Бесколлекторный двигатель постоянного тока что это такое

Бесколлекторные малогабаритные двигатели

Продукция нашей компании включает широкий ассортимент электродвигателей малой мощности от европейских производителей Faulhaber, Nanotec, GeorgiiKobold и других. Высокое качество изделий не требует никаких подтверждений, ведь немецкое производство соответствует всем нормам технологического процесса, используется только надежное сырьё, сертифицированное по требованиям безопасности, надежности и долговечности.

Прецизионные бесколлекторные (вентильные, BLDC) микродвигатели постоянного тока

Faulhaber с полым ротором

Диаметр корпуса – 3…44 мм, мощность – 0,0063…212 Вт, номинальный крутящий момент – 0,023…202 мНм, скорость вращения на холостом ходу – 5 300 … 46 500 об/мин

Ссылки на подробное описание бесколлекторных микродвигателей постоянного тока:

Ссылки на сопутствующие компоненты малогабаритного привода:

Ознакомиться с описанием всей продукции компании Faulhaber можно по данной ссылке.

Малогабаритные многополюсные бесколлекторные (вентильные, BLDC) двигатели постоянного тока Dunkermotoren

Диаметр корпуса / Размер стороны фланца – 32,4…95 мм, мощность – 6,0…1 100 Вт, номинальный крутящий момент – 0,026…2,9 Нм, номинальная скорость вращения– до 4 050 об/мин

Ссылки на подробное описание малогабаритных бесколлекторных двигателей постоянного тока:

Бесколлекторные двигатели со встроенной электроникой:

Ссылки на сопутствующие компоненты малогабаритного привода:

Ознакомиться с описанием всей продукции компании Dunkermotoren можно по данной ссылке.

Малогабаритные бесколлекторные (вентильные, BLDC) двигатели постоянного тока постоянного тока Nanotec

Диаметр корпуса – 22…87 мм, мощность – 3,8…750 Вт, номинальный крутящий момент – 0,008…2,1 Нм, номинальная скорость вращения – до 14 000 об/мин

Ссылки на подробное описание бесколлекторных микродвигателей постоянного тока:

Ссылки на сопутствующие компоненты малогабаритного привода:

Ознакомиться с описанием всей продукции компании Nanotec можно по данной ссылке.

Малогабаритные бесколлекторные (вентильные, BLDC) двигатели постоянного тока со встроенным контроллером Georgii Kobold

Диаметр корпуса / Размер стороны фланца – 65…94 мм, мощность – 70…430 Вт, номинальный крутящий момент в продолжительном режиме работы – 0,22…1,8 Нм, номинальная скорость вращения– до 3 750 об/мин, степень защиты IP 64/IP 65, предусмотрено изготовление с планетарным редуктором (i=3:1. 169:1), датчиками на эффекте Холла, резольвером, датчиком абсолютного или относительного отсчёта

Ссылки на подробное описание малогабаритных бесколлекторных двигателей постоянного тока со встроенной электроникой:

Ознакомиться с описанием всей продукции компании Georgii Kobold можно по данной ссылке.

Бесколлекторные (вентильные, BLDC) двигатели постоянного тока Eibl DHT

Диаметр корпуса / Размер стороны фланца – 63…225 мм, номинальное напряжение обмотки — 12 . 96 В, мощность – 0,06…94 кВт, номинальный крутящий момент в продолжительном режиме работы – 0,56…301 Нм, номинальная скорость вращения– до 3 000 об/мин, предусмотрено изготовление с датчиками на эффекте Холла, резольвером, датчиком абсолютного или относительного отсчёта

Ссылки на подробное описание бесколлекторных двигателей постоянного тока:

Ознакомиться с описанием всей продукции компании Eibl DHT можно по данной ссылке.

Двигатели малой мощности имеют следующие преимущества:

  • высокие технические характеристики, энергетические показатели;
  • длительный период эксплуатации, безотказность в работе;
  • защита механизма от воздействий внешних факторов.

Основной сферой применения малогабаритных двигателей постоянного тока являются:

  • различные устройства радиосвязи;
  • электроприводы разных назначений;
  • системы автоматического управления;
  • производственные станки, линии;
  • бытовые и специализированные приборы.

Они являются незаменимыми в тех сферах, где использовать крупные двигатели невозможно. Например, небольшие электродвигатели часто используются в микроэлектронике, медицине, оптике, науке в целом. Кроме этого, они активно применяются на энергетических объектах, системах автоматизации и технологических линиях. Малогабаритные двигатели могут подключаться не только к приводу, но и к аккумулятору и электросети.

Преимущества сотрудничества

Имея многолетний опыт сотрудничества с поставщиками нашей продукции, мы можем обеспечить доступные цены на весь ассортимент бесколлекторных малогабаритных двигателей малой мощности. Мы работаем не только по оптовым заказам, но и выполним единичные по требованиям заказчика.

Узнать подробнее о ценах и технических характеристиках того или иного товара можно связавшись с нами по телефону, указанному на сайте.

Каталог

  • По производителям
  • По типу продукции

Несколько слов о компании

Наши специалисты находятся в непосредственном контакте с производителем, поэтому всегда готовы помочь, оперативно дать исчерпывающие ответы на Ваши вопросы, посоветовать оптимальное решение.

Бесколлекторные двигатели

Бесколлекторный электродвигатель (вентильный электродвигатель) — это синхронный двигатель, основанный на принципе частотного регулирования с самосинхронизацией, суть которого заключается в управлении вектором магнитного поля статора в зависимости от положения ротора. Данный тип двигателей был создан с целью улучшения свойств коллекторных электродвигателей постоянного тока.
Бесколлекторный двигатель объединяет в себе лучшие качества бесконтактных двигателей и двигателей постоянного тока.

FL42BLS

Крутящий момент 0.62

Скорость 4000 об/мин

FL57BLS

Крутящий момент 0.55

Скорость 4000 об/мин

FL86BLS

Крутящий момент 3.5

Скорость 3000 об/мин

FL57BLS-JB

Крутящий момент 3.5

Скорость 26.6 — 1333 об/мин

FL86BLS-JB

Крутящий момент до 50 кг×см

Скорость 20 — 1000 об/мин

Читать еще:  Ваз карбюратор двигатель троит не набирает обороты

Устройство, принцип работы бесколлекторного двигателя

Бесколлекторные двигатели (BLDC — brushless DC motors) или, как их еще называют, вентильные двигатели или шпиндельные двигатели, обладают высокой динамикой и точностью позиционирования, большой перегрузочной способностью двигателя к моменту, а также высоким КПД двигателя – более 90%. Благодаря отсутствию трущихся частей в бесколлекторном двигателе возможно его применения во взрывоопасной и агрессивной среде.

Бесколлекторные двигатели состоят из статора традиционной обмотки, в зависимости от способа укладки витков он бывает BLDC – для двигателей имеющих обратную электродвижущую силу и PMSM – для двигателей питающихся синусоидальным током, ротора в котором используются магниты постоянного тока и датчика положения ротора.

Датчик положения ротора, встроенный в корпус двигателя, вырабатывает сигналы управления моментами времени и последовательностью коммутации токов в обмотках статора. Все поставляемые нами бесколлекторные электродвигатели имеют по три встроенных датчика Хола (Honeywell), расположенных под углом 120 градусов друг к другу.

Все бесколлекторные двигатели мы поставляем вместе с блоками управления, производимыми на том же заводе, что и сами двигатели (Fulling Motor, Китай), что гарантирует идеальную «совместимость» блоков управления и двигателей. Некоторые наши клиенты (как правило, использующие бесколлекторные двигатели в массовой серийной продукции с большими объемами выпуска) предпочитают разрабатывать устройства управления бесколлекторным двигателем самостоятельно. При этом они имеют возможность наиболее полно учесть нюансы рабочих режимов двигателей, и максимально снизить цену (себестоимость) блока управления бесколлекторным двигателем.

Бесколлекторные двигатели не имеют недостатков, присущих асинхронным двигателям (потребление реактивной мощности, потери в роторе) и синхронным двигателям (пульсация частоты вращения, выпадение из синхронизма).

Как и у коллекторных двигателей момент бесколлекторных двигателей прямо пропорционален току, а скорость зависит от напряжения питания и нагружающего момента.
Но бесколлекторные двигатели имеют преимущество по сравнению с коллекторными — это отсутствие трущихся и истираемых частей, переключающихся контактов и т.п. и, как следствие, высокий ресурс.

Основные достоинства бесколлекторных (вентильных) двигателей:

  • высокое быстродействие и динамика, точность позиционирования
  • линейность нагрузочных характеристик
  • широкий диапазон изменения частоты вращения
  • большая перегрузочная способность по моменту
  • высокий срок службы (ресурс электродвигателя ограничен, по большому счету, только сроком службы подшипников)
  • высокая надёжность и повышенный ресурс работы за счёт отсутствия скользящих электрических контактов
  • низкий перегрев электродвигателя, при работе в режимах с возможными перегрузками
  • существенно более низкий уровень электромагнитных шумов по сравнению с коллекторными моторами

Области применения бесколлекторных двигателей

С силу своих достоинств бесколлекторные двигатели получили широкое распространение во многих отраслях промышленности. Незаменимыми оказываются они в медицинской технике — низкий уровень электромагнитных излучений, низкий уровень шума и высокий ресурс определили лидирующую роль бесколлекторного привода во многих узлах медицинской аппаратуры. Также бесколлекторные электродвигатели традиционно используются для работы в опасных средах. Отсутствие трущихся частей, способных вызвать искру, позволяет применять бесколлекторные двигатели в нефтегазовой промышленности, например, в качестве трубозапорных приводов для нефте- и газопроводов.

Тел: +7 (812) 716-28-88
Факс: +7 (812) 622-05-40

Бесколлекторный двигатель постоянного тока

В чем отличия бесколлекторных двигателей от синхронных двигателей с постоянными магнитами?

Конструктивно двигатели этих типов очень схожи друг с другом. Основные отличия в способах управления двигателями. Так, синхронные двигатели – это довольно большой класс двигателей, включающий в себя широкий спектр различных видов двигателей, в том числе и такие, которые работают напрямую от стандартной промышленной сети переменного тока, или, как например, синхронные сервоприводы, работают при подаче напряжения различной частоты, что требует применения специализированных блоков, преобразующих частоту.
Бесколлекторные двигатели работают только при подаче на свои обмотки синхронизированных напряжений специальной формы, что требует применения электронных модулей генерации и коммутации таких сигналов.

Еще одним различием является форма питающего напряжения. В отличии от синхронных двигателей, запитываемых синусоидальным напряжением, бесколлекторные двигатели способны работать от переменного напряжения сложной ступенчатой формы.

Особенности конструкции

В настоящее время доступны различные конструкции бесколлекторных двигателей, в зависимости от технологии изготовления обмоток существуют традиционные обмотки на сердечниках и полые обмотки цилиндрической формы.

Обмотки на сердечниках имеют большие, относительно полых цилиндрических обмоток, индуктивность, постоянную времени, момент инерции и момент магнитной фиксации, а также более низкий КПД.
Лишенные крупных металлических сердечников двигатели с полыми обмотками имеют лучшие динамические характеристики изменения тока, что позволяет более гибко управлять моментом. При этом следует учитывать, что такие двигатели требуют дополнительных мер по фильтрации пульсаций тока (применение крупногабаритных дросселей) в случае, если управление ими реализовано от контроллеров с широтно-импульсной модуляцией на низкой частоте.

Двигатель постоянного тока — это электрический двигатель, питание которого обеспечивает постоянный ток. Бесколлекторный вид ДПТ — это замкнутая система, состоящая из ротора с постоянными магнитами, выполненного медным проводом, и статора с трехфазной обмоткой, выполненного из нескольких сложенных вместе листов магнитопроводящей стали. Двигатель представляет собой синхронное устройство, принцип работы которого основан на вращении магнитного поля. Для создания такого поля на обмотку статора подается трехфазная система напряжения, которая может быть сформирована в различных формах и различными способами. Контроллер двигателя формирует питающие напряжения (коммутация обмоток).

Читать еще:  Tfsi двигатель какой бензин

Точное управление бесколлекторным двигателем предполагает правильную последовательность и частоту переключения отдельных секций обмоток. Обмотки поочередно подключаются к источнику постоянного напряжения и, после того, как ротор поворачивается по направлению вектора магнитного поля обмотки статора, происходит подключение напряжения к другой паре обмоток. После, вектор магнитного поля статора занимает другое положение, а вращение ротора продолжается. Для необходимой возможности непрерывного определения текущего положения ротора используется специальный датчик, наиболее распространенным вариантом является датчик Холла, а также используют энкодеры и резольверы. При правильном расположении датчиков на статоре, они реагируют на магнитное поле. На датчики должны воздействовать магниты ротора, а угол между датчиками должен быть равен 120° эл.

Виды бесколлекторных двигателей

На данный момент существует огромное множество вариантов бесколлекторных двигателей в виду возможности сборки разнообразных конструкций.

По исполнению статорной обмотки выделяют два типа конструкции:

  • Зубцовая (Slotted)
  • Сплошная (Slotless)

Изначально, бесколлекторные двигатели имели только зубцовую обмотку. Статор в таком двигателе изготовлен из сложенных вместе стальных пластин с прорезями, куда установлены медные обмотки. Такая конструкция характеризуется определенным моментом «фиксации» при старте, что делает движение резким, особенно на малых скоростях. Момент появляется из-за усилия постоянных магнитов в роторе совпасть с пазами статора. Достоинством такой обмотки является низкая стоимость двигателей в виду простоты технологии, что делает их основным выбором для применений, где плавная работа не является решающим фактором. В сплошной обмотке зубья отсутствуют, слои статора изготовлены из стальных колец, а обмотка сжата в эпоксидной смоле. Таким образом, мы получаем жесткую обмотку в зазоре между статором и ротором. Сплошная обмотка обеспечивает двигателю точное позиционирование и плавность движения. Кроме того, низкая индуктивность делает двигатели идеальными для применения с необходимостью высокого ускорения и быстрым динамическим откликом.

По взаимному расположению ротора и статора различают внутрироторные и внешнероторные двигатели. У конструкции с внешним ротором магниты расположены снаружи неподвижного статора с обмотками, вокруг которого они вращаются. Такое исполнение используется при необходимости получения двигателя с относительно большим моментом и невысокими оборотами. Вариант внутреннего исполнения обеспечивает большим КПД и высокими оборотами, но меньшим моментом инерции при аналогичном наружном диаметре двигателя. По конструкции магниты ротора находятся внутри статора с обмотками.

Отличия бесколлекторного ДПТ от других типов двигателей:

1. От коллекторных ДПТ

В бесколлекторном двигателе роль механического коммутатора выполняет электронный преобразователь, что исключает необходимость использования коллектора и щеток. Отказ от движущегося электрического контакта позволяет увеличить надежность и скорость работы двигателя. Данное нововведение также улучшает удельную мощность бесколлекторного двигателя, однако высокие скорости крайне редко находят применение.

2. От синхронных двигателей с постоянными магнитами

По своей структуре бесколлекторные двигатели схожи с синхронными. Тем не менее, в двигателях синхронного типа предполагается напряжение синусоидальной формы, бесколлектроные же не допускают питание переменным напряжением ступенчатой формы (блочная коммутация) и даже используют в номинальных режимах работы.

Когда нужен бесколлекторный двигатель?

В случаях, когда его характеристики имеют преимущество перед остальными. Сферы применения, требующие большие скорости вращения (свыше 1000 об/мин) или высокий срок службы двигателя не обходятся без бесколлекторного двигателя. Применение низкоскоростных двигателей с большим числом полюсов целесообразно при необходимости использования сборки из двигателя с редуктором. Скорость высокоскоростных бесколлекторных двигателей будет превышать предельную редуктора, не позволяя использовать мощность в полном объеме. Для максимально простого управления естественным выбором будет коллекторный ДПТ.

С другой стороны, датчик Холла у бесколлекторных ДПТ в виду своих ограничений не может работать при условиях повышенной радиации и высокой температуры. Радиационная стойкость и диапазон рабочих температур ограничен у стандартных моделей таких датчиков. При необходимости использования бесколлекторных двигателей в экстремальных условиях, датчик Холла заменяют более стойким аналогом, что увеличивает стоимость двигателя и сроки поставки.

Бесколлекторные двигатели постоянного тока

Принцип работы бесколлекторного двигателя постоянного тока (БКДП) был известен очень давно, и бесщёточные моторы всегда были интересной альтернативой традиционным решениям. Несмотря на это, подобные электрические машины лишь в XXI веке нашли широкое применение в технике. Решающим фактором повсеместного внедрения стало многократное снижение стоимости электроники управления приводом БДКП.

  • Проблемы коллекторных двигателей
  • Принцип работы БДКП
  • Современное применение и перспективы

Проблемы коллекторных двигателей

На фундаментальном уровне работа любого электродвигателя заключается в преобразовании электрической энергии в механическую. Существуют два основных физических явления, лежащих в основе устройства электрических машин:

Читать еще:  Выносной прибор температуры двигателя

  1. Электрические и магнитные поля взаимосвязаны. То есть каждый движущийся заряд создаёт магнитное поле и, соответственно, магнитные поля способны производить разность потенциалов.
  2. Магниты взаимодействуют между собой. Работа всех электродвигателей основана на взаимодействии магнитов. Одни из них постоянные, другие представляют собой катушку, в которой индуцируется магнитное поле прохождением через витки электрического тока.

Двигатель сконструирован таким образом, что магнитные поля, создаваемые на каждом из магнитов, всегда взаимодействуют между собой, придавая ротору вращение. Традиционный электродвигатель постоянного тока состоит из четырёх основных частей:

  • статор (неподвижный элемент с кольцом из магнитов);
  • якорь (вращающийся элемент с обмотками);
  • угольные щётки;
  • коллектор.

Такая конструкция предусматривает вращение якоря и коллектора на одном валу относительно неподвижных щёток. Ток проходит от источника через подпружиненные для хорошего контакта щётки на коммутатор, который распределяет электричество между обмотками якоря. Магнитное поле, индуцированное в последних, взаимодействует с магнитами статора, что заставляет статор вращаться.

Главный недостаток традиционного двигателя в том, что механический контакт на щётках невозможно обеспечить без трения. При увеличении скорости проблема проявляет себя сильнее. Коллекторный узел изнашивается со временем и, кроме того, склонен к искрению и способен ионизировать окружающий воздух. Таким образом, несмотря на простоту и дешевизну в изготовлении, подобные электродвигатели обладают некоторыми непреодолимыми недостатками:

  • износ щёток;
  • электрические помехи в результате искрения;
  • ограничения в максимальной скорости;
  • сложности с охлаждением вращающегося электромагнита.

Появление процессорной техники и силовых транзисторов позволило конструкторам отказаться от узла механической коммутации и изменить роль ротора и статора в электромоторе постоянного тока.

Принцип работы БДКП

В бесколлекторном электродвигателе, в отличие от предшественника, роль механического коммутатора выполняет электронный преобразователь. Это позволяет осуществить «вывернутая наизнанку» схема БДКП — его обмотки расположены на статоре, что исключает необходимость в коллекторе.

Иными словами, основное принципиальное различие между классическим двигателем и БДКП в том, что вместо стационарных магнитов и вращающихся катушек последний состоит из неподвижных обмоток и вращающихся магнитов. Несмотря на то что сама коммутация в нём происходит похожим образом, её физическая реализация в бесщёточных приводах гораздо более сложна.

Главный вопрос — точное управление бесколлекторным двигателем, предполагающее правильную последовательность и частоту переключения отдельных секций обмоток. Эта задача конструктивно разрешима лишь при возможности непрерывного определения текущего положения ротора.

Необходимые данные для обработки электроникой получают двумя способами:

  • детектированием абсолютного положения вала;
  • измерением напряжения, индуцируемого в обмотках статора.

Для реализации контроля первым способом чаще всего используют либо оптические пары, либо закреплённые неподвижно на статоре датчики Холла, реагирующие на магнитный поток ротора. Главным достоинством подобных систем сбора информации о положении вала является их работоспособность даже при очень низких скоростях и в состоянии покоя.

Бессенсорный контроль для оценки напряжения в катушках требуется хотя бы минимального вращения ротора. Поэтому в таких конструкциях предусмотрен режим запуска двигателя до оборотов, при которых напряжение на обмотках может быть оценено, а состояние покоя тестируется с помощью анализа влияния магнитного поля на тестовые импульсы тока, проходящие через катушки.

Несмотря на все перечисленные конструктивные сложности, бесщёточные двигатели завоёвывают всё большую популярность благодаря своей производительности и недоступному для коллекторных набору характеристик. Краткий перечень основных преимуществ БДКП перед классическими выглядит так:

  • отсутствие механических потерь энергии на трении щёток;
  • сравнительная бесшумность работы;
  • лёгкость ускорения и замедление вращения благодаря малой инерции ротора;
  • точность управления вращением;
  • возможность организации охлаждения за счёт теплопроводности;
  • способность к работе на высоких скоростях;
  • долговечность и надёжность.

Современное применение и перспективы

Существует немало устройств, для которых увеличение времени безотказной работы имеет важнейшее значение. В подобном оборудовании применение БДКП всегда оправданно, несмотря на их сравнительно высокую стоимость. Это могут быть водяные и топливные насосы, турбины охлаждения кондиционеров и двигателей и т. д. Бесщёточные моторы используются во многих моделях электрических транспортных средств. В настоящее время на бесколлекторные двигатели всерьёз обратила внимание автомобильная промышленность.

БДКП идеально подходят для малых приводов, работающих в сложных условиях или с высокой точностью: питатели и ленточные конвейеры, промышленных роботы, системы позиционирования. Существуют сферы, в которых бесколлекторные двигатели доминируют безальтернативно: жёсткие диски, насосы, бесшумные вентиляторы, мелкая бытовая техника, CD/DVD приводы. Малый вес и высокая выходная мощность сделали БДКП также и основой для производства современных беспроводных ручных инструментов.

Можно сказать, что в области электроприводов сейчас наблюдается значительный прогресс. Продолжающееся падение цен на цифровую электронику породило тенденцию на повсеместное применение бесколлекторных двигателей взамен традиционных.

Ссылка на основную публикацию