Чем вредит турбина двигателю

Можно ли ездить на неисправной турбине – последствия. Как избежать поломок турбины

Опубликовано Master в 18 марта, 2019

Большинство современных автомобилей имеют турбины. С одной стороны, это преимущество, т.к. малый объем силового механизма гарантирует большую мощность. Но известно, что без турбины ездить машина может, однако можно ли ездить на неисправной турбине? Серьезный вопрос, поскольку из-за сломанного агрегата может заглохнуть мотор, и машине вовсе остановится где-нибудь посреди глуши. Чтобы избежать таких последствий, рекомендуется знать их заранее.

Содержание

Если ездить на машине с поломанной турбиной – последствия

Последствия езды на машине со сломанной турбиной:

  • В неисправной турбине возрастает потребность большого количества топлива;
  • В поломанном турбокомпрессоре происходят процессы, которые приводят к неполному сгоранию топлива, в результате оно смешивается с маслом и попадает в выхлопную систему. Далее повреждается катализатор и пригорают клапаны (в бензиновом двигателе), а в дизельном двигателе деформируется сажевый фильтр;
  • Если в сломанной турбине повреждены вал и втулки, то механизм начнет потреблять очень много масла. Поэтому следует пристально следить за уровнем масла, чтобы определить неисправность;
  • С плохой турбиной страдает форсунок двигателя.

Зная характеристики неисправностей, нужно понять источники, откуда они исходят. Затем разбираться с тем, как уберечь турбину от поломки.

Источники неисправности турбины

  1. Трещины или провальные уплотнения

Турбокомпрессор вытесняет воздух обратно в цилиндры. Если есть трещины или сломанные уплотнения, то часть необходимого воздуха теряется. Это часто означает, что турбонагнетатель будет перегружен для поддержания примененного форсирования. Довольно распространенная проблема, которая приводит к неисправному турбокомпрессору.

  1. Возраст и обычный износ

Как и с большинством автомобильных запчастей, у всего есть ожидаемый срок эксплуатации. Турбокомпрессор обычно может работать после пробега более 100 000 км. Это число сильно варьируется в зависимости от водителя и его вождения.

  1. Углеродные месторождения

При каждом обслуживании следует проводить замену масла. Недостаток замены масла приводит к накоплению углеродных отложений в турбине. Свежее масло приносит пользу всему мотору, включая турбо. Помните, что даже небольшое количество частиц и загрязнений может вызвать серьезные проблемы.

Как уберечь турбину от поломки

Известный факт – чем чаще и активнее водитель пользуется автомобилем, тем быстрее турбина расходует свои возможности. Однако во избежание проблем, можно прибегнуть к правилам, которые помогут продлить жизнь турбоагрегату.

  • Охлаждать турбину. Если водитель активно давил на «газ», то ему придется дольше охлаждать турбину. Некоторое время лучше постоять на «холостом» ходу (2-3 минуты);
  • После длительного нахождения в пробке, не нужно резко ускоряться. В неподвижном состоянии турбокомпрессор, интеркулер и двигатель сильно нагрелись, и нагрев дошел до критической отметки;
  • Проверять температуру масла и антифриза. При необходимости, менять грязное масло на новое;
  • Своевременно обслуживать двигатель. Некоторые иномарки требуют абсолютной чистоты масла и интеркулера, а также продольно расположенных трубок.

Сколько можно проехать на сломанной турбине, видео:

При любой неисправности турбины, лучше сразу обратиться к специалисту. Ездить на поломанной турбине категорически нельзя, иначе машина полностью прекратит работать. Наилучший выход – обратиться к квалифицированным мастерам сервисного центра, которые с помощью специальных датчиков проведут анализ всего механизма, и проведут при надобности починку или полную замену агрегата.

Как работают турбины

Турбина может существенно увеличить мощность двигателя без значительного роста его веса

Когда говорят о гоночных или спортивных машинах, часто всплывает тема турбонаддува. Турбины неизменно сопровождают современные дизеля. Турбина может существенно увеличить мощность двигателя без значительного роста его веса. Это большое преимущество привело к популярности турбин!

Давайте разберемся, как турбина увеличивает мощность, выживая при этом в экстремальных условиях работы. Мы познакомимся с вестгейтами, керамическими лопастями турбин и подшипниками, которые помогают турбинам делать работу еще лучше. Турбины – системы принудительного нагнетания воздуха. Они сжимают воздух. Сжатый воздух дает преимущество по мощности: в двигатель поступает больше воздуха, а это значит, что больше топлива может быть добавлено. Следовательно, каждое сгорание смеси в цилиндре дает больше мощности. Турбированный двигатель в общем случае всегда мощнее аналогичного по объему атмосферного. Двигатель меньшей массы может выдавать больше мощности при наличии наддува.

Читать еще:  Двигатель 4hf1 подробные характеристики

Чтобы создать давление воздуха, турбина использует поток выхлопных газов из двигателя для раскручивания своей крыльчатки, которая в свою очередь раскручивает воздушный насос. Турбина вращается с частотой до 150,000 об/мин – это в 30 раз быстрее среднего двигателя. Так как турбина работает с выхлопными газами, ей приходится выдерживать большие термические нагрузки.
Чтобы снять больше мощности с двигателя, необходимо увеличить количество топливно-воздушной смеси, которая сгорает в цилиндрах. Один из способов – добавить количество цилиндров или увеличить их объем. Часто эти изменения очень дороги. Турбина дешевле добавляет мощность, и именно поэтому она так популярна на вторичном рынке.


Расположение турбины в машине

Турбина позволяет сгорать большему количеству топлива, увеличивая количество топлива и воздуха в цилиндрах. Типичная прибавка к давлению от турбины – 0.3 – 0.5 бар. Поскольку атмосферное давление на уровне моря 1 бар, легко подсчитать, что в камеры сгорания попадает на 50 % больше воздуха, следовательно увеличение мощности должно доходить до 50%. В действительности, эффект получается 30- 40 %.

Одна из причин этой неэффективности – сила, раскручивающая турбину, не приходит извне. Наличие турбины увеличивает сопротивление выхлопа. Это означает, что на отводе отработавших газов двигатель вынужден преодолевать возросшее обратное сопротивление, что уменьшает отдачу с цилиндров, в которых в этот момент происходит сгорание.


Турбина и ее внешние компоненты

Турбина крепится на выхлопном коллекторе двигателя. Выхлопные газы двигателя раскручивают турбину. Турбина покоится на одном валу с компрессором, который располагается между воздушным фильтром и впускным коллектором. Компрессор накачивает воздух в цилиндры.


Внутри турбины

Выхлопной газ из цилиндров проходит через лопатки крыльчатки турбины, вызывая ее вращение. Чем больше выхлопных газов проходит, тем быстрее крутится турбина.

С другой стороны вала турбины устанавливают компрессор центробежного типа – он засасывает воздух в центре крыльчатки и разбрасывает его от центра из-за вращающегося вала.

Слишком много давления?
Воздух закачивается в цилиндры под давление и дальше сжимается поршнями. В этом кроится опасность – детонация. Детонация происходит из-за резкого увеличения температуры воздуха, при котором топливная смесь сгорает до воспламенения свечи. Поэтому турбированные машины обычно ездят на высокооктановом топливе, чтобы не доводить дело до детонации. Если давление наддува очень высоко, компрессию двигателя можно снизать, чтобы не переходить в детонацию.

Чтобы работать на скоростях до 150,000 об/мин, вал турбины требует серьезной защиты. Большинство подшипников взрываются при таких скоростях, поэтому турбины часто используют жидкие подшипники. Этот тип подшипников создает вокруг вала постоянный тонкий слой масла, которое постоянно накачивается насосом. Это служит двум целям: охлаждение и снижение трения.
В следующей главе рассмотрим компромиссы, на которые вынуждены идти инженеры при проектировании турбонаддува..

Можно ли ездить без турбины?

Сейчас много машин имеют турбированный двигатель. С одной стороны это конечно хорошо, при меньшем объеме двигателя больше мощности. Минусы турбины также есть, подробнее в этой статье. Но что делать, если турбина полностью сломалась? Можно ли ездить без нее, давайте подумаем …

Конечно, ездить без турбины очень не комфортно, автомобиль реально не тянет, такое ощущение что отрезали половину двигателя — давите на газ, а «прыткий» раньше автомобиль просто не тянет и очень – очень слабо разгоняется. НО едет!

МОЙ вам совет — без турбины на турбированном двигателе ездить нежелательно! Можно, конечно, выкинуть «потроха турбины» (крыльчатка и т.д.) и соединить масляные каналы, но это будет совсем не то. Конечно, если поломка произошла где-то в дороге и вам нужно добраться до места назначения, вы можете проехать небольшое количество километров до пункта назначения, но после сразу в ремонт!

Теперь немного по пунктам:

1) Турбина не нагнетает в двигатель давление, а значит увеличивается расход топлива (иногда увеличивается до 2 раз, особенно на дизелях).

2) Топливо не будет сгорать полностью, и эта смесь будет выходить в выхлопную систему. Как привило, на бензине – может выйти из строя катализатор и «пригореть» клапана, а на дизеле – может выйти из строя сажевый фильтр.

Читать еще:  Глубокий чип тюнинг двигателя

3) Если сломанная турбина все же стоит (не вытащили потроха), то износ втулки и вала даст вам очень большой расход масла (за тысячу может сгореть до 1- 2 литров). Так что нужно следить за уровнем иначе можете «убить» двигатель

4) Возможно, что при такой работе «закоксует» нагаром кольца двигателя, также достанется и форсункам двигателя.

Однако в защиту хочется сказать, что сейчас практически все системы электронные, будь то бензин или дизель, а поэтому впрыск топлива контролируется датчиками, и вполне вероятно, что лишнее топливо не будет подаваться в двигатель автомобиля.

Простой пример – у меня есть знакомый, у которого был дизельный джип. Как то накрылась турбина, не работала вообще, как сказали на станции, что крыльчатку реально заклинило – сломало! Так вот, пока шла новая турбина (была под заказ), мастера на станции выпотрошили старую, убрали все движущие части и соединили маслоподводящие патрубки, как бы изолировав само устройство от работы. Знакомый ездил пару – тройку недель в таком режиме, правда старался брать машину когда только нужно. Через три недели турбину заменили (поставили новую) и все вроде ничего, но знакомый ездил на промывку – продувку форсунок и только после этого (по его словам восстановилась прежняя тяга двигателя). НО автомобиль работает до сих пор и вроде все нормально!

Так что ездить без турбины можно – НО нежелательно! Все равно затем придется что-то чистить или менять (например, катализатор или сажевый фильтр).

А сегодня у меня все, читайте наш АВТОБЛОГ.

(13 голосов, средний: 4,15 из 5)

Турбонаддув

Турбонаддув — один из методов агрегатного наддува, основанный на использовании энергии отработавших газов. Основной элемент системы — турбина.

Содержание

  • 1 История изобретения
  • 2 Принцип работы
  • 3 Состав системы
  • 4 Задержка турбокомпрессора
  • 5 См. также
  • 6 Примечания
  • 7 Ссылки

История изобретения [ править | править код ]

Принцип турбонаддува был запатентован Альфредом Бюхи в 1911 году в патентном ведомстве США [1] .

История развития турбокомпрессоров началась примерно в то же время, что и постройка первых образцов двигателей внутреннего сгорания. В 1885—1896 г. Готлиб Даймлер и Рудольф Дизель проводили исследования в области повышения вырабатываемой мощности и снижения потребления топлива путём сжатия воздуха, нагнетаемого в камеру сгорания. В 1905 г. швейцарский инженер Альфред Бюхи впервые успешно осуществил нагнетание при помощи выхлопных газов, получив при этом увеличение мощности до 120 %. Это событие положило начало постепенному развитию и внедрению в жизнь турботехнологий.

Сфера использования первых турбокомпрессоров ограничивалась чрезвычайно крупными двигателями, в частности, корабельными. В авиации с некоторым успехом турбокомпрессоры использовались на истребителях с двигателями Рено ещё во время Первой Мировой войны. Ко второй половине 1930-х развитие технологий позволило создавать действительно удачные авиационные турбонагнетатели, которые у значительно форсированных двигателей использовались в основном для повышения высотности. Наибольших успехов в этом достигли американцы, установив турбонагнетатели на истребители P-38 и бомбардировщики B-17 в 1938 году. В 1941 году США был создан истребитель P-47 с турбонагнетателем, обеспечившим ему выдающиеся летные характеристики на больших высотах.

В автомобильной сфере первыми начали использовать турбокомпрессоры производители грузовых машин. В 1938 г. на заводе «Swiss Machine Works Sauer» был построен первый турбодвигатель для грузового автомобиля. Первыми массовыми легковыми автомобилями, оснащенными турбинами, были Chevrolet Corvair Monza и Oldsmobile Jetfire, вышедшие на американский рынок в 1962—1963 г. Несмотря на очевидные технические преимущества, низкий уровень надежности привел к быстрому исчезновению этих моделей.

Начало использования турбодвигателей на спортивных автомобилях, в частности, на Formula 1, в 70-х годах привело к значительному увеличению популярности турбокомпрессоров. Приставка «турбо» стала входить в моду. В то время почти все производители автомобилей предлагали как минимум одну модель с бензиновым турбодвигателем. Однако, по прошествии нескольких лет мода на турбодвигатели начала проходить, так как выяснилось, что турбокомпрессор, хотя и позволяет увеличить мощность бензинового двигателя, сильно увеличивает расход топлива. На первых порах задержка в реакции турбокомпрессора была достаточно большой, что также являлось серьёзным аргументом против установки турбины на бензиновый двигатель.

Читать еще:  Harley davidson характеристика двигателя

Коренной перелом в развитии турбокомпрессоров произошёл с установкой в 1977 г. турбокомпрессора на серийный автомобиль Saab 99 Turbo и затем в 1978 г. выпуском Mercedes-Benz 300 SD, первого легкового автомобиля, оснащенного дизельным турбодвигателем. В 1981 г. за Mercedes-Benz 300 SD последовал VW Turbodiesel, сохранив при этом значительно более низкий уровень расхода топлива. Вообще, дизельные двигатели имеют повышенную степень сжатия и, вследствие адиабатного расширения на рабочем ходу, их выхлопные газы имеют более низкую температуру. Это снижает требования к жаропрочности турбины и позволяет делать более дешёвые или более изощрённые конструкции. Именно поэтому турбины на дизельных двигателях встречаются гораздо чаще, чем на бензиновых, а большая часть новинок (например, турбины с изменяемой геометрией) сначала появляется именно на дизельных двигателях.

Принцип работы [ править | править код ]

Принцип работы основан на использовании энергии отработавших газов. Поток выхлопных газов попадает на крыльчатку турбины (закреплённой на валу), тем самым раскручивая её и находящиеся на одном валу с нею лопасти компрессора, нагнетающего воздух в цилиндры двигателя. Так как при использовании наддува воздух в цилиндры подаётся принудительно (под давлением), а не только за счёт разрежения, создаваемого поршнем (это разрежение способно взять только определённое количество смеси воздуха с топливом), то в двигатель попадает большее количество смеси воздуха с топливом. Как следствие, при сгорании увеличивается объём сгораемого топлива с воздухом, образовавшийся газ находится под большим давлением и соответственно возникает большая сила, давящая на поршень. [ стиль ]

Как правило, у турбодвигателей меньше удельный эффективный расход топлива (грамм на киловатт-час, г/(кВт·ч)) и выше литровая мощность (мощность, снимаемая с единицы объёма двигателя — кВт/л), что даёт возможность увеличить мощность небольшого мотора без увеличения оборотов двигателя.

Вследствие увеличения массы воздуха, сжимаемой в цилиндрах, температура в конце такта сжатия заметно увеличивается и возникает вероятность детонации. Поэтому конструкцией турбодвигателей предусмотрена пониженная степень сжатия, применяются высокооктановые марки топлива, предусмотрен промежуточный охладитель наддувочного воздуха (интеркулер), представляющий собой радиатор для охлаждения воздуха. Уменьшение температуры воздуха требуется также и для того, чтобы плотность его не снижалась вследствие нагрева от сжатия после турбины, иначе эффективность всей системы значительно упадёт. [ стиль ] Турбонаддув особенно эффективен в дизельных двигателях тяжёлых грузовых автомобилей. Он повышает мощность и крутящий момент при незначительном увеличении расхода топлива. [ источник не указан 1008 дней ] Находит применение турбонаддув с изменяемой геометрией лопаток турбины в зависимости от режима работы двигателя.

Наиболее мощные (по отношению к мощности двигателя) турбокомпрессоры применяются на тепловозных двигателях. Например, на дизеле Д49 мощностью 4000 л.с. установлен турбокомпрессор мощностью 1100 л.с. [ источник не указан 1008 дней ]

Наибольшей (по абсолютной величине) мощностью обладают турбокомпрессоры судовых двигателей, которая достигает нескольких десятков тысяч киловатт (двигатели MAN B&W). [ источник не указан 1008 дней ]

Состав системы [ править | править код ]

Кроме турбокомпрессора и интеркулера в систему входят: регулировочный клапан (wastegate) (для поддержания заданного давления в системе и сброса давления в приёмную трубу), перепускной клапан (bypass valve — для отвода наддувочного воздуха обратно во впускные патрубки до турбины в случае закрытия дроссельной заслонки) и/или «стравливающий» клапан (blow-off valve — для сброса наддувочного воздуха в атмосферу с характерным звуком, в случае закрытия дроссельной заслонки, при условии отсутствия датчика массового расхода воздуха), выпускной коллектор, совместимый с турбокомпрессором, или кастомный даунпайп, а также герметичные патрубки: воздушные для подачи воздуха во впуск, масляные для охлаждения и смазки турбокомпрессора.

Задержка турбокомпрессора [ править | править код ]

Задержка турбокомпрессора («турбояма») — это время, необходимое для изменения выходной мощности после изменения состояния дроссельной заслонки, проявляющееся в виде замедленной реакции на открытие дроссельной заслонки по сравнению с поведением безнаддувного двигателя. Это связано с тем, что выхлопной системе и турбонагнетателю требуется время для раскрутки, чтобы обеспечить требуемый поток нагнетаемого воздуха. Инерция, трение и нагрузка на компрессор являются основными причинами задержки турбокомпрессора.

Ссылка на основную публикацию
Adblock
detector