Автоматическая стабилизация оборотов двигателя

Регулятор оборотов ШИМ

Теперь по запросу двигатели должны быть включены только в течение определенного времени на определенных оборотах, и это выполняется на этапе 4060 C. Время задержки, которое должно быть исправлено для включения двигателя, может быть отключено в регуляторе. После того, как это происходит, регулируется 1M-резистором, связанным с выводом № 10 IC 4060 и обозначенным как P1, конденсатор 1uF также становится непосредственно ответственным за определение времени задержки, на которую движок может оставаться включенным. Если оборотов не хватает, можно подкрутить переменный резистор, который установлен на регулятор.

Чтобы настроить скорость нашего вентилятора вручную, есть несколько способов сделать это. Например это может быть применение регуляторов на силовых транзисторах. Мы можем регулировать скорость, используя сопротивление последовательно с движком. Это самый простой из всех способов, но обычно это не рекомендуется, потому что, если мы хотим использовать любые устройства, такие как микроконтроллеры или любое другое цифровое оборудование для автоматизации скорости вращения вентилятора постоянного тока, этот метод не будет работать в целом. Более эффективный способ продолжения — использование метода широтно-импульсной модуляции для управления скоростью наших моторов постоянного тока.

Когда питание включено, ИС переключает двигатели и позволяет им работать с определенной скоростью, как указано в настройке 5K-резистора.

Также одновременно регулятор начинает отсчет, и как только истечет заданный временной интервал, каламбур № 3 этой ИС проходит высоко, запуская транзистор NPN BC547 в проводимость.

Транзистор заземляет вывод № 4 IC555, тем самым полностью отключая регулятор и MOSFET на своем контакте №3, так что подключенный двигатель мгновенно останавливается.

Диод, подключенный через штырь № 3 и штырь № 11 IC 4060, гарантирует, что вышеуказанное условие остается зафиксированным до тех пор, пока питание не будет выключено и снова включено для запуска нового цикла.

Одна из лучших вещей в этой схеме заключается в том, что мы можем заставить ее работать как нестабильный мультивибратор с небольшим количеством аппаратного обеспечения и с небольшими затратами, который может сэкономить как затраты на его изготовление, так и пространство на печатной плате. если нам нужен сложный модулятор ширины импульса, который работает более точно и который может иметь больше возможностей настройки, то лучше использовать микросхему с широтно-импульсным модулем, чем тот, который мы сейчас используем. Однако схема или приложение, для которого мы используем модулятор ширины импульса, не так чувствительны и, следовательно, не требуют такой высокой точности. В этом случае схема, которую мы используем с чистым ИС 555, лучше, так как она экономит наши денежные, а также космические ресурсы при построении схемы.

Рабочий цикл цепи можно изменить, изменив сопротивление между контактом-7 и штифтом-6. Если мы увеличим рабочий цикл, скорость двигателя увеличится, и если мы уменьшим рабочий цикл, скорость двигателя уменьшится.

Предложенная схема контроллера скорости двигателя, представленная здесь, имеет регулируемое управление скоростью PWM и регулируемое регулирование задержки для соответствующего двигателя, которое необходимо контролировать.

Как видно на приведенной выше диаграмме, регулятор оборотов включает в себя две дискретные ступени, одна из которых состоит из универсального IC 4060, а другая — с рабочей лошадкой IC 555.

Микросхема с двойным таймером (NE556) используется для настройки как нестабильного, так и моностабильного мультивибратора. Синхронизирующие компоненты для нестабильных выбираются так, чтобы обеспечить частоту 546 Гц, в то время как моностабильные компоненты выбираются так, чтобы получить максимальную ширину импульса 2,42 мс. Диод D1 улучшает коэффициент заполнения выхода нестабильного осциллятора, тогда как D2 действует как свободно вращающийся диод. Транзистор SL100 управляет мотором, в то время как резистор 22 Ом, 2 Вт (R4) служит в качестве ограничителя тока, избегая перегрева транзистора. Переключатель DPDT позволяет, при желании, изменять направление вращения мотором постоянного тока.

Читать еще:  Что охлаждает вентилятор двигатель или радиатор

Как работает ESP

Занос на дороге общего пользования — вещь опасная и, как правило, неожиданная. ESP создана, чтобы не допускать его.

Аббревиатура ESP (Electronic Stability Program) — самая распространённая из множества существующих на сегодняшний день для обозначения системы динамической стабилизации автомобиля. В зависимости от производителя комбинация букв может варьироваться: встречаются ESC, VDC, VSC, DSC, DSTC. Суть везде едина — в опасных ситуациях обозначенная одним из этих индексов электроника помогает вам справиться с автомобилем.

Задача ESP заключается в том, чтобы контролировать поперечную динамику автомобиля и помогать водителю в критических ситуациях — предотвращать срыв автомобиля в занос и боковое скольжение. То есть сохранять курсовую устойчивость, траекторию движения и стабилизировать положение автомобиля в процессе выполнения манёвров, особенно на высокой скорости или на плохом покрытии. Иногда эту систему называют «противозаносной» или «системой поддержания курсовой устойчивости».

Прообраз ESP под названием «Управляющее устройство» был запатентован ещё в 1959 году компанией Daimler-Benz, но реально воплотить её удалось лишь в 1994-м. С 1995-го система стала серийно устанавливаться на купе Mercedes-Benz S 600 Coupe, а чуть позже ею комплектовались все автомобили S-класса и SL.

Сегодня система динамической стабилизации доступна хотя бы в качестве опции почти на любом автомобиле. Прямой зависимости от класса машины уже не существует: ESP можно обнаружить даже в относительно недорогой модели Volkswagen Polo. Так как она работает?

Современная ESP взаимосвязана с АБС, антипробуксовочной системой и блоком управления двигателем, она активно использует их компоненты. По сути, это единая система, работающая комплексно и обеспечивающая целый набор вспомогательных контраварийных мероприятий. Структурно ESP состоит из электронного блока-контроллера, который постоянно обрабатывает сигналы, поступающие с многочисленных датчиков: скорости вращения колёс (используются стандартные датчики АБС); положения рулевого колеса; давления в тормозной системе.

Но основная информация поступает с двух специальных датчиков: угловой скорости относительно вертикальной оси и поперечного ускорения (иногда это устройство называют G-сенсор). Именно они фиксируют возникновение бокового скольжения на вертикальной оси, определяют его величину и дают дальнейшие распоряжения. В каждый момент ESP знает, с какой скоростью едет автомобиль, на какой угол повёрнут руль, какие обороты у двигателя, есть ли занос и так далее.

Если на дороге что-то пошло не так, вернуть автомобиль на нужный курс система может, давая команду на выборочное подтормаживание одного или нескольких колёс. Какое из них надо замедлить (переднее или заднее, внешнее по отношению к повороту или внутреннее), система определяет сама в зависимости от ситуации.

Притормаживание колёс система осуществляет через гидромодулятор АБС, создающий давление в тормозной системе. Одновременно (или до этого) на блок управления двигателем поступает команда на сокращение подачи топлива и уменьшение, соответственно, крутящего момента на колёсах.

Система работает всегда, в любых режимах движения: при разгоне, торможении, движении накатом. А алгоритм срабатывания зависит от каждой конкретной ситуации и типа привода автомобиля. Например, в повороте датчик углового ускорения фиксирует начало заноса задней оси. В этом случае на блок управления двигателем поступает команда на уменьшение подачи топлива. Если этого оказалось недостаточно, посредством АБС притормаживается внешнее переднее колесо. И так далее, в соответствии с программой.

Однако существует мнение, что опытному водителю, способному ездить на пределе возможностей, эта система мешает. Такие ситуации действительно редко, но могут возникать — например, когда для выхода из заноса надо поддать газа, а электроника сделать этого не даёт — «душит» движок.

К счастью, для опытных водителей во многих автомобилях, оборудованных ESP, предусмотрена возможность её принудительного отключения. А на некоторых моделях система допускает небольшие заносы и скольжения, давая водителю немного похулиганить, вмешиваясь, только если ситуация становится действительно критической.

Главное достоинство ESP — с ней автомобиль перестаёт требовать от вас навыков экстремального вождения. Вы просто поворачиваете руль — а машина сама будет думать, как вписаться в поворот. Но имейте в виду — возможности ESP по исправлению опасной ситуации небеспредельны. Ведь законы физики обмануть нельзя. Поэтому надо помнить, что ESP хоть и значительно снижает шансы на попадание в аварию во многих сложных ситуациях, но не избавляет водителя от необходимости иметь голову на плечах.

Читать еще:  Cdi двигатель громко работает

Регуляторы оборотов коллекторного двигателя своими руками.

Универсальные коллекторные двигатели с последовательным возбуждением (щеточные) применяются в различных электроинструментах. Это пылесосы, миксеры, дрели, болгарки и другие устройства. Во время эксплуатации этих инструментов часто возникает потребность их работы с меньшими оборотами электродвигателя.
Предлагается две конструкции регуляторов оборотов коллекторного двигателя.

В первом регуляторе оборотов двигателя плавное регулирование числа оборотов вала коллекторного двигателя с автоматической стабилизацией их при выбранном режиме работы можно осуществлять при помощи простого тиристорного регулятора.

Сперва рассмотрим работу регулятора оборотов без конденсатора С1 .
Основой регулятора является тринистор ( VT1 ), регулируемый фазовым управлением. Коллекторный двигатель включен последовательно тринистору, поэтому питание его осуществляется однополупериодным напряжением.
При вращении двигателя на его клеммах из-за остаточной намагниченности возникает противо-электродвижующая сила (э.д.с.) uд , которая пропорциональна скорости вращения вала. Принцип действия регулятора оборотов коллекторного двигателя основан на сравнении uд с опорным напряжением Uоп , подаваемым на управляющий электрод тринистора с движка потенциометра R2 . В регуляторе вращения осуществляется выделение разностного сигнала uу=Uоп-uд , который используется для фазового управления тринистором, что и обеспечивает возможность регулировки подводимой мощности к электродвигателю.
Благодаря диоду VD1 через резисторы R1 и R2 протекает только положительный полупериод и Uоп достигнет максимального значения тогда, когда амплитудное напряжение сети будет наибольшим.
Если остаточная противо-э.д.с. uд двигателя больше, чем величина Uоп (т.е. если скорость вращения превышает некоторое установленное значение), тогда диод VD2 будет закрыт, т.к. потенциал на аноде диода будет меньше чем на катоде ( Uоп-uд ) и сигнал на управляющий электрод тринистора не подается. Тринистор закрыт, питание на двигатель не поступает и скорость вращения уменьшается до тех пор, пока противо-э.д.с. uд не станет меньше Uоп и диод VD2 будет включен в прямом направлении. На управление тринистора поступит отпирающее напряжение и на коллекторный двигатель будет подано питание.
Нужно отметить, что на тринисторе наибольший угол отпирания составляет φ=90 , при котором подводится наименьшая мощность. Если на вал электродвигателя нагрузка увеличивается, тогда скорость вращения двигателя уменьшается и, соответственно, противо-э.д.с. так-же уменьшается. Тринистор отпирается с меньшей задержкой ( φ ) увеличивая подводящую мощность к двигателю.

При малой нагрузке двигателя и при малой его скорости (по схеме движок потенциометра R2 находится в крайне нижнем положении), двигатель за четверть периода ( φ=90 ), в течении которого к нему подводится мощность, может сильно увеличить свою скорость. Понадобится время, чтобы скорость вала снизилась до установленного значения и тиристор открылся. Поэтому нет стабильности заданного режима и появляется «качание» скорости двигателя.
Для стабилизации режима нужно уменьшить интервал времени, в течении которого мощность подается на двигатель, т.е. сделать угол отпирания φ>90 .
Это можно сделать с добавлением в схему конденсатора С1 для создания фазосдвигающей RC цепочки, которая увеличивает угол задержки. В данной схеме эта цепочка состоит из резисторов R1, R2 и конденсатора С1 , напряжение на котором будет сдвинуто на угол, определяемой постоянной времени цепи (R1+R2)C1 и позволяющая изменять ток двигателя от максимального значения почти до нуля.
При замыкании выключателя SA1 можно отключить регулятор оборотов от двигателя.

В регуляторе оборотов коллекторного двигателя применены следующие элементы:
R1=7 кОм мощностью 4Вт (собран из двух параллельно соединенных резисторов 12кОм и 18кОм, тип МЛТ мощностью по 2Вт);
R2=2,2 кОм, потенциометр тип СП, 1Вт; Вторая схема регулятора оборотов коллекторного двигателя собранный на однопереходном транзисторе (ОПТ) VT1 , может применяться как для регулировки скорости вращения вала двигателей и как регулятор мощности нагревательных приборов.

Читать еще:  Двигатели тойота сравнительная характеристика

Особенность этого регулятора — стабилизация напряжения на нагрузке при изменении напряжения питающей сети.
В этой схеме ОПТ применяется в качестве источника управляющих импульсов для фазоимпульсного регулирования. Подробно узнать как работает генератор на ОПТ можно посмотрев ссылку про однопереходной транзистор.

Устройство управления питанием от стабилизатора напряжения ( VD5, VD6 ) обеспечивает стабильность точки открытия тиристора при изменении напряжения в сети. Для того, чтобы стабилизировать напряжение нагрузки, включены рeзисторы R3 и R4 . Резисторы R4 и R5 образует делитель, определяющий междубазовое напряжение на однопереходном транзисторе, а R3 осуществляет подключение напряжения сети.
Например : при повышении напряжения в сети повышается и междубазовое напряжение на транзисторе VT1 . Cледовательно, повышается и пороговое напряжение для его открытия. Это приводит к задержке открытия тиристора и уменьшает напряжение подаваемое в нагрузку, т.е. осуществляется стабилизация напряжения в нагрузке.
Поскольку параметры транзистора могут быть значительно отличаться от номинальных значений , сопротивление R3 необходимо подобрать так, чтобы получить стабилизированное выходное напряжение.

Резистор 22 кОм /4Вт можно составить из двух последовательно включенных резисторов по 11кОм/2вт.
Диоды и тиристор можно использовать любые на напряжение не менее 300 вольт и током 10 ампер.
Можно заменить: тиристор — на КУ202Н, диоды — на Д246А, Д247, а стабилитроны — на Д814Г.
Регулятор может работать на нагрузку от 50 до 1200 ВТ, но нужно иметь в виду , что при мощности более 400Вт необходимо принимать меры по охлаждению тринистора и диодов.

Регулятор оборотов двигателя

Плавный пуск и остановка оборудования – залог его стабильной работы. Для обеспечения такого режима используют регулятор оборотов двигателя (преобразователь частот) VEMPER. Прибор координирует пусковые токи, уменьшая их величины до необходимых параметров. Не менее важная функция устройства – регулировка скорости вращения двигателя и обеспечение защиты всей аппаратуры от перепадов напряжения.

Преимущества использования регулятора оборотов двигателя от компании «ЭнергоИндустрия»:

  • Снижение расходов на электроэнергию из-за возможности настройки оптимальной работы электрооборудования.
  • Предотвращение сбоев в работе двигателя.
  • Плавный запуск и торможение оборудования.
  • Стабилизация оборотов двигателя.
  • Пуск электродвигателя с максимальной мощностью.
  • Контроль работы устройств в автоматическом режиме и оповещение пользователей при возникновении аварий на производстве.

Регулятора оборотов двигателя VEMPER

Регулятор оборотов двигателя (преобразователь частот) VEMPER зарекомендовал себя как высокотехнологичное устройство, обладающее широким функционалом для управления электродвигателем. Частотный регулятор широко используются в быту и производстве:

  • лифтовых системах;
  • управлении приводами насосов, транспортеров и вентиляторов;
  • производственных станков;
  • кранов, эскалаторов;
  • центрифугах;
  • бытовой технике

Особенности выбора регулятора оборотов двигателя

При подборе регулятора оборотов двигателя (преобразователь частот) VEMPER необходимо учитывать специфику оборудования и совместимость устройства с электросетью. Основными критериями являются мощность регулятора и электродвигателя, диапазон нагрузок на регулятор, питающее напряжение, диапазон регулирования скорости двигателя и другие. Обратить внимание следует на особенности монтажа преобразователя частот VEMPER, на условия его эксплуатации, возможность настройки автоматического режима.

Выбор параметров устройства индивидуален, поскольку каждое оборудование имеет свои особенности. Чтобы не ошибится с выбором, лучше всего доверить это дело профессионалам. Специалисты компании «ЭнергоИндустрия» подберут подходящий регулятор оборотов двигателя VEMPER, дадут необходимые рекомендации по эксплуатации устройства и ответят на все интересующие вопросы. У нас имеется большой выбор моделей, с которыми вы можете ознакомиться на нашем сайте.

Буклет «Регулятор оборотов двигателя VEMPER серии VR100, VR180, VRSS»

Купить регулятор оборотов двигателя VEMPER, узнать подробно о стоимости и технических характеристиках устройств, а также получить другую интересующую информацию можно через форму обратной связи на сайте или по телефонам +7 (3852) 223-001, 299 002, 8 800 302 8824 (бесплатный звонок).

Ссылка на основную публикацию
Adblock
detector