Что определяет количество пар полюсов двигателя

Как определить скорость вращения электродвигателя

Под скоростью вращения асинхронного электродвигателя обычно понимают угловую частоту вращения его ротора, которая приведена на шильдике (на паспортной табличке двигателя) в виде количества оборотов в минуту. Трехфазный двигатель можно питать и от однофазной сети, для этого достаточно добавить конденсатор параллельно одной или двум его обмоткам, в зависимости от напряжения сети, но конструкция двигателя от этого не изменится.

Так, если ротор под нагрузкой совершает 2760 оборотов в минуту, то угловая частота данного двигателя будет равна 2760*2пи/60 радиан в секунду, то есть 289 рад/с, что не удобно для восприятия, поэтому на табличке пишут просто «2760 об/мин». Применительно к асинхронному электродвигателю, это обороты с учетом скольжения s.

Синхронная же скорость данного двигателя (без учета скольжения) будет равна 3000 оборотов в минуту, поскольку при питании обмоток статора сетевым током с частотой 50 Гц, каждую секунду магнитный поток будет совершать по 50 полных циклических изменений, а 50*60 = 3000, вот и получается 3000 оборотов в минуту — синхронная скорость асинхронного электродвигателя.

В рамках данной статьи мы поговорим о том, как определить синхронную скорость вращения неизвестного асинхронного трехфазного двигателя, просто взглянув на его статор. По внешнему виду статора, по расположению обмоток, по количеству пазов, — можно легко определить синхронные обороты электродвигателя если у вас нет под рукой тахометра. Итак, начнем по порядку и разберем данный вопрос с примерами.

3000 оборотов в минуту

Про асинхронные электродвигатели (смотрите — Виды электродвигателей) принято говорить, что тот или иной двигатель имеет одну, две, три или четыре пары полюсов. Минимум — одна пара полюсов, то есть минимум — два полюса. Взгляните на рисунок. Здесь вы видите, что в статор уложено по две последовательно соединенные катушки на каждую фазу — в каждой паре катушек одна расположена напротив другой. Эти катушки и образуют по паре полюсов на статоре.

Одна из фаз показана для ясности красным цветом, вторая — зеленым, третья — черным. Обмотки всех трех фаз устроены одинаково. Поскольку три эти обмотки питаются по очереди (ток трехфазный), то за 1 колебание из 50 в каждой из фаз — магнитный поток статора один раз обернется на полные 360 градусов, то есть совершит один оборот за 1/50 секунды, значит 50 оборотов получится за секунду. Так и выходит 3000 оборотов в минуту.

Таким образом становится ясно, что для определения синхронных оборотов асинхронного электродвигателя достаточно определить количество пар его полюсов, что легко сделать, сняв крышку и взглянув на статор.

Общее число пазов статора разделите на число пазов, приходящихся на одну секцию обмотки одной из фаз. Если получится 2, то перед вами двигатель с двумя полюсами — с одной парой полюсов. Следовательно синхронная частота составляет 3000 оборотов в минуту или примерно 2910 с учетом скольжения. В простейшем случае 12 пазов, по 6 пазов на катушку, и таких катушек 6 — по две на каждую из трех фаз.

Обратите внимание, количество катушек в одной группе для одной пары полюсов может быть не обязательно 1, но и 2 и 3, однако для примера мы рассмотрели вариант с одиночными группами на пару катушек (не будем в рамках данной статьи заострять внимание на способах намотки).

1500 оборотов в минуту

Для получения синхронной скорости в 1500 оборотов в минуту, количество полюсов статора увеличивают вдвое, чтобы за 1 колебание из 50 магнитный поток совершил бы только пол оборота — 180 градусов.

Для этого на каждую фазу делают по 4 секции обмотки. Таким образом, если одна катушка занимает четверть всех пазов, то перед вами двигатель с двумя парами полюсов, образованными четырьмя катушками на фазу.

Например, 6 пазов из 24 занимает одна катушка или 12 из 48, значит перед вами двигатель с синхронной частотой 1500 оборотов в минуту, или с учетом скольжения примерно 1350 оборотов в минуту. На приведенном фото каждая секция обмотки выполнена в виде двойной катушечной группы.

1000 оборотов в минуту

Как вы уже поняли, для получения синхронной частоты в 1000 оборотов в минуту, каждая фаза образует уже три пары полюсов, чтобы за одно колебание из 50 (герц) магнитный поток обернулся бы всего на 120 градусов, и соответствующим образом повернул бы за собой ротор.

Таким образом, минимум 18 катушек установлены на статор, причем каждая катушка занимает шестую часть всех пазов (по шесть катушек на фазу — по три пары). Например, если пазов 24, то одна катушка займет 4 из них. Получится частота с учетом скольжения около 935 оборотов в минуту.

750 оборотов в минуту

Для получения синхронной скорости в 750 оборотов в минуту, необходимо, чтобы три фазы формировали на статоре четыре пары движущихся полюсов, это по 8 катушек на фазу — одна напротив другой — 8 полюсов. Если например на 48 пазов приходится по катушке на каждые 6 пазов — перед вами асинхронный двигатель с синхронными оборотами 750 (или около 730 с учетом скольжения).

500 оборотов в минуту

Наконец, для получения асинхронного двигателя с синхронной скоростью в 500 оборотов в минуту необходимо 6 пар полюсов — по 12 катушек (полюсов) на фазу, чтобы на каждое колебание сети магнитный поток поворачивался бы на 60 градусов. То есть, если например статор имеет 36 пазов, при этом на катушку приходится по 4 паза — перед вами трехфазный двигатель на 500 оборотов в минуту (480 с учетом скольжения).

Определение количества пар полюсов в двигателе BLDC

LITUN BLS

У меня 3-фазный двигатель CDROM BLDC, для которого у меня нет данных. Как я могу узнать количество пар полюсов в двигателе?

Читать еще:  Двигатель qr25de плавают обороты

Подсказка: — С помощью магнита я могу проверить, что во внутреннем слое ротора есть несколько полюсов N и S, но как узнать точное количество пар полюсов?

Спасибо, Чарльз Коуи. Но у меня есть другой двигатель BLCD, который имеет 3 обмотки на 120 градусов друг от друга. Но в его техническом описании указано, что это 4-полюсный двигатель. Можешь объяснить, как это возможно.?

LITUN BLS

Гарри Свенссон

Брюс Эбботт

С помощью магнита я мог проверить, что во внутреннем слое ротора есть несколько полюсов N и S

Лучше не использовать магнит (магнит Neodym достаточно силен, чтобы размагничивать ферритовый магнит). Просто используйте отвертку или другой предмет из черного металла. Он будет притягиваться к каждому полюсу магнита в роторе, поэтому отметьте первую точку притяжения и перемещайте ее по окружности ротора, считая полюса, пока не вернетесь к началу.

У меня есть другой двигатель BLCD, который имеет 3 обмотки на 120 градусов друг от друга. Но в его техническом описании указано, что это 4-полюсный двигатель.

В зависимости от конфигурации магнита и схемы намотки число плеч или пазов статора может быть больше или меньше числа полюсов магнита. В приведенной ниже таблице показаны некоторые примеры комбинаций (синие прямоугольники — это известные хорошие комбинации, оранжевый может работать, но не тестировался). Вы можете видеть, что двигатель с 3 слотами может иметь 2 или 4 магнитных полюса.

LITUN BLS

Брюс Эбботт

LITUN BLS

Чарльз Коуи

Я полностью пересмотрел свой ответ, учитывая информацию в вопросе и комментарии:

Я думаю, что он имеет более 10 пар полюсов, но не уверен, точное число. Я знаю это, потому что для завершения одного механического оборота требуется более 10 электрических циклов коммутации.

Кажется, что фотография показывает, что это — соединенный звездой двигатель с нейтральной точкой, выведенной для внешнего соединения. Кажется, есть три отдельных проводника обмотки статора, прикрепленных к трем точкам пайки в нижней части рисунка. Слева от дна концы трех проводников, похоже, скручены и припаяны к четвертой точке пайки. Из фотографии также очевидно, что этот двигатель имеет обмотки с выступающими полюсами в статоре. Магниты ротора также можно считать выступающими полюсами.

Тогда очевидной конструкцией является двигатель с постоянными магнитами, имеющий двойной характер (двигатель DSPM). Двигатель DPSM может иметь различное количество полюсов на статоре и роторе. Статор может иметь 12 полюсов, причем фазы распределены попеременно между полюсами. Он также может иметь 6 или 4 полюса с 2 или 3 фазами, составляющими каждую фазу. Если статор можно отсоединить от возбудителя, между каждой фазой и нейтралью может быть приложено небольшое постоянное напряжение, чтобы определить, какие катушки намагничены каждой фазой, а какие севером и югом. Диаграмма результатов, вероятно, может быть использована для определения количества полюсов.

При использовании двигателя DSPM количество полюсов в статоре не обязательно должно совпадать с числом полюсов в статоре. В этом отношении двигатель DSPM похож на шаговый двигатель. Также может быть сходство с некоторыми конструкциями двигателей с переключаемым сопротивлением.

Чтобы определить количество полюсов в роторе, посчитайте количество полюсов, осторожно перемещая магнит по внутренней окружности и отмечая притяжения и отталкивания. Обратите внимание на совет Брюса Эббота о возможности размагничивания с помощью сильного магнита. Вы можете просто использовать кусок стали, но вам будет трудно найти отталкивающие области. Возможно, очень маленький магнит, который не является неодимовым, подойдет.

Асинхронные двигатели АИР. История, особенности, производители

На самом деле, данная маркировка появилась более 30 лет назад. На территории стран социалистического лагеря были разработаны единые стандарты, их разработчик — Международная организация по экономическому и научно-техническому сотрудничеству в области электротехнической промышленности «Интерэлектро», которая была учреждена на основе Соглашения, подписанного правительствами ряда стран, включая СССР, 13 декабря 1973 года.

Маркировка «АИ» обозначает «асинхронные электродвигатели Интерэлектро». АИР — их разновидность для внутренних продаж и экспорта.

Данные двигатели унифицированны по рядам мощностей, установочных размеров и других характеристик.

Сегодня двигатели АИР производит ряд заводов, некоторые из них: в России — «Мосэлектромаш», Ярославский электромашиностроительный завод (ОАО «ELDIN») и в Украине — СЛЭМЗ, Могилевский завод «Электродвигатель» и крупнейший — Харьковский электротехнический завод Укрэлектромаш (ХЭЛЗ).

Виды обозначения в серии АИР

В серии АИ принято три вида обозначения: базовое, основное и полное. Базовое обозначение — это сочетание элементов символов, которые определяют серию, его мощность, частоту вращения (обозначение серии, вариант увязки мощности к установочным размерам, высоту оси вращения, установочный размер подлине станины и длина магнитопровода статора, число полюсов), например: АИР200 Мб (серия АИ, увязка по варианту Р, высота оси вращения 200 мм, длина корпуса по установочным размерам М, число полюсов 6).

Основное обозначение — это сочетание базового обозначения электродвигателя с обозначением вида защиты и охлаждения, электрической и конструктивной модификации, специализированного исполнения и исполнения по условиям окружающей среды, например: АИРБС100М4НПТ2 (АИР100М4 — базовое обозначение, Б — закрытое исполнение с естественным охлаждением без обдува, С — с повышенным скольжением, Н — малошумные, П — с повышенной точностью установочных размеров, Т — для тропического климата, 2 — категория размещения).

Полное обозначение — сочетание основного обозначения с дополнительными электрическими и конструктивными характеристиками, например: АИРБС100М4НПТ2 220/380 В, 60IM218I, КЗ-Н-3, F-100, (АИРБС100М4НПТ2 — основное обозначение, 220/380 В — напряжение, 60 — частота сети, IM2181 — исполнение по способу монтажа и по концу вала, КЗ-Н-3 — исполнение выводного устройства и число штуцеров, F100 — исполнение фланцевого щита).

Читать еще:  Stalker как завести двигатель

Итак, полное стандартизованное обозначение описывает практически все характеристики двигателя и имеет вид — АИР ХХХ ДПСИ, КККК ММММММ ЗЗЗЗ, где

АИР — обозначение серии;

ХХХ – габарит, высота оси двигателя в миллиметрах (56, 63 … 355);

Д – длина пакета статора, установочный размер (А, В, L, S, M);

П – число пар полюсов;

СИ – специальное исполнение ( Б, Е, Е2, Ж, Р3, Ш, П, Ф, А, Х2);

КККК – исполнение по климатическим условиям (У1…У3, УХЛ2, УХЛ4, Т2, ОМ2);

ММММММ – способ монтажа (IM1081, IM2081, IM2181, IM1082, IM2082, IM5010);

ЗЗЗЗ – степень защиты оболочки (IP44, IP54, IP55).

Конструктивные исполнения двигателей АИР

Электродвигатели АИР имеют следующие конструктивные исполнения

по окружающей среде (тропическое, химическое, для сельского хозяйства);

по установочным размерам;

имеющие дополнительные функции (фазный ротор, электромагнитный тормоз), повышенный пусковой момент, узкоспециальные и другие функции.

Преимущества двигателей АИР:

низкий уровень шума

высокий класс нагревостойкости изоляции

высокая степень защиты электродвигателя от влаги

отсутствие подвижных контактов

Двигатели АИР обладают привлекательными свойствами и с точки зрения изготовителя, и с позиции потребителя.

Благодаря простой конструкции эти двигатели легко производить, обслуживать и ремонтировать.

Устройство работает непосредственно от сети с переменным током, а множество вариантов исполнения (по монтажу, защите, климатическим условиям и пр.) позволяет эксплуатировать асинхронный двигатель практически в любых условиях, в том числе в помещениях с присутствием агрессивных сред.

Мотор обладает высоким коэффициентом полезного действия. В зависимости от конкретного типа этот показатель достигает 85%. Он пригоден для использования в оборудовании непрерывного цикла, например, в приводных узлах конвейеров, транспортеров и т. п.

Асинхронный двигатель высоко надежен и редко выходит из строя. Он успешно претерпевает кратковременные механические перегрузки.

Мотор как нельзя лучше подходит для целей автоматизации производственных процессов. Совокупность таких качеств, как надежность, легкость монтажа, простота обслуживания, неприхотливость к условиям эксплуатации делают его незаменимым в деле поддержания автоматической работы устройств.

Практически каждый асинхронный двигатель в соотношении цены и качества оказывается исключительно выгодным приобретением.

Китайские АИР

Если ранее двигатели АИР производили только участники «Интерэлектро», сегодня серию активно производит Китай. В связи с распространенностю маркировки китайские производители имеют возможность изготавливать большие объемы продукции по одним стандартам, что очень выгодно. Для выпуска данных двигателей достаточно соблюдения стандартов и предписаний по тех.характеристикам.

Однако китайские двигатели имеют ряд недостатков, которые заставляют относится к ним настороженно. Первейшие из них это, конечно, качество материалов и сборки. Отечественные двигатели, по общему мнению потребителей, значительно выигрывают в качестве. Убедиться в этом вы можете сами!

Что определяет количество пар полюсов двигателя

Воропаев Е.Г.
Электротехника

Если в рассмотренных выше асинхронных машинах ротор имел частоту вращения, отличную от частоты вращения магнитного поля статора, то в синхронных эти частоты равны между собой.
Синхронные машины могут работать как генераторами, так и двигателями.
В зависимости от типа привода синхронные генераторы получили и свои названия.
Турбогенератор, например, — это генератор, приводимый в движение паровой турбиной, гидрогенератор вращает водяное колесо, а дизель — генератор механически связан с двигателем внутреннего сгорания.
Синхронные двигатели широко применяют для привода мощных компрессоров, насосов, вентиляторов.
Синхронные микродвигатели используют для привода лентопротяжных механизмов регистрирующих приборов, магнитофонов и т.д.

6.1. КОНСТРУКЦИЯ И ПРИНЦИП ДЕЙСТВИЯ СИНХРОННОГО ГЕНЕРАТОРА

Статор синхронной машины по конструкции не отличается от статора асинхронного двигателя. В пазах статора размещается трехфазная, двухфазная или однофазная обмотки.
Заметное отличие имеет ротор, который принципиально представляет собой постоянный магнит или электромагнит.
Это налагает особые требования на геометрическую форму ротора. Любой магнит имеет полюса, число которых может быть два и более.
На рис. 6.1.1 приведены две конструкции генераторов, с тихоходным и быстроходным ротором.

Быстроходными бывают, как правило, турбогенераторы. Количество пар магнитных полюсов у них равно единице. Чтобы такой генератор вырабатывал электрический ток стандартной частоты f = 50 Гц, его необходимо вращать с частотой

На гидроэлектростанциях вращение ротора зависит от движения водяного потока. Но и при медленном вращении такой генератор должен вырабатывать электрический ток стандартной частоты f = 50 Гц.
Поэтому для каждой гидроэлектростанции конструируется свой генератор, на определенное число магнитных полюсов на роторе.
В качестве примера приведем параметры синхронного генератора, работающего на Днепровской ГЭС.
Водяной поток вращает ротор генератора с частотой n = 33,3 об / мин. Задавшись частотой f = 50 Гц, определим число пар полюсов на роторе:

Принцип действия синхронного генератора основан на явлении электромагнитной индукции. Ротор с магнитными полюсами создает вращающееся магнитное поле, кото-рое, пересекая обмотку статора, наводит в ней ЭДС. При подключении к генератору нагрузки генератор будет являться источником переменного тока.

6.2. ЭДС СИНХРОННОГО ГЕНЕРАТОРА

Как было показано выше, величина наводимой в обмотке статора ЭДС количественно связана с числом витков обмотки и скорости изменения магнитного потока:

Переходя к действующим значениям, выражение ЭДС можно записать в виде:

где n — частота вращения ротора генератора,
Ф — магнитный поток,
c — постоянный коэффициент.
При подключении нагрузки напряжение на зажимах генератора в разной степени меняется. Так, увеличение активной нагрузки не оказывает заметного влияния на напряжение. В то же время индуктивная и емкостная нагрузки влияют на выходное на-пряжение генератора. В первом случае рост нагрузки размагничивает генератор и снижает напряжение, во втором происходит его подмагничивание и повышение напряжения. Такое явление называется реакцией якоря.
Для обеспечения стабильности выходного напряжения генератора необходимо регулировать магнитный поток. При его ослаблении машину надо подмагнитить, при увеличении — размагнитить. Делается это путем регулирования тока, подаваемого в обмотку возбуждения ротора генератора.

6.3. СИНХРОННЫЙ ДВИГАТЕЛЬ

6.3.1. КОНСТРУКЦИЯ И ПРИНЦИП ДЕЙСТВИЯ

Конструкция синхронного двигателя такая же, как и у синхронного генератора.
При подаче тока в трехфазную обмотку статора в нем возникает вращающееся магнитное поле. Частота вращения его определяется формулой:

Читать еще:  Гироскоп как вечный двигатель

где f — частота тока питающей сети,
р — число пар полюсов на статоре.
Ротор, являющийся часто электромагнитом, будет строго следовать за вращаю-щимся магнитным полем, т.е. его частота вращения n2 = n1.
Рассмотрим принцип действия синхронного двигателя на следующей условной модели (рис. 6.3.1.). Пусть магнитное поле статора будет смоделировано системой вращающихся магнитных полюсов N — S.

Ротор двигателя тоже представляет собой систему электромагнитов S — N, кото-рые «сцеплены» с полюсами на статоре. Если нагрузка на двигателе отсутствует, то оси полюсов статора будут совпадать с осями полюсов ротора ( = 0).
Если же к ротору подключена механическая нагрузка, то оси полюсов статора и ротора могут расходиться на некоторый угол .
Однако «магнитное сцепление» ротора со статором будет продолжаться, и частота вращения ротора будет равна синхронной частоте статора (n2 = n1). При больших значениях ротор может выйти из «сцепления» и двигатель остановится.
Главное преимущество синхронного двигателя перед асинхронным — это обеспечение синхронной скорости вращения ротора при значительных колебаниях нагрузки.

6.3.2. СИСТЕМА ПУСКА СИНХРОННОГО ДВИГАТЕЛЯ

Как мы показали выше, синхронное вращение ротора обеспечивается «магнитным сцеплением» полюсов ротора с вращающимся магнитным полем статора.
В первый момент пуска двигателя вращающееся магнитное поле статора возникает практически мгновенно. Ротор же, обладая значительной инерционной массой, прийти в синхронное вращение сразу не сможет. Его надо «разогнать» до подсинхронной скорости каким-то дополнительным устройством.
Долгое время роль разгонного двигателя играл обычный асинхронный двигатель, механически соединенный с синхронным.
Ротор синхронного двигателя приводится во вращение до подсинхронной скорости. Далее двигатель сам втягивается в синхронизм.
Обычно мощность пускового двигателя составляет 5-15 % от мощности синхронного двигателя. Это позволяет пускать в ход синхронный двигатель только вхолостую или при малой нагрузке на валу.
Применение пускового двигателя мощностью, достаточной для пуска синхронного двигателя под нагрузкой делает такую установку громоздкой и дорогой.
В последнее время используется так называемая система асинхронного пуска синхронных двигателей. С этой целью в полюсные наконечники забивают стержни, напоминающие собою короткозамкнутую обмотку асинхронного двигателя (рис. 6.3.2.1).

В начальный период пуска синхронный двигатель работает как асинхронный, а в последующем — как синхронный. В целях безопасности обмотку возбуждения в начальном периоде пуска закорачивают, а на заключительном подключают к источнику по-стоянного тока.

6.4. РЕАКТИВНЫЙ СИНХРОННЫЙ ДВИГАТЕЛЬ

В лабораторной практике, в быту и в маломощных механизмах применяют так называемые реактивные синхронные двигатели.
От обычных классических машин они отличаются лишь конструкцией ротора. Ротор здесь не является магнитом или электромагнитом, хотя по форме напоминает собой полюсную систему.
Принцип действия реактивного синхронного двигателя отличен от рассмотренного выше. Здесь работа двигателя основана, на свободной ориентации ротора таким образом, чтобы обеспечить магнитному потоку статора лучшую магнитную проводимость (рис. 6.4.1).

Действительно, если в какой-то момент времени максимальный магнитный поток будет в фазе А — X, то ротор займет положение вдоль потока ФА. Через 1/3 периода максимальным будет поток в фазе В — У. Тогда ротор развернется вдоль потока ФВ. Еще через 1/3 периода произойдет ориентация ротора вдоль потока. ФС. Так непрерывно и синхронно ротор будет вращаться с вращающимся магнитным полем статора.
В школьной практике иногда, при отсутствии специальных синхронных двигателей, возникает необходимость в синхронной передаче.
Эту проблему можно решить с помощью обычного асинхронного двигателя, если придать ротору следующую геометрическую форму (рис. 6.4.2).

6.5. ШАГОВЫЙ ДВИГАТЕЛЬ

Этот тип двигателя является машиной постоянного тока, хотя принцип действия его напоминает синхронный реактивный двигатель.
Как видно из рис. 6.5.1, статор двигателя имеет шесть пар выступающих полюсов.

Каждые две катушки, расположенные на противоположных полюсах статора, образуют обмотку управления, включаемую, в сеть постоянного тока. Ротор — двухполюсный.
Если подключить к источнику постоянного тока катушки полюсов 1 — 1′, то ротор расположится вдоль этих полюсов. Если задействовать катушки полюсов 2 — 2′, а ка-тушки полюсов 1 — 1′ обесточить, то ротор повернется и займет положение вдоль полю-сов 2 — 2′. Такой же поворот ротора произойдет, если включить в сеть катушки полюсов 3 — 3′. Так, шагами, ротор будет «следовать» за своей обмоткой управления.
Преимуществом шаговых двигателей является то, что в них совершенно отсутствует «самоход». Они поворачиваются и строго фиксируются с шагом, пропорциональ-ным числу полюсов на статоре. Это качество делает его незаменимым в особо точных механизмах (для привода часов, механизмов подачи ядерного топлива в реакторах, в станках с ЧПУ и т.д.).
Управление шаговыми двигателями ведется с применением различных электронных устройств (триггеров Шмидта и др.).

6.6. КОЛЛЕКТОРНЫЙ ДВИГАТЕЛЬ ПЕРЕМЕННОГО ТОКА

Безколлекторные асинхронные и синхронные двигатели при многих положительных качествах имеют существенные недостатки. Они не допускают достаточно плавного и экономичного регулирования вращения.
Этот пробел частично восполняют коллекторные двигатели переменного тока.
Коллекторные двигатели бывают однофазными и трехфазными.
Ротор однофазного коллекторного двигателя выполнен в виде цилиндра с фазными обмотками, статор — явнополюсный.
Так как обмотка полюсов статора, подключаемая к сети переменного тока, создает пульсирующее магнитное поле, то все элементы магнитной цепи машины набираются из отдельных листов электротехнической стали.
Вращающий момент в однофазном коллекторном двигателе создается взаимодействием токов в обмотке ротора с магнитным потоком полюсов. На рис. 6.6.1- показана схема подключения к сети коллекторного двигателя.

Коллекторные двигатели могут работать как от сети переменного тока, так и от сети постоянного тока. Это обстоятельство послужило для присвоения им наименования универсальных коллекторных двигателей. Коллекторные двигатели широко при-меняются для привода швейных машин, пылесоса и т.д.

Ссылка на основную публикацию
Adblock
detector