Что чаще всего выступает в роли холодильника в тепловом двигателе

Про устройство и эксплуатацию автомобиля

Максимальный кпд тепловых машин (теорема Карно). Тепловой двигатель. Коэффициент полезного действия теплового двигателя Как определяется кпд теплового двигателя

КПД теплового двигателя. Согласно закону сохранения энергии работа, совершаемая двигателем, равна:

где — теплота, полученная от нагревателя, — теплота, отданная холодильнику.

Коэффициентом полезного действия теплового двигателя называют отношение работы совершаемой двигателем, к количеству теплоты полученному от нагревателя:

Так как у всех двигателей некоторое количество теплоты передается холодильнику, то во всех случаях

Максимальное значение КПД тепловых двигателей. Французский инженер и ученый Сади Карно (1796 1832) в труде «Размышление о движущей силе огня» (1824) поставил цель: выяснить, при каких условиях работа теплового двигателя будет наиболее эффективной, т. е. при каких условиях двигатель будет иметь максимальный КПД.

Карно придумал идеальную тепловую машину с идеальным газом в качестве рабочего тела. Он вычислил КПД этой машины, работающей с нагревателем температуры и холодильником температуры

Главное значение этой формулы состоит в том, как доказал Карно, опираясь на второй закон термодинамики, что любая реальная тепловая машина, работающая с нагревателем температуры и холодильником температуры не может иметь коэффициент полезного действия, превышающий КПД идеальной тепловой машины.

Формула (4.18) дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю,

Но температура холодильника практически не может быть намного ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими. Так, для паровой турбины начальные и конечные температуры пара примерно таковы: При этих температурах максимальное значение КПД равно:

Действительное же значение КПД из-за различного рода энергетических потерь равно:

Повышение КПД тепловых двигателей, приближение его к максимально возможному — важнейшая техническая задача.

Тепловые двигатели и охрана природы. Повсеместное применение тепловых двигателей с целью получения удобной для использования энергии в наибольшей степени, по сравнению со

всеми другими видами производственных процессов, связано с воздействием на окружающую среду.

Согласно второму закону термодинамики производство электрической и механической энергии в принципе не может быть осуществлено без отвода в окружающую среду значительных количеств теплоты. Это не может не приводить к постепенному повышению средней температуры на Земле. Сейчас потребляемая мощность составляет около 1010 кВт. Когда эта мощность достигнет то средняя температура повысится заметным образом (примерно на один градус). Дальнейшее повышение температуры может создать угрозу таяния ледников и катастрофического повышения уровня мирового океана.

Но этим далеко не исчерпываются негативные последствия применения тепловых двигателей. Топки тепловых электростанций, двигатели внутреннего сгорания автомобилей и т. д. непрерывно выбрасывают в атмосферу вредные для растений, животных и человека вещества: сернистые соединения (при сгорании каменного угля), оксиды азота, углеводороды, оксид углерода (СО) и др. Особую опасность в этом отношении представляют автомобили, число которых угрожающе растет, а очистка отработанных газов затруднена. На атомных электростанциях встает проблема захоронения опасных радиоактивных отходов.

Кроме того, применение паровых турбин на электростанциях требует больших площадей под пруды для охлаждения отработанного пара С увеличением мощностей электростанций резко возрастает потребность в воде. В 1980 г. в нашей стране для этих целей требовалось около воды, т. е. около 35% водоснабжения всех отраслей хозяйства.

Все это ставит ряд серьезных проблем перед обществом. Наряду с важнейшей задачей повышения КПД тепловых двигателей требуется проводить ряд мероприятий по охране окружающей среды. Необходимо повышать эффективность сооружений, препятствующих выбросу в атмосферу вредных веществ; добиваться более полного сгорания топлива в автомобильных двигателях. Уже сейчас не допускаются к эксплуатации автомобили с повышенным содержанием СО в отработанных газах. Обсуждается возможность создания электромобилей, способных конкурировать с обычными, и возможность применения горючего без вредных веществ в отработанных газах, например в двигателях, работающих на смеси водорода с кислородом.

Целесообразно для экономии площади и водных ресурсов сооружать целые комплексы электростанций, в первую очередь атомных, с замкнутым циклом водоснабжения.

Другое направление прилагаемых усилий — это увеличение эффективности использования энергии, борьба за ее экономию.

Решение перечисленных выше проблем жизненно важно для человечества. И эти проблемы с максимальным успехом могут

быть решены в социалистическом обществе с плановым развитием экономики в масштабах страны. Но организация охраны окружающей среды требует усилий в масштабе земного шара.

1. Какие процессы называются необратимыми? 2. Назовите наиболее типичные необратимые процессы. 3. Приведите примеры необратимых процессов, не упомянутых в тексте. 4. Сформулируйте второй закон термодинамики. 5. Если бы реки потекли вспять, означало бы это нарушение закона сохранения энергии? 6. Какое устройство называют тепловым двигателем? 7. Какова роль нагревателя, холодильника и рабочего тела теплового двигателя? 8. Почему в тепловых двигателях нельзя использовать в качестве источника энергии внутреннюю энергию океана? 9. Что называется коэффициентом полезного действия теплового двигателя?

10. Чему равно максимально возможное значение коэффициента полезного действия теплового двигателя?

Работу многих видов машин характеризует такой важный показатель, как КПД теплового двигателя. Инженеры с каждым годом стремятся создавать более совершенную технику, которая при меньших давала бы максимальный результат от его использования.

Устройство теплового двигателя

Прежде чем разбираться в том, что такое необходимо понять, как же работает этот механизм. Без знания принципов его действия нельзя выяснить сущность этого показателя. Тепловым двигателем называют устройство, которое совершает работу благодаря использованию внутренней энергии. Любая тепловая машина, превращающая в механическую, использует тепловое расширение веществ при повышении температуры. В твердотельных двигателях возможно не только изменение объема вещества, но и формы тела. Действие такого двигателя подчинено законам термодинамики.

Принцип функционирования

Для того чтобы понять, как же работает тепловой двигатель, необходимо рассмотреть основы его конструкции. Для функционирования прибора необходимы два тела: горячее (нагреватель) и холодное (холодильник, охладитель). Принцип действия тепловых двигателей (КПД тепловых двигателей) зависит от их вида. Зачастую холодильником выступает конденсатор пара, а нагревателем — любой вид топлива, сгорающий в топке. КПД идеального теплового двигателя находится по такой формуле:

КПД = (Тнагрев. — Тхолод.)/ Тнагрев. х 100%.

При этом КПД реального двигателя никогда не сможет превысить значения, полученного согласно этой формуле. Также этот показатель никогда не превысит вышеупомянутого значения. Чтобы повысить КПД, чаще всего увеличивают температуру нагревателя и уменьшают температуру холодильника. Оба эти процесса будут ограничены реальными условиями работы оборудования.

При функционировании теплового двигателя совершается работа, по мере которой газ начинает терять энергию и охлаждается до некой температуры. Последняя, как правило, на несколько градусов выше окружающей атмосферы. Это температура холодильника. Такое специальное устройство предназначено для охлаждения с последующей конденсацией отработанного пара. Там, где имеются конденсаторы, температура холодильника иногда ниже температуры окружающей среды.

В тепловом двигателе тело при нагревании и расширении не способно отдать всю свою внутреннюю энергию для совершения работы. Какая-то часть теплоты будет передана холодильнику вместе с или паром. Эта часть тепловой неизбежно теряется. Рабочее тело при сгорании топлива получает от нагревателя определенное количество теплоты Q 1 . При этом оно еще совершает работу A, в ходе которой передает холодильнику часть тепловой энергии: Q 2 Q_2$. Над рабочим телом совершается работа $A’$ за цикл.

Эффективность нашего холодильника определяется коэффициентом, который вычисляют как:

КПД обратимой и необратимой тепловой машины

КПД необратимого теплового двигателя всегда меньше, чем КПД обратимой машины, при работе машин с одинаковыми нагревателем и холодильником.

Рассмотрим тепловую машину, состоящую из:

  • цилиндрического сосуда, который закрыт поршнем;
  • газа под поршнем;
  • нагревателя;
  • холодильника.
  1. Газ получает некоторое количество теплоты $Q_1$ от нагревателя.
  2. Газ расширяется и толкает поршень, выполняет работу $A_+0$.
  3. Газ сжимают, холодильнику передается теплота $Q_2$.
  4. Работа совершается над рабочим телом $A_-

Работа, которую выполнят рабочее тело за цикл, равна:

Для выполнения условия обратимости процессов их надо проводить очень медленно. Кроме этого необходимо, чтобы отсутствовало трение поршня о стенки сосуда.

Читать еще:  Электрических двигателя 1500 оборотов

Обозначим работу, совершаемую за один цикл обратимым тепловым двигателем как $A_<+0>$.

Выполним тот же цикл с большой скоростью и при наличии трения. Если провести расширение газа быстро, давление его около поршня будет меньше, чем если газ расширяют медленно, поскольку возникающее под поршнем разрежение распространяется на весь объем с конечной скоростью. В этой связи, работа газа в необратимом увеличении объема меньше, чем в обратимом:

Если выполнить сжатие газа быстро давление около поршня больше, чем при медленном сжатии. Значит, величина отрицательной работы рабочего тела в необратимом сжатии больше, чем в обратимом:

Получим, что работа газа в цикле $A$ необратимой машины, вычисляемая по формуле (5), выполняемая за счет теплоты, полученной от нагревателя будет меньше, чем работа, выполненная в цикле обратимым тепловым двигателем:

Трение, имеющееся в необратимом тепловом двигателе, ведет к переходу части работы выполненной газом в теплоту, что уменьшает КПД двигателя.

Так, можно сделать вывод о том, что коэффициент полезного действия теплового двигателя обратимой машины больше, чем необратимой.

Тело, с которым обменивается теплом рабочее тело, станем называть тепловым резервуаром.

Обратимая тепловая машина совершает цикл, в котором имеются участки, где рабочее тело совершает обмен теплотой с нагревателем и холодильником. Процесс обмена теплом является обратимым, только если при получении теплоты и возвращении ее при обратном ходе, рабочее тело обладает одной и той же температурой, равной температуре теплового резервуара. Если говорить более точно, то температура тела, которое получает теплоту, должная быть на очень малую величину менее температуры резервуара.

Таким процессом может быть изотермический процесс, который происходит при температуре резервуара.

Для функционирования теплового двигателя у него должно быть два тепловых резервуара (нагреватель и холодильник).

Обратимый цикл, который выполняется в тепловом двигателе рабочим телом, должен быть составлен из двух изотерм (при температурах тепловых резервуаров) и двух адиабат.

Адиабатические процессы происходят без обмена теплом. В адиабатных процессах происходит расширение и сжатие газа (рабочего тела).

Издревле люди пытались преобразовать энергию в механическую работу. Они преобразовывали кинетическую энергию ветра, потенциальную энергию воды и т.д. Начиная, с 18 века начали появляться машины, преобразовывающие внутреннею энергию топлива в работу. Подобные машины работали, благодаря тепловым двигателям.

Тепловой двигатель – прибор, преобразующий тепловую энергию в механическую работу, за счет расширения (чаще всего газов) от высокой температуры.

Любые тепловые двигатели имеют составные части:

  • Нагревательный элемент . Тело с высокой температурой относительно окружающей среды.
  • Рабочее тело. Поскольку работу обеспечивает расширение, данный элемент должен хорошо расширяться. Как правило, используется газ или пар.
  • Охладитель . Тело с низкой температурой.

Рабочее тело получает тепловую энергию от нагревателя. В следствии, оно начинает расширяться и совершать работу. Чтобы система могла вновь совершить работу, её нужно вернуть в исходное состояние. Поэтому рабочее тело охлаждается, то есть излишняя тепловая энергия, как бы сбрасывается в охлаждающий элемент. И система приходит в изначальное состояние, далее процесс повторяется снова.

Вычисление КПД

Для расчета КПД, введем следующие обозначения:

Q 1 –Количество теплоты получаемое от нагревательного элемента

A’– Работа совершаемая рабочим телом

Q 2 –Количество теплоты полученной рабочим телом от охладителя

В процессе охлаждения, тело передает теплоту, поэтому Q 2

Тепловые двигатели

Тепловой двигатель – это устройство, преобразующее тепловую энергию в механическую работу.

Иногда дается такое определение:

Тепловой двигатель преобразует внутреннюю энергию рабочего тела в механическую.

Итак, для теплового двигателя необходимо рабочее тело (газ или пар), нагреватель. Кроме того, в системе должна быть разница температур, чтобы рабочее тело, после совершения работы, могло отдать теплоту; то есть кроме нагревателя, нужен холодильник.

  1. Классификация тепловых двигателей
  2. Преобразование энергии в тепловых двигателях
  3. Адиабатный процесс и цикл Карно
  4. Теория и практика

Классификация тепловых двигателей

Различие между теплотой и внутренней энергией условно, оно принято в термодинамике, отражает специфику рассматриваемых этой наукой объектов. Если пар в котле нагревается внешним источником, или система охлаждается, отдавая тепло в окружающую среду, то говорят о поступающей извне или отдаваемой в окружающую среду теплоте. Если в цилиндре воспламеняется бензин, и расширяющийся газ толкает поршень, то говорят о преобразовании внутренней энергии рабочего тела.

В связи с этим термодинамике принята классификация устройств:

  1. Двигатели внешнего сгорания, преобразующие внешнюю теплоту (паровая машина, паровая турбина)
  2. Двигатели внутреннего сгорания, преобразующие внутреннюю энергию топлива (ДВС, реактивный двигатель)

Первый двигатель внешнего сгорания был изобретен в древнем Риме. Пар, направленный по изогнутым трубам из сферы с кипящей водой, заставлял ее вращаться. Это был просто эффектный эксперимент, игрушка, ее не использовали для работы. Производство машин и применение их в промышленности не было актуально при рабовладении, оно началось тогда, когда стало экономически выгодным.
Отметим, что к тепловым двигателям относятся устройства с принципиальными различиями в конструкции и логике работы: турбина, реактивный двигатель и циклические двигатели.

Термодинамика, как наука, сформировалась в процессе работы над цикличными двигателями. В следующем разделе пойдет речь о цикличных двигателях, их КПД, а также о втором начале термодинамики.

Преобразование энергии в тепловых двигателях

Создание парового двигателя ознаменовало начало научно-технической революции, но сами паровые двигатели поначалу были несовершенны. Они развивали большую мощность, но потребляли слишком много топлива.

Если сравнить работу первых двигателей с тягловой силой лошади, то окажется, что лошадь гораздо эффективнее использует «горючее» — овес и сено. Ученые отмечали, что организм «сжигает» еду: ведь человек и животные вдыхают кислород, а выдыхают углекислый газ и водяной пар; так же поступает топка с горящими дровами.

Именно тогда научились считать калории. Энергию пищи оценили по тому количеству теплоты, которая выделится при ее сжигании. По шкале «калорийности» можно сравнивать овес, уголь и бензин. И по этой шкале первые паровые двигатели были крайне неэффективны: только 1% — 2% сгоревших калорий превращались в полезную работу.

Делались попытки усовершенствовать машины, иногда они давали лучший эффект, иногда худший; требовалась теоретическая база для того, чтобы добиться наилучшего варианта.

Основоположники термодинамики прежде всего решали вопрос: может ли вся теплота, передаваемая паровой машине, преобразоваться в работу? В механике преобразование потенциальной энергии в кинетическую может происходить с очень малыми потерями. В основном мешает трение, но во многих задачах трением можно пренебречь. Представим, что мы так же сведем к нулю трение поршня о цилиндр, непроизводительные потери тепловой энергии. Можно ли представить себе идеальный циклический двигатель, в котором вся теплота переходит в работу?

По первому началу термодинамики, теплота расходуется на работу и увеличение внутренней энергии:

Q = A + DU

Пусть DU = 0. Теплота заставила пар расширяться, пар привел в движение поршень, тот совершил работу. При этом температура пара и его внутренняя энергия не изменилась, Пренебрежем потерями и допустим, что вся теплота перешла в механическую работу: Q = A

Но мы рассматриваем цикличный двигатель. Поршень переместился, совершив работу; теперь его нужно вернуть в исходное состояние.

Если перемещать поршень, сжимая пар, то придется совершить работу не меньшую, чем А. Но это значит, что никого выигрыша не произошло, и коэффициент полезного действия нулевой, даже при отсутствии потерь!

Чтобы уменьшить работу по обратному перемещению поршня, разрешим внутренней энергии меняться. Если пар охладить, его давление уменьшится, и работа по перемещению поршня будет меньше, чем совершенная в рабочем цикле.

Вот эта разность работ и будет полезной отдачей двигателя.

На графике p(v) прямой и обратный ход поршня показан линиями abc и cda, образующими замкнутую фигуру. Площадь замкнутой фигуры abcd соответствует полезной работе. Площадь фигуры V1abcV2 – это работа прямого хода, площадь V2cdaV1 – соответствует работе обратного хода.

Таким образом, тепловому двигателю нужен не только нагреватель, но и холодильник; чаще всего в роли холодильника выступает окружающая среда, которой передаются остатки тепла

В идеальном случае совершенная за цикл работа соответствует разнице между теплотой, которое имело нагретое рабочее тело, и той теплотой, которая осталась у рабочего тела после охлаждения:

Коэффициент полезного действия идеального двигателя равен отношению работы к полученной от нагревателя теплоте:

Эта формула показывает предел КПД, который не может быть превышен тепловым двигателем при определенных параметрах нагревателя и холодильника. Реальный КПД двигателя зависит от его конструкции, и он всегда меньше идеального значения.

Итак, КПД двигателя всегда меньше единицы, поскольку часть тепловой энергии должна отдаваться холодильнику. Это является отражением второго начала термодинамики

Читать еще:  Электронный счетчик оборотов двигателя

Одна из формулировок второго начала термодинамики:

Невозможен круговой процесс, единственным результатом которого было бы производство работы за счёт охлаждения теплового резервуара. (Такой процесс называется процессом Томсона).

Адиабатный процесс и цикл Карно

При конструировании теплового двигателя важную роль сыграло понимание адиабатного процесса.

Адиабатный процесс в идеальном газе происходит без обмена теплотой с окружающей средой.

Математическая формула адиабатного процесса:

p*V k = const

где p – давление, V – объем, k – показатель адиабаты, равный отношению теплоемкости газа при постоянном давлении к теплоемкости при постоянном объеме.

Рассмотрим, как применяется адиабатный процесс в термодинамике.

Задача конструкторов при разработке двигателя – приблизиться к идеальному значению КПД. Для этого нужно определить наилучший термический цикл тепловой машины и конструкцию, соответствующую двигателю с таким циклом.

Правило для тепловых машин сформулировал в 1824 году Санди Карно, французский ученый. В своей теоретической модели он использовал свойства идеального газа.

Его идея заключалась в том, чтобы расширение газа при прямом ходе шло изотермически, без изменения температуры, и так же изотермически, но при пониженной температуре, происходило сжатие газа при обратном ходе.

Для перехода между верхней и нижней изотермами Карно предложил использовать адиабатическое расширение и адиабатическое сжатие.

Наиболее наглядно цикл Карно изображается на TS диаграмме, по которой можно оценить изменение энтропии системы и ее температуры:

Изменение объема и давления при цикле Карно можно видеть на PS диаграмме:

Изображение цикла на TS диаграмме показывает зависимость КПД от абсолютных значений температуры нагревателя и холодильника:

Последняя формула позволяет сделать важный вывод: КПД двигателя зависит от абсолютной температуры холодильника, и наибольший КПД=1 может быть достигнут только при температуре холодильника TX = 0°K, или t= -273°C.

Реальный тепловой двигатель имеет меньший КПД, чем идеальный двигатель Карно, поскольку обеспечить полностью адиабатный процесс, без теплообмена с окружающей средой, невозможно. Кроме того, изотермическое расширение и сжатие реального газа возможно только при достаточно медленных процессах, а их ускорение приводит к изменению температуры.

Теория и практика

Как отразились работы теоретиков на качестве паровых двигателей? Начался быстрый процесс совершенствования этой техники. В семидесятые годы девятнадцатого века паровозы отчаянно дымили и имели КПД = 3%, а в 1910 году паровозы дымили не меньше, но имели КПД = 7-9%. Это большой прогресс, но подняться выше при разработке паровых машин не удалось.

На смену паровозам пришли двигатели внутреннего сгорания: их КПД сразу же превысил паровые двигатели, составил 25%. Современные дизельные двигатели, с электронной системой управления, имеют КПД=40%.

Является ли это пределом? Для двигателей внутреннего сгорания, пожалуй, является. Но есть более производительные тепловые машины: это турбины. Нагретый газ, непрерывной струей вырываясь из сопла, вращает турбину; это не цикличный, а постоянный процесс, и при его реализации без особого труда достигается КПД=60%. Недаром сейчас активно разрабатываются турбодвигатели.

В любом тепловом двигателе имеется. Принцип действия тепловых двигателей. Коэффициент полезного действия (КПД) тепловых двигателей — Гипермаркет знаний. Пример решения задач

>>Физика: Принцип действия тепловых двигателей. Коэффициент полезного действия (КПД) тепловых двигателей

Запасы внутренней энергии в земной коре и океанах можно считать практически неограниченными. Но для решения практических задач располагать запасами энергии еще недостаточно. Необходимо еще уметь за счет энергии приводить в движение станки на фабриках и заводах, средства транспорта , тракторы и другие машины, вращать роторы генераторов электрического тока и т. д. Человечеству нужны двигатели — устройства, способные совершать работу. Большая часть двигателей на Земле — это тепловые двигатели . Тепловые двигатели — это устройства, превращающие внутреннюю энергию топлива в механическую.
Принципы действия тепловых двигателей. Для того чтобы двигатель совершал работу, необходима разность давлений по обе стороны поршня двигателя или лопастей турбины. Во всех тепловых двигателях эта разность давлений достигается за счет повышения температуры рабочего тела (газа) на сотни или тысячи градусов по сравнению с температурой окружающей среды. Такое повышение температуры происходит при сгорании топлива.
Одна из основных частей двигателя — сосуд, наполненный газом, с подвижным поршнем. Рабочим телом у всех тепловых двигателей является газ, который совершает работу при расширении. Обозначим начальную температуру рабочего тела (газа) через T 1 . Эту температуру в паровых турбинах или машинах приобретает пар в паровом котле. В двигателях внутреннего сгорания и газовых турбинах повышение температуры происходит при сгорании топлива внутри самого двигателя. Температуру T 1 температурой нагревателя.»
Роль холодильника. По мере совершения работы газ теряет энергию и неизбежно охлаждается до некоторой температуры T 2 , которая обычно несколько выше температуры окружающей среды. Ее называют температурой холодильника . Холодильником является атмосфера или специальные устройства для охлаждения и конденсации отработанного пара — конденсаторы . В последнем случае температура холодильника может быть немного ниже температуры атмосферы.
Таким образом, в двигателе рабочее тело при расширении не может отдать всю свою внутреннюю энергию на совершение работы. Часть теплоты неизбежно передается холодильнику (атмосфере) вместе с отработанным паром или выхлопными газами двигателей внутреннего сгорания и газовых турбин. Эта часть внутренней энергии теряется.
Тепловой двигатель совершает работу за счет внутренней энергии рабочего тела. Причем в этом процессе происходит передача теплоты от более горячих тел (нагревателя) к более холодным (холодильнику).
Принципиальная схема теплового двигателя изображена на рисунке 13.11.
Рабочее тело двигателя получает от нагревателя при сгорании топлива количество теплоты Q 1 совершает работу A ´ и передает холодильнику количество теплоты Q 2 0.

КПД теплового двигателя будет тем больше, чем выше температура нагревателя, и ниже температура холодильника.

Работу многих видов машин характеризует такой важный показатель, как КПД теплового двигателя. Инженеры с каждым годом стремятся создавать более совершенную технику, которая при меньших давала бы максимальный результат от его использования.

Устройство теплового двигателя

Прежде чем разбираться в том, что такое необходимо понять, как же работает этот механизм. Без знания принципов его действия нельзя выяснить сущность этого показателя. Тепловым двигателем называют устройство, которое совершает работу благодаря использованию внутренней энергии. Любая тепловая машина, превращающая в механическую, использует тепловое расширение веществ при повышении температуры. В твердотельных двигателях возможно не только изменение объема вещества, но и формы тела. Действие такого двигателя подчинено законам термодинамики.

Принцип функционирования

Для того чтобы понять, как же работает тепловой двигатель, необходимо рассмотреть основы его конструкции. Для функционирования прибора необходимы два тела: горячее (нагреватель) и холодное (холодильник, охладитель). Принцип действия тепловых двигателей (КПД тепловых двигателей) зависит от их вида. Зачастую холодильником выступает конденсатор пара, а нагревателем — любой вид топлива, сгорающий в топке. КПД идеального теплового двигателя находится по такой формуле:

КПД = (Тнагрев. — Тхолод.)/ Тнагрев. х 100%.

При этом КПД реального двигателя никогда не сможет превысить значения, полученного согласно этой формуле. Также этот показатель никогда не превысит вышеупомянутого значения. Чтобы повысить КПД, чаще всего увеличивают температуру нагревателя и уменьшают температуру холодильника. Оба эти процесса будут ограничены реальными условиями работы оборудования.

При функционировании теплового двигателя совершается работа, по мере которой газ начинает терять энергию и охлаждается до некой температуры. Последняя, как правило, на несколько градусов выше окружающей атмосферы. Это температура холодильника. Такое специальное устройство предназначено для охлаждения с последующей конденсацией отработанного пара. Там, где имеются конденсаторы, температура холодильника иногда ниже температуры окружающей среды.

В тепловом двигателе тело при нагревании и расширении не способно отдать всю свою внутреннюю энергию для совершения работы. Какая-то часть теплоты будет передана холодильнику вместе с или паром. Эта часть тепловой неизбежно теряется. Рабочее тело при сгорании топлива получает от нагревателя определенное количество теплоты Q 1 . При этом оно еще совершает работу A, в ходе которой передает холодильнику часть тепловой энергии: Q 2

Нужен ли стабилизатор напряжения для холодильника

Как и все современные электронные устройства, холодильники обладают повышенной чувствительностью к резким перепадам сетевого напряжения. Особенно опасны регулярные отключения света, приводящие не только к нарушениям рабочих процессов, но и к выходу из строя всего агрегата. В связи с этим возникает вопрос, а нужен ли стабилизатор напряжения для холодильника, принесет ли он желаемый результат? Как показывает практика, стабилизатор достаточно эффективно выравнивает питающее напряжение, приводя его к нормативным показателям.

  1. Принцип действия стабилизаторов
  2. Опасность скачков сетевого напряжения
  3. Нужно ли вместе с холодильником покупать стабилизатор
  4. Выбор стабилизатора для дома и квартиры
Читать еще:  Что то трещит в двигателе при нажатии на газ

Принцип действия стабилизаторов

Во всех электрических сетях по настоящему стабильное напряжение существует лишь в теории. На самом же деле, его параметры подвержены постоянным изменениям. Подобные ситуации нередко возникают из-за потребителей, подключенных к сети и дающих толчок к снижению напряжения. В большинстве случаев такие отклонения не превышают 10%, однако современные электронные устройства крайне отрицательно реагируют даже на небольшие изменения. Во избежание подобных ситуаций, совместно с электрооборудованием применяются стабилизирующие устройства.

Основным конструктивным элементом стабилизатора является трансформатор. Он подключается через диодный мост к цепи переменного тока. Схема дополняется транзистором и конденсаторами. Здесь же установлен и регулятор. Автоматическое включение и выключение осуществляется с помощью замыкающего механизма.

Каждый стабилизатор должен функционировать на основе обратной связи, работающей по определенной схеме. Подача напряжения изначально происходит на трансформатор. Если его нормативное значение оказывается превышенным, в действие вступает диод или диодный мост, соединенный с транзистором напрямую в общей цепи. За счет этого осуществляется дополнительная фильтрация напряжения, а конденсатор выступает в роли своеобразного преобразователя. После прохождения тока через резистор, он снова возвращается к трансформатору, что приводит к изменению номинальной величины нагрузки и мощности.

Благодаря автоматике, все процессы, совершаемые в сети, носят устойчивый характер, а конденсаторы не подвержены перегреву. На выходе для прохождения сетевого тока задействован еще один фильтр, после чего напряжение окончательно выпрямляется и становится пригодным к использованию.

Опасность скачков сетевого напряжения

Для современных электронных устройств неприятные последствия могут наступить при любых перепадах напряжения. Если напряжение будет сильно пониженным, то его потенциала просто не хватит, чтобы запустить компрессор на холодильнике.

Иногда в таких случаях электрический ток продолжает течь по обмоткам не запустившегося двигателя, что может вызвать его перегрев и выход из строя. Достаточно редко двигатель все же запускается и начинает работать. Но, из-за пониженного напряжения потребуется более высокий ток, подаваемый на обмотки и обеспечивающий необходимый показатель мощности. От этого двигатель тоже может перегреться и перестать нормально работать.

Современные холодильники от известных производителей оборудуются тепловым реле, которое при повышении температуры отключает всю электрическую часть. Однако подобный рабочий режим считается уже аварийным и его желательно не допускать.

Не меньшая опасность исходит от повышенного напряжения. Самые простые электрические схемы наглядно демонстрируют зависимость мощности компрессора от питающего напряжения. Когда потенциал становится слишком высоким, двигатель во время работы заметно превышает величину своей расчетной мощности, что приводит к сокращению ресурса. Под действием высокого напряжения в обмотках ротора или статора может случиться межвитковый пробой, а вся тонкая электроника сразу же выходит из строя.

Следовательно при нестабильном сетевом напряжении, рекомендуется не подвергать потенциальной опасности дорогостоящее холодильное оборудование, воспользовавшись стабилизирующим устройством. В результате, холодильник будет круглосуточно находиться под защитой от возможных перепадов напряжения.

Нужно ли вместе с холодильником покупать стабилизатор

Конструкция любого современного холодильника состоит из деталей и компонентов, чутко реагирующих на все изменения, происходящие с электроэнергией в данной сети. Большинство из них отличается сложными электронными схемами и могут работать лишь при нормальном напряжении с незначительными отклонениями.

От негативных воздействий особенно страдает компрессор, часто выходящий из строя в результате нарушений. Кроме того, перепады напряжения отрицательно влияют на следующие детали и узлы холодильника:

  • Электронное управление компрессором и температурным режимом. Чаще всего приходят в негодность из-за резкого скачка напряжения.
  • Обмотки электродвигателя компрессора часто сгорают при длительной работе с низким напряжением. Обмоточный провод перегревается, наступает пробой изоляции и агрегат становится неисправным.
  • Обмотки двигателя нередко сгорают из-за невозможности пуска при пониженном напряжении. Как следствие, наступает перегрев и сгорание деталей в результате длительного воздействия пусковых токов. Этот фактор необходимо учитывать в первую очередь.

В холодильниках старых моделей можно заметить выход из строя кривошипно-кулисной компрессорной пары. Это случается после того как подача напряжения прекращается, а затем возобновляется, после чего в пространстве над поршнем начинает действовать гидроудар. Поэтому обязательно нужен стабилизатор напряжения, обеспечивающий коррекцию напряжения на выходе и отключает его подачу при нарушении диапазона 110-280 вольт. Перед повторным запуском компрессора создается необходимая временная задержка.

Выбор стабилизатора для дома и квартиры

Стабилизаторы заметно различаются между собой, особенно по такому показателю, как мощность, в том числе и модели LG. Особенности выбора для частного загородного дома заключаются в наличии асинхронных электродвигателей, установленным на различном оборудовании. Все они обладают определенной номинальной мощностью. Этот показатель значительно ниже пусковой мощности, которая требуется в момент запуска того или иного агрегата.

Например, для запуска двигателя, какой имеет номинальную мощность 1,5 кВт, фактически потребуется уже 3,5 кВт. Поэтому стабилизаторы для частных домов должны выбираться в соответствии с общей мощностью всех используемых приборов с учетом дополнительных 45% от этой величины. Данный запас мощности гарантированно сохранит технику от возможных неисправностей при перепадах напряжения, вызываемых пусковыми токами. Кроме того, в частных домах следует учитывать количество фаз, задействованных в питающей сети.

Стабилизатор для квартиры следует выбирать учитывая общее значение мощности приборов и оборудования с запасом в 10-15% от полученного результата. Этого вполне достаточно для бесперебойного функционирования всех имеющихся устройств. В том случае, когда стабилизатор приобретается только для холодильника, его выбор осуществляется по мощности, указанной в техническом паспорте.

Что такое стабилизаторы сетевого напряжения

Сетевой фильтр или стабилизатор напряжения

Схема стабилизатора напряжения

Для чего нужен стабилизатор напряжения

Схема подключения стабилизатора напряжения в частном доме

Нужен ли стабилизатор напряжения для ЖК-телевизора

Что чаще всего выступает в роли холодильника в тепловом двигателе

Единое национальное тестирование

История Казахстана

Онлайн тесты и шпаргалки по истории Казахстана

Всемирная история

Онлайн тесты и шпаргалки по Всемирной истории.

Математика

Онлайн тесты и шпаргалки по математике.

Химия

Онлайн тесты и шпаргалки по химии.

Физика

Онлайн тесты и шпаргалки по физике.

Биология

Онлайн тесты и шпаргалки по биологии.

География

Онлайн тесты и шпаргалки по географии.

Русский язык

Онлайн тесты и шпаргалки по русскому языку.

Готовые работы

ДИПЛОМНЫЕ РАБОТЫ

Многое уже позади и теперь ты — выпускник, если, конечно, вовремя напишешь дипломную работу. Но жизнь — такая штука, что только сейчас тебе становится понятно, что, перестав быть студентом, ты потеряешь все студенческие радости, многие из которых, ты так и не попробовал, всё откладывая и откладывая на потом. И теперь, вместо того, чтобы навёрстывать упущенное, ты корпишь над дипломной работой? Есть отличный выход: скачать нужную тебе дипломную работу с нашего сайта — и у тебя мигом появится масса свободного времени!
Дипломные работы успешно защищены в ведущих Университетах РК.
Стоимость работы от 20 000 тенге

КУРСОВЫЕ РАБОТЫ

Курсовой проект — это первая серьезная практическая работа. Именно с написания курсовой начинается подготовка к разработке дипломных проектов. Если студент научиться правильно излагать содержание темы в курсовом проекте и грамотно его оформлять, то в последующем у него не возникнет проблем ни с написанием отчетов, ни с составлением дипломных работ, ни с выполнением других практических заданий. Чтобы оказать помощь студентам в написании этого типа студенческой работы и разъяснить возникающие по ходу ее составления вопросы, собственно говоря, и был создан данный информационный раздел.
Стоимость работы от 2 500 тенге

МАГИСТЕРСКИЕ ДИССЕРТАЦИИ

В настоящее время в высших учебных заведениях Казахстана и стран СНГ очень распространена ступень высшего профессионального образования, которая следует после бакалавриата — магистратура. В магистратуре обучаются с целью получения диплома магистра, признаваемого в большинстве стран мира больше, чем диплом бакалавра, а также признаётся зарубежными работодателями. Итогом обучения в магистратуре является защита магистерской диссертации.
Мы предоставим Вам актуальный аналитический и текстовый материал, в стоимость включены 2 научные статьи и автореферат.
Стоимость работы от 35 000 тенге

ОТЧЕТЫ ПО ПРАКТИКЕ

После прохождения любого типа студенческой практики (учебной, производственной, преддипломной) требуется составить отчёт. Этот документ будет подтверждением практической работы студента и основой формирования оценки за практику. Обычно, чтобы составить отчёт по практике, требуется собрать и проанализировать информацию о предприятии, рассмотреть структуру и распорядок работы организации, в которой проходится практика, составить календарный план и описать свою практическую деятельность.
Мы поможет написать отчёт о прохождении практики с учетом специфики деятельности конкретного предприятия.

Ссылка на основную публикацию