цепь нецелесообразно и недопустимо.
  • Вводной выключатель включён. Это условие проверяется, чтобы АВР не сработало, когда напряжение исчезло из-за того, что вводной выключатель был отключён намеренно.
  • На соседнем участке, от которого предполагается получать питание после действия АВР, напряжение присутствует. Если обе питающие линии находятся не под напряжением, то переключение не имеет смысла.
Читать еще:  Opel corsa датчик температуры двигателя

После проверки выполнения всех этих условий логическая часть АВР даёт сигнал на отключение вводного выключателя обесточенной части электрической сети и на включение межлинейного (или секционного) выключателя. Причём, межлинейный выключатель включается только после того, как вводной выключатель отключился. АВР подразделяется также на системы с восстановлением и без восстановления: при работе с восстановлением при возникновении напряжения на вводе с установленной выдержкой схема восстанавливает исходную конфигурацию. Обычно данный режим выбирается установкой накладок вторичных цепей в соответствующее положение. При восстановлении АВР допускается кратковременная работа питающих трансформаторов «в параллель» для бесперебойности электроснабжения.

В низковольтных сетях одновременно в качестве измерительного и пускового органа могут служить магнитные пускатели или модуль АВР-3/3. Либо предназначенный для управления схемами АВР микропроцессорный контроллер АВР.

Коммутационный аппарат переключения (переключатель питания) [ править | править код ]

Автоматический [ править | править код ]

Коммутационная аппаратура автоматического переключения — аппаратура автономного действия, состоящая из коммутационного аппарата (аппаратов) переключения и других устройств, необходимых для контроля цепей питания и переключения одной или нескольких цепей нагрузки от одного источника питания к другому. [7] :п. 2.1.2

Автоматические переключатели питания делятся на оборудование:

  • постоянного тока;
  • переменного тока
    • использующие релейно-контакторные схемы;
    • с непрерывной подачей питания при переключении нагрузок;
    • источники бесперебойного питания. [9] :п.1

При автоматическом переключении обеспечивается гарантированное электропитание, когда допускается перерыв на время ввода в действие резервного источника. Бесперебойное электропитание с «мгновенным» вводом в действие резервного источника обеспечивает источник бесперебойного электропитания. [12]

Возможно использование автоматической коммутационной аппаратуры не только во время длительных отключений рабочего источника питания, но и при кратковременных провалах напряжения. Если допустимое время перерыва питания меньше 0,2 с возможно только использование источников бесперебойного питания, защита автоматическими выключателями цепи с коротким замыканием для уменьшения времени перерыва питания в таком случае невозможна или неэффективна. Если допустимое время более 0,2 с возможно использование защит электросети или использование источников бесперебойного питания. При допустимом времени 5…20 с возможно отказаться от источников бесперебойного питания и использовать автоматическую коммутационную аппаратуру. [13] :с. 61

Устройство тиристорного автоматического ввода резерва

Назначение

Устройство обеспечивает переключение секции шин с одного ввода на другой при следующих нарушениях электроснабжения РУ:

  • отключение одной из линий ввода РУ;
  • короткое замыкание в одной из линий ввода до вводных выключателей РУ.

Переключение аварийной секции шин на резервный ввод осуществляется путем отключения вводного выключателя аварийной секции, включения силового тиристорного блока Устройства и его последующего шунтирования штатным электромеханическим секционным выключателем. Длительность работы силового блока определяется собственным временем включения секционного выключателя. Для планового обслуживания УТВР или для принудительного обесточивания силового блока при его неисправности последовательно с ним устанавливается высоковольтный защитный выключатель (ЗВ). Команды управления выключателями и силовым блоком выдаются терминалом (цифровым контроллером) Устройства. Через порт связи терминал ТОР 200-АВР (см. рисунок 1) обеспечивает обмен информацией с АСУ ТП.

При восстановлении напряжения на отключенном вводе осуществляется включение его вводного выключателя, затем – отключение секционного выключателя. Восстановление штатной схемы работы РУ осуществляется Устройством в автоматическом режиме, или штатным АВР, или дежурным персоналом в ручном режиме.

Преимущества УТВР относительно штатной системы АВР следующие:

  • сокращается время цикла АВР с 0,5-3,0 сек. при обычном АВР до 0,02 — 0,25 сек. при быстром АВР;
  • при обычном штатном АВР можно пускать двигатели суммарной мощностью не более 30% от мощности питающего трансформатора, а при быстром АВР ток двигателей аварийной секции не превышает 2-2,5 кратных значений номинального тока и все двигатели остаются в работе;
  • переходные процессы в двигателях после срабатывания УТВР заканчиваются за десятые доли секунды;;
  • при быстром АВР, синхронные двигатели не теряют синхронизма, следовательно, не требуется гашения поля и ресинхронизации.

УТВР обеспечивает:

  • совместную работу Устройства с блоками релейной защиты РИТМ, SPAC, Sepam, БМРЗ, ТОР, ЭМ РЗА и другими;
  • совместную работу Устройства с блоками релейной защиты РИТМ, SPAC, Sepam, БМРЗ, ТОР, ЭМ РЗА и другими;
  • выявление аварийных режимов в РУ, требующих автоматического ввода резерва;
  • запрет работы Устройства при следующих событиях:
    — короткое замыкание после вводного выключателя (секция шин, отходящий фидер);
    — по внешней команде (однофазное замыкание в сети 6 (10) кВ и другие);
  • выдачу команд в виде сухих контактов на включение и отключение вводных выключателей, секционного выключателя и на отключение защитного выключателя РУ;
  • контроль состояния (включено или отключено) указанных выше выключателей РУ;
  • аварийные защиты Устройства:
    — отказ включения БС;
    — неготовность внешней схемы РУ к работе Устройства;
    — несоответствие контролируемых напряжений и токов заданным параметрам;
    — отказ включения одного из вводных выключателей в РУ;
    — отказ включения секционного выключателя в РУ;
    — пробой тиристоров БС в режиме ожидания;
    — перегрев тиристоров БС;
    — максимально-токовая защита тиристоров БС.
  • автоматическое восстановление штатной схемы РУ при исчезновении аварийной ситуации на отключенном вводе;
  • визуальное отображение на жидкокристаллическом дисплее терминала информации о командах и параметрах работы Устройства;
  • цифровую регистрацию следующих параметров и исполнительных команд при работе Устройства:
    -токи вводных выключателей РУ (в фазах А и С);
    -линейные напряжения АВ, ВС секционных трансформаторов напряжения;
    -команды на отключение и включение вводных выключателей РУ;
    -команды на включение и отключение СВ;
    -команда на включение и отключение БС;
    -команда на отключение ЗВ.
Читать еще:  Шум в двигателе хендай солярис при запуске

УТВР имеет следующие органы управления:

  • переключатель режимов «Разрешение работы / Запрет УТВР»;
  • переключатель режимов восстановления «Автоматический / Ручной»;
  • переключатель выходов ТОР «Разрешение выходов / Запрет выходов».

Каталог «Преобразовательная техника» 2.9 Mb

Микроконтроллерная система управления асинхронным трехфазным двигателем

В настоящее время практически 60% всей вырабатываемой электроэнергии потребляется электродвигателями. Поэтому достаточно остро стоит задача экономии электроэнергии и уменьшения стоимости электродвигателей.

Трехфазные асинхронные двигатели считаются достаточно универсальными и наиболее дешевыми, но подключать их к однофазной сети и управлять частотой вращения достаточно сложно.

Рис. 1. Числоимпульсный метод управления асинхронным двигателем с частотой модуляции 10 кГц.

Заманчива перспектива увеличения номинальной частоты вращения двигателя в двое и более раз или использование малогабаритных двигателей, рассчитанных на частоту питающей сети 400. 1000 Гц и имеющихменьшую массу и стоимость. В данной радиолюбительской конструкции предпринята попытка решения проблемы.

Предлагаемая система управления работает от однофазной сети 220 В и позволяет плавно менять обороты двигателя и отображать частоту инвертора на двухразрядном цифровом индикаторе.

Дискретность изменения частоты инвертора составляет 1 Гц и регулируется в пределах от 1 до 99 Гц. В предлагаемой схеме используется числоимпульсный метод управления асинхронным двигателем с частотой модуляции 10 кГц (рис.1), позволяющий получать синусоидальный ток на обмотках двигателя.

Существует более перспективный, широтно-импульсный метод (ШИМ, PWM — англ.), использующий управление с обратными связями и без них, с частотами модуляции от 3 до 20 кГц и всевозможные методы коммутации, позволяющие увеличить выходное напряжение инвертора на 15.27% по сравнению с питающей сетью, т.е. до 354.390 В.

Принципиальная схема

Схема, показанная на рис.2, состоит из: управляющего устройства D2 (применен микроконтроллер PIC16F628-20/P, работающий на частоте 20 МГц), кнопок управления «Пуск» (SA1), «Стоп» (SA2), кнопок увеличения и уменьшения частоты SA3 и SA4 соответственно, двоично-семисегментного дешифратора D1, светодиодных матриц HG1 и HG2, узла торможения VT9, VT10, K1.

В силовой цепи используется трехфазный мостовой драйвер D4 IR2130 фирмы International Rectifier, имеющий три выхода для управления нижними ключами моста и три выхода для ключей с плавающим потенциалом управления.

Рис. 2. Принципиальная схема микроконтроллерного управления асинхронным трехфазным двигателем.

Рис. 2. Принципиальная схема микроконтроллерного управления асинхронным трехфазным двигателем (продолжение).

Данная микросхема имеет систему защиты по току, которая в случае перегрузки выключает все ключи, а также предотвращает одновременное открывание верхних и нижних транзисторов, тем самым предотвращает протекание сквозных токов. Для сброса защиты необходимо установить все единицы на входах HNx, LNx. В качестве силовых ключей применены МОП-транзисторы IRF740.

Цепь перегрузки состоит из датчика тока R10, делителя напряжения R7R9, позволяющего точно установить ток срабатывания защиты, и интегрирующей цепочки R6C3, которая предотвращает ложное срабатывание токовой защиты в моменты коммутаций. Напряжение срабатывания защиты составляет 0,5 В по входу ITRP (D4).

После срабатывания защиты на выходе FAULT (открытый коллектор) появляется лог.»0″, зажигается светодиод HL1 и закрываются все силовые ключи.

Для более быстрой разрядки емкостей затворов силовых транзисторов можно установить параллельно резисторам, включенным в цепь затвора, диоды в обратном направлении. Двигатель необходимо включить по схеме звезды.

Источник питания состоит из мощных диодов VD11-VD14, токоограничительного резистора R20, фильтрующей емкости C10, емкости C11, предотвращающей всплески, которые возникают при коммутациях на паразитных индуктивностях схемы, а также маломощного трансформатора T1, стабилизатора напряжения 15 В D5 для питания схемы драйвера, стабилизатора напряжения 5 В D3 для питания микроконтроллера и схемы индикации.

При использовании более мощного двигателя вместо транзисторов IRF740 можно использовать IGBT-транзисторы типов IRGBC20KD2-S, IRGBC30KD2-S, при этом диоды VD7-VD10, VD15, VD16 следует выпаять. Конденсатор C11 типа К78-2 на напряжение 600. 1000 В. Вместо VD1-VD6 желательно применить сверхбыстрые диоды типа 10DF6, а емкости С15-С17 уменьшить до 2,2. 4,7 мкФ, которые должны быть рассчитаны на напряжение 50 В. Трансформатор T1 мощностью 0,5.2 Вт от калькулятора с перемотанной вторичной обмоткой. Обмотка намотана проводом 00,2 и должна выдавать 19.20 В.

Печатная плата и прошивка МК

Печатная плата (рис.3) выполнена из одностороннего стеклотекстолита, для того чтобы можно было воспользоваться утюго-лазерной технологией изготовления. Светодиод HL1, матрицы HG1, HG2, кнопки SA1-SA4 установлены со стороны дорожек.

Рис. 3. Печатная плата.

HEX-формат программы приведен в таблице. В момент записи в нулевую ячейку ОЗУ необходимо поместить шестнадцатеричное число от 1 до 63, начальная частота инвертора.

Коды для прошивки в текстовом формате: Скачать

Программа выполнена таким образом, что двигатель стартует с плавным набором скорости от 0 до установленной частоты примерно за 2 с (эта константа находится в ячейках 0207 и 0158 таблицы). Если нужно увеличить скорость нарастания в два раза, то вместо кодов 3005 необходимо записать 300A.

С.М. Абрамов, г. Оренбург, Россия. Электрик-2004-08.

  1. Козаченко В. Основные тенденции развития встроенных систем управления двигателями и требования к микроконтроллерам//СЫр№ш -1999. — №1.
  2. Обухов Д, Стенин С., Струнин Д, Фрадкин А. — Модуль управления электроприводом на микроконтроллере PIC16C62 и драйвере IR2131//ChipNews. — 1999. -№6.

Схемы подключения ДГУ к сети

Безопасность эксплуатации ДГУ в качестве резервного или аварийного источника электропитания напрямую зависит от того, насколько грамотно реализована схема подключения дизель-генератора к сети. На практике применяют решения решений, которые обеспечивают переход на автономное электроснабжение в ручном или автоматическом режиме.

Варианты схем подключения ДГУ

Если схема переключения между дизель-генераторами и центральной сетью разработана и собрана неправильно, возрастает риск подачи электроэнергии с обоих источников. Это приводит к выходу из строя не только ДГУ, но и потребителей, которые в текущий момент были подключены к сети.

Читать еще:  Двигатель ej204 расход топлива

В стандартные комплекты документации обычно входят электрические схемы дизель-генераторов и несколько вариантов подключения к сети. Но если отсутствует опыт в чтении подобной документации и навыки электромонтажа, то работы по этому направлению следует доверить специалисту.

Включение ДГУ в ручном режиме

В бытовых резервных и аварийных системах энергоснабжения в большинстве случаев реализован переход на автономный источник в ручном режиме. Самое простое решение, к которому прибегают, подключение установки к ближайшей доступной розетке, благодаря чему запитывается вся домовая сеть. Следует понимать, что такая схема управления ДГУ не считается наиболее эффективной, а в отдельных случаях она таит большую опасность. Это связано со следующими факторами:

Требуется обязательное отключение входных автоматов или выкручивание пробок, в противном случае при возобновлении центрального электроснабжения электроэнергия будет поступать из двух источников.

Через розетку, к которой подключена установка, проходит значительный ток при подсоединении нескольких потребителей, это вызывает ее выход из строя. В отдельных случаях возможно повреждение участков проводки, не рассчитанных на подобную нагрузку.

Более правильной считается схема подключения непосредственно в сеть после счетчика с установкой дополнительного автомата на выходе генератора. В этом случае при отключении централизованного электроснабжения отключается сетевой автомат, запускается ДГ, после чего подключается нагрузка. Но и в этом случае при нарушении очередности включения/отключения существует риск подачи питания с двух источников.

Поэтому для ручного запуска следует использовать схему с применением перекидного или спаренного рубильника с блокировкой или реверсивного переключателя. Конструкция этих устройств предотвращает одновременное подключение центрального и автономного источника электроснабжения. Благодаря этому и обеспечивается безопасность эксплуатации.

Подключение дизель-генератора с АВР

При ручном управлении приходится постоянно контролировать наличие тока в основной сети, чтобы вовремя отключить ДГУ. Поэтому более совершенным вариантом считается схема подключения дизель генератора с автозапуском. Автомат ввода резерва (АВР) мониторит состояние центральной сети. При его отключении осуществляется запуск дизель-генератора и при выходе на рабочий режим подключается нагрузка без участия обслуживающего персонала (человека).

Такая система получила распространение и в бытовых, и в промышленных сетях. Особенно интересна схема подключения ДГУ с АВР к ВРУ при наличии двух независимых основных вводов или при необходимости резервирования питания по группам потребителей:

В первом случае в дополнении к АВР «сеть–генератор» между основными вводами включается АВР «сеть­–сеть». Система работает по следующему принципу — при отключении первого ввода нагрузка переключается на второй. ДГУ запускается в работу только в том случае, когда отсутствует питание от обоих основных источников.

В целях экономии практикуют разделение потребителей по категориям важности. Выделятся оборудование, отключения которого от сети будет критичным. Такая группа устройств подключается к центральной сети с обеспечением резервирования при помощи ДГУ. При срабатывании АВР «сеть-генератор» происходит переключение нагрузки на автономный источник питания, остальное обслуживаемое оборудование отключается. Такой подход позволяет применять ДГУ меньшей мощности.

На текущий момент схемы подключения дизель-генераторов с АВР считаются наиболее безопасными и эффективными. Основной плюс такого решения — минимизация влияния человеческого фактора, все переключения осуществляются в автоматическом режиме, что снижает риск возможной ошибки.

Как подключить дизель генератор к трехфазной сети

Схема подключения ДГУ к шинам подстанции для обеспечения питания трехфазных потребителей также может отличаться. Она зависит от типа используемого АВР. Среди применяемых вариантов выделим:

При применении четырехполюсного АВР, осуществляющего переключение 3 фазных и нулевого кабеля, линии заводятся в устройство и подсоединяются к соответствующим шинам аппаратуры.

В трехполюсных АВР (наиболее распространенный вариант) фазные кабели подключаются к соответствующим шинам, о нулевой провод соединяется с общим нулем, его переключение не предусматривается.

Если АВР не укомплектован общей шиной для соединения нуля, то соединение этого проводника выполняется на аналогичном устройстве распределительного щита.

Такие решения используют для подключения трехфазных потребителей электрической энергии. Но во многих случаях трехфазная сеть используется для питания однофазных потребителей. Это позволяет распределить нагрузку по отдельным фазам. В такой ситуации допускается подключение однофазного дизель-генератора. Для этого при помощи перемычек на контакторе ДГУ распределяют ток на 3 фазы сети, никакого негативного воздействия на оборудование такой тип подключения не оказывает.

Электрическая схема ДЭС — подключение в разных режимах

В нормативных документах используют отличающиеся обозначения дизель-генератора на схеме. В большинстве случаев ДГУ представлен в виде окружности с размещенной внутри русской буквой «Г» или латинской «G» со значком переменного или постоянного тока.

Электрическая схема дизель-генератора позволит реализовать правильное подключение устройства к сети и нагрузке. На однолинейных изображают силовые линии, необходимые для соединения отдельных элементов.

Кроме обозначения ДГУ, на схеме отображены пульт управления установкой, АВР, коммутационная аппаратура обводного канала (байпаса), распределительный щит, к которому подключаются потребители.

Электрические схемы подключения ДЭС представлены в пакете эксплуатационной документации на каждую установку.

Принципиальная электрическая схема дизель-генератора

Принципиальная схема отличается большей информативностью. Она дает представление об отдельных элементах ДГУ — генератор и приборы контроля панели управления, зарядной системы, необходимой для поддержания АКБ, регуляторы и другие устройства, обеспечивающие работоспособность оборудования.

На схеме дополнительно дана информация о назначении отдельных контактов, что позволит избежать ошибок при подключении к сети и нагрузке. Кроме того, принципиальная схема дает представление о принципе работы оборудования. Она незаменима при выявлении неисправностей и ремонте электрической части генератора. Схема этого типа также представлена в технической документации на установку.

Ссылка на основную публикацию
Adblock
detector