Что относится к двигателям внутреннего сгорания

МПК F02 – Двигатели внутреннего сгорания

Патенты в категории:

Изобретение относится к способу и устройству для управления подачей топлива в дизель на стационарных установках и мобильном транспорте для больших дизелей, в частности на тракторах, на судовых, тепловозных, транспортных дизелях. Изобретение направлено.

Изобретение относится к способу и устройству для управления подачей топлива в дизель на стационарных установках и мобильном транспорте для больших дизелей. Предлагаемое изобретение повышает индикаторный кпд, реализует мультивпрыск и регулируемые по.

Изобретение относится к ракетной технике. В жидкостном ракетном двигателе, содержащем турбонасосный агрегат, включающий установленные на валу турбину, насосы окислителя и горючего и дополнительный насос горючего и камеру сгорания, имеющую.

Изобретение относится к устройствам предпускового подогрева силовых установок военных гусеничных машин. Устройство для автоматической подготовки силовой установки военной гусеничной машины к пуску содержит подогреватель, включающий в себя котел.

Изобретение относится к области машиностроения, а именно к способам преобразования механической энергии в потенциальную энергию сжатого газа и наоборот, и может быть использовано для организации рабочего цикла в компрессорах, детандерах и других.

Изобретение относится к двигателям внутреннего сгорания. Четырехцилиндровый свободнопоршневой двигатель, содержащий корпус двигателя, две пары оппозитно установленных цилиндров и две поршневых группы, при этом каждая поршневая группа выполнена в виде.

Изобретение относится к двигателям внутреннего сгорания. Задача изобретения — повышение КПД двигателя и снижение вибронагрузок. Четырехцилиндровый свободнопоршневой двигатель содержит корпус двигателя, две пары оппозитно установленных цилиндров и две.

Изобретение относится к двигателям внутреннего сгорания (ДВС). В восьмицилиндровом свободнопоршневом двигателе, содержащем корпус двигателя, четыре пары оппозитно установленных цилиндров и две поршневых группы, согласно изобретению каждая поршневая.

Изобретение относится к газотурбинным двигателям (ГТД) авиационного применения, а именно к конструкции узла соединения роторов компрессора и турбины. Техническим результатом, достигаемым при использовании настоящего изобретения, является сохранение.

Изобретение относится к двигателям внутреннего сгорания. Четырехцилиндровый свободнопоршневой двигатель, содержащий корпус двигателя, две пары оппозитно установленных цилиндров и две поршневые группы, при этом каждая поршневая группа выполнена в виде.

Публикации

Передать свои права на любую деятельность можно правильно оформив все бумаги. Как и любой подобный договор, передача авторства, может быть осуществлена только между непосредственным автором или его правопреемником и пользователем результата.

Каждый человек всегда стремиться обезопасить свое имущество от незаконных посягательств. Это касается и интеллектуальной собственности. Обеспечить правовую защиту таким вещам может действие патента на полезную модель или изобретение.

Подача заявки на выдачу патента может осуществляться несколькими способами. Для этого можно посетить лично Патентное ведомство, отправить заявку по почте или по факсу. Последний вариант предусматривает свои особенности оформления, с.

Выдавая лицензию на свое имущество, патентообладатель передает вместе с ней и часть прав, которыми обладает только он.

Договор на исключительные права

Во все времена люди старались защитить свои имущественные и неимущественные права. Именно вариацией последних и стали права на авторство. Они определяют возможности использования и создания продуктов творчества.

В Массачусетсе к 2035 году перестанут продавать автомобили с двигателями внутреннего сгорания

Инициатива стала частью плана по декарбонизации штата к 2050 году

Фото: iStock

Губернатор штата Массачусетс Чарли Бейкер сообщил о том, что к 2035 году штат полностью откажется от автомобилей с двигателем внутреннего сгорания (ДВС) — в пользу электромобилей. ДВС — один из основных источников выбросов углекислого газа (CO2), и инициатива стала частью плана по достижению углеродной нейтральности к 2050 году. Документ «Дорожная карта Массачусетса по сокращению выбросов CO2 до 2050 года» (Massachusetts 2050 Decarbonization Roadmap) подготовили сотрудники Исполнительного офиса по вопросам энергетики и окружающей среды штата совместно со специалистами из консалтинговой компании The Cadmus Group (специализируется на вопросах устойчивого развития).

Авторы дорожной карты поясняют, что стоит за целью достигнуть нулевых выбросов к 2050 году. Для этого объем выбросов парниковых газов, ежегодно попадающих в атмосферу, должен сравняться с объемом CO2 и CO2-эквивалента, ежегодно удаляемых из нее. В любом случае объем выбросов должен быть по меньшей мере на 85% ниже уровня 1990 года. Чарли Бейкер признает, что высокое содержание углекислого газа в атмосфере ведет к изменению климата. Учащаются и связанные с ним неблагоприятные природные явления, включая засухи, пожары и наводнения. «Последствия изменения климата уже можно наблюдать, поэтому крайне важно, чтобы мы принимали меры», — заявил он. Министр энергетики и окружающей среды Массачусетса Кэтлин Теохаридс добавила, что сокращение выбросов углекислого газа потребует напряженной работы. Однако в итоге эта работа принесет пользу местным жителям, особенно тем, кто проживает в наиболее уязвимых районах. Достичь заявленной цели власти штата планируют за счет изменений в шести секторах экономики, включая транспортный, строительный и энергетический. Администрация Массачусетса собирается сократить выбросы от жилых и коммерческих зданий, отказаться от традиционных источников электроэнергии в пользу возобновляемых, создать систему управления твердыми отходами, наладить процесс очистки сточных вод.

В транспортном секторе 60% выбросов приходится на легковые и грузовые автомобили, а также спортивные внедорожники (Sport Utility Vehicles, SUVs), спрос на которые в последние годы быстро растет. В частности, легковые автомобили служат источником 27% общего объема выбросов. Свести к минимуму выбросы от легковых автомобилей с ДВС можно с помощью развития системы общественного транспорта, сокращения количества легковых автомобилей, внедрения велосипедных и пешеходных дорожек. Однако основным способом экологизации транспортного сектора, как ожидается, станет переход на транспортные средства с нулевыми выбросами (Zero-Emission Vehicles, ZEVs). К ним относятся электромобили, а также автомобили, работающие на водородных топливных элементах. Однако последние считаются более дорогостоящими и вряд ли станут широко распространенным средством передвижения в ближайшее время, говорят специалисты.

Электрокары, в том числе те, которые работают от аккумуляторных батарей (Battery Electric Vehicles, BEVs) и подзаряжаются от внешних источников питания (Plug-In Hybrid Electric Vehicles, PHEVs), наоборот, все чаще востребованы. Разработкой этого вида транспорта сейчас занимаются как крупные автопроизводители, так и небольшие стартапы. Ожидается, что только на американском рынке в ближайшие три года появится более десятка новых моделей. Цены на электромобили продолжают падать, в том числе за счет удешевления процесса производства батарей. Специалисты прогнозируют, что в скором времени стоимость машин с электродвигателем будет сопоставима со стоимостью автомобилей с ДВС.

Чарли Бейкер. 72-й губернатор штата Массачусетс
Фото из личного архива

Авторы плана надеются, что переход на электромобили позволит повысить качество воздуха в Массачусетсе. Как следствие, это поможет сократить расходы на медицинское обслуживание и создать тысячи новых рабочих мест. Например, вырастет спрос на специалистов, которые будут заниматься обслуживанием зарядной инфраструктуры. При этом эксперты признают, что внедрение нового типа транспорта происходит медленнее, чем необходимо для достижения цели. Ожидается, что к 2030 году на дорогах появится около 500 тыс. электромобилей. Однако для сокращения выбросов на 45% к 2030 году по сравнению с уровнем 1990 года требуется, чтобы по меньшей мере 1 млн из 5,5 млн транспортных средств в Массачусетсе были с нулевыми выбросами. Изменения должны коснуться и других средств передвижения: среднегрузных и большегрузных машин, а также авиационного и железнодорожного транспорта — на их долю приходится около 14% выбросов от всего объема. Медленнее всего процесс декарбонизации происходит в сфере коммерческой авиации, поэтому она будет оставаться основным источником выбросов в транспортном секторе.

По данным консалтинговой компании Boston Consulting Group (BCG), сейчас во всем мире насчитывается более 32 млн электрокаров. В это число входит 8 млн полностью электрических автомобилей (BEVs и PHEVs), а также 24 млн частично электрифицированных транспортных средств — например, гибридных автомобилей, работающих на ДВС и электродвигателе. В BCG прогнозируют, что к 2030 году количество пассажирских электромобилей во всем мире превысит 300 млн. К этому же времени из эксплуатации выйдет около 4 млн электромобилей совокупной номинальной мощностью 100 ГВт/ч. По мере выхода электрокаров из строя все более острой будет становиться проблема утилизации литий-ионных батарей, срок службы которых в среднем составляет восемь лет, или 160 тыс. км. Это основной компонент электромобиля, содержащий токсичные вещества и представляющий серьезную угрозу для окружающей среды. Эксперты напоминают, что сегодня больше половины литий-ионных батарей, используемых в бытовой электронике, после окончания срока службы попадает на свалки или мусоросжигательные заводы. Рынок переработки батарей пока развивается медленными темпами (исключением является Китай), в том числе из-за того, что процесс извлечения ценных металлов, включая кобальт, марганец, никель и литий, считается слишком ресурсоемким. Однако специалисты надеются, что рост спроса на электромобили, ужесточение регуляторных требований и появление эффективных технологий переработки ускорят его развитие.

Читать еще:  Горит лампа давления масла на низких оборотах при нагретом двигателе

Научная работа

К основным научным направлениям кафедры относится:

  • исследование судового дизелестроения, концепций конструирования судовых комбинированных двигателей новых поколений;
  • использование фундаментальной теории управления при проектировании современных дизелей;
  • математическое моделирование нестационарных процессов в цилиндре двигателя и смежных с ним систем впуска и выпуска и топливоподающей аппаратуре;
  • создание систем наддува двигателя в зависимости от величины среднего эффективного давления;
  • проблемы создания современных дизель-электрических агрегатов переменного тока с высоким качеством электроэнергии;
  • решение проблем создания адаптивных (интеллектуальных) двигателей внутреннего сгорания;
  • моделирование и совершенствование процессов формообразования и обеспечения точности в технических и технологических системах;
  • совершенствование процессов абразивной обработки ответственных изделий машиностроения;
  • создание конструкций эффективных укороченных забоек взрывных скважин.

Перечисленным перечнем научные интересы нашей кафедры не исчерпываются. В ближайшее время кафедра планирует уделить особое внимание освоению современных методов исследований по экологическим показателям двигателей, по параметрам шума и вибрации с разработкой новых идей по улучшению этих показателей. В практическое русло переводятся исследования по конкретным моделям среднеоборотных и высокооборотных двигателей с обеспечением их работы на газообразном топливе. Кафедра располагает собственной аспирантурой, где продолжают обучение наиболее одаренные выпускники кафедры. В настоящее время 10 аспирантов работают по различным научным направлениям кафедры. В последнее время интенсивная автомобилизация Дальнего Востока за счет импортных автомобилей потребовала подготовки специалистов по автомобильным ДВС. Современный автомобильный двигатель является сердцем автомобиля, самым сложным и самым главным агрегатом автомобиля. Быть специалистом по ДВС означает применение ваших знаний на любой работе в области энергетики в любом регионе мира. Профессорско-преподавательский коллектив кафедры «ДВС» ведет обучение студентов на современном оборудовании и стендах, оснащенных разнообразной измерительной аппаратурой, ЭВМ, отечественными и импортными ДВС.

В процессе обучения студенты изучают физику процессов, происходящих в ДВС, их механизмы и системы, что позволит вам в будущем правильно эксплуатировать ДВС. В учебном процессе широко используются персональные ЭВМ, локальная вычислительная сеть ТОГУ имеет выход в INTERNET. Глубокие знания студент получает по теплотехнике, гидравлике, информатике, системам ДВС, системам автоматике, теории и конструкции ДВС. Созданы несколько научных лабораторий, в том числе, лаборатория горюче-смазочных материалов, лаборатория ДВС.

Кафедра «ДВС» имеет творческие связи с ведущими Вузами России (МГТУ им. Н.Э. Баумана, МАДИ, Санкт-Петербургский ГТУ и др.), с РАН (институт автоматики и процессов управления ДВО РАН и др.). Большую поддержку в подготовке специалистов оказывает Российская инженерная академия (РИА). Там где кипит разумная и полезная обществу работа, обойтись без науки и изобретательства просто невозможно. А на кафедре с таким творческим потенциалом и с такими кадрами, решающей дела как практические (хоздоговорные работы), научные (статьи, учебные пособия, методические указания), исследовательские (разработка аспирантами совместно с руководителями новой тематики), учебные (методические семинары, конференции) – здесь без творчества не обойтись. Поэтому и работает при кафедре региональный семинар по вопросам создания, проектирования и эксплуатации комбинированных двигателей внутреннего сгорания. Доклад на этом семинаре – это путевка для выхода серьезной научной работы на докторский совет по защите диссертационных работ. В этом совете четыре профессора кафедры определяют направление: тепловые двигатели внутреннего сгорания. Кафедра принимает активное участие совместно с преподавателями ДВГУПС в работе второго семинара: механика твердого деформируемого тела. На фотографии представлены частично патенты и авторские свидетельства, полученные кафедрой в разные годы. Безусловно, научная деятельность определяет и качество подготовки специалистов в области двигателей внутреннего сгорания и их эксплуатации. Симбиоз науки и практики – вот основное начало в педагогической деятельности. Кстати заметим, что практически все стенды лаборатории кафедры «ДВС» были созданы руками ее сотрудников.

Актуальным направлением является разработка и внедрение в учебный процесс заданий по курсам «Начертательная геометрия. Инженерная графика», «Инженерная и компьютерная графика» и «Компьютерная графика» для компьютерного тестирования в АСТ, которое внедряется на кафедре с 2007 года.

РОТОРНЫЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ

Изобретение относится к области машиностроения, в частности к роторным двигателям внутреннего сгорания. Двигатель содержит корпус с выполненными в нем цилиндрическими полостями, два ротора, размещенные в них и вращающиеся на прямом валу, подвижные пластины шиберной перегородки, размещенные в пазу корпуса с возможностью постоянного контакта с поверхностями роторов за счет пружин, две камеры сгорания с форсунками для впрыска топлива и свечами зажигания, впускные и выпускные отверстия по обе стороны пластин, служащие совместно с роторами и корпусом в образовании камер расширения и камер сжатия рабочего тела. Ось вала расположена на центральной части корпуса. Две подвижные пластины размещены в радиальных пазах и их перемещение осуществлено посредством пружины совместно с поршневым цилиндром от давления при подаче сгорающей топливной смеси из камер сгорания. Роторы выполнены в виде цилиндров, эксцентрично закрепленных на валу с вращением своих внешних поверхностей за счет подшипников относительно базовых образующих цилиндров роторов с возможностью обеспечения последовательных процессов всасывания, сжатия, сгорания и выхлопа каждым ротором попеременно с осуществлением передачи сжатого воздуха от одного ротора к другому и с одним циклом работы за каждый оборот вращения вала. Изобретение направлено на упрощение конструкции, увеличение долговечности, повышение экономичности. 2 ил.

Роторный двигатель внутреннего сгорания, содержащий корпус с выполненными в нем цилиндрическими полостями, два ротора, размещенные в них и вращающиеся на прямом валу, подвижные пластины шиберной перегородки, размещенные в пазу корпуса с возможностью постоянного контакта с поверхностями роторов за счет пружин, две камеры сгорания с форсунками для впрыска топлива и свечами зажигания, впускные и выпускные отверстия по обе стороны пластин шиберной перегородки, служащие совместно с роторами и корпусом в образовании камер расширения и камер сжатия рабочего тела, отличающийся тем, что ось вала расположена на центральной части корпуса, две подвижные пластины шиберной перегородки размещены в радиальных пазах и их перемещение осуществлено посредством пружины совместно с поршневым цилиндром от давления при подаче сгорающей топливной смеси из камер сгорания, при этом роторы выполнены в виде цилиндров, эксцентрично закрепленных на валу с вращением своих внешних поверхностей за счет подшипников относительно базовых образующих цилиндров роторов с возможностью обеспечения последовательных процессов всасывания, сжатия, сгорания и выхлопа каждым ротором попеременно с осуществлением передачи сжатого воздуха от одного ротора к другому и с одним циклом работы за каждый оборот вращения вала.

Изобретение относится к области машиностроения, в частности к роторным двигателям внутреннего сгорания.

Из уровня техники известна конструкция двигателя внутреннего сгорания (US 2015307 А) с одним ротором с камерами сгорания, свечами зажигания, форсунками для впрыска топлива и клапанами для впуска и выброса воздушной смеси или продуктов сгорания топлива, размещенными на камерах сгорания и корпусе роторного устройства, пружинами совместно с поршневыми цилиндрами для перемещения шиберных устройств.

В однороторном двигателе без дополнительного внешнего компрессора рабочий цикл осуществляется за четыре оборота вала. Сгорание топлива для привода вала двигателя осуществляется только во время двух следующих друг за другом оборотов ротора, циклы всасывания, сжатия воздуха и выхлопа сгоревшего топлива происходят во время всех четырех оборотов. Выделение энергии для производства вращения вала двигателя однороторного устройства осуществляется только во время двух следующих друг за другом оборотов ротора, при следующих двух оборотах процессы всасывания и сжатия воздуха, выхлопа сгоревшего топлива, преодоления трения вращающихся частей происходят только за счет инерции ротора, что в целом уменьшает суммарную мощность двигателя.

Читать еще:  Холодный пуск двигателя nissan

Известен роторный двигатель внутреннего сгорания на базе двух роторов эллиптической формы, закрепленных на одном валу, с камерами сгорания, выполненными в виде углубления в корпусе (DE 2640276 А1, 09.03.1978, F02B 53/02). В представленном двигателе внутреннего сгорания один ротор эллиптической формы за счет двух симметричных половин своего корпуса, находящихся в контактах с цилиндрическим корпусом устройства, постоянно производит работу только по всасыванию воздуха и сжатию его для подачи в камеры сгорания, второй эллиптический ротор аналогично за счет двух половин своего корпуса, только вращение вала двигателя за счет давления на него от подачи сгорающего в камерах сгорания топлива с одновременным выхлопом продуктов сгорания. Процессы всасывания, нагнетания в камеры сгорания и выхлопа происходят за счет двух систем шиберов, каналов и клапанов при каждом роторе. Увеличение в 2 раза количества указанных деталей по сравнению с роторными устройствами с одним шибером приводит к понижению надежности за счет увеличения трения, усложнению конструкции и к снижению по этой причине кпд. Невозможно осуществление качения эллиптической внешней поверхности ротора на ее базовой образующей по цилиндрической внутренней поверхности цилиндра корпуса двигателя с помощью подшипника. Недостатком данного изобретения является также невозможность применения в целях увеличения герметизации разделенных шибером объемов рабочих полостей цилиндрического вращающегося уплотнения со сточенной по радиусу контактной поверхностью между шибером и ротором (изобретение US 2015307A) вследствие постоянно изменяющегося угла контакта в точке касания с поверхностью эллиптического ротора.

Задачей настоящего изобретения является упрощение конструкции, увеличение долговечности, повышение экономичности.

Задача достигается в роторном двигателе внутреннего сгорания, содержащем корпус с выполненными в нем цилиндрическими полостями, два ротора, размещенные в них и вращающиеся на прямом валу, подвижные пластины шиберной перегородки, размещенные в пазу корпуса с возможностью постоянного контакта с поверхностью роторов за счет пружин, две камеры сгорания с форсунками для впрыска топлива и свечами зажигания, впускные и выпускные отверстия по обе стороны пластин шиберной перегородки, служащей совместно с роторами и корпусом в образовании камер расширения и камер сжатия рабочего тела, согласно изобретению ось вала расположена на центральной части корпуса, две подвижные пластины шиберной перегородки размещены в радиальных пазах и их перемещение осуществлено посредством пружины совместно с поршневым цилиндром от давления при подаче сгорающей топливной смеси из камер сгорания, при этом роторы выполнены в виде цилиндров, эксцентрично закрепленных на валу с вращением своих внешних поверхностей за счет подшипников относительно базовых образующих цилиндров роторов с возможностью обеспечения последовательных процессов всасывания, сжатия сгорания и выхлопа каждым ротором попеременно с осуществлением передачи сжатого воздуха от одного ротора к другому и с одним циклом работы за каждый оборот вращения вала.

Преимуществом предлагаемой конструкции в отличие от представленных выше является осуществление процесса сгорания горючего при каждом обороте вала, а также двукратное уменьшение количества шиберов с соответствующими уплотнениями и систем их прижатия к ротору, что приводит к повышению надежности устройства, снижению трения деталей конструкции, повышению моторесурса и повышению его кпд возможность применения сточенного по радиусу контактной поверхности компрессионного валика, установки маховиков-противовесов в целях уравновешивания центробежных сил, возникающих вследствие вращения эксцентриковых роторов на противоположных сторонах вала, а также упрощение изготовления и эксплуатации указанного роторного устройства с шиберной перегородкой за счет одинаковых конструкций двух его роторных частей.

На фиг.1 изображена схема роторного двигателя внутреннего сгорания из двух пластин и двух роторов на одном валу с системами газораспределения через клапаны во время первого оборота вала.

На фиг.2 изображена схема роторного двигателя внутреннего сгорания с шиберной перегородкой из двух пластин и двух роторов на одном валу во время второго оборота вала с той же нумерацией деталей, что и на фиг.1.

Схема роторного двигателя внутреннего сгорания состоит на первом роторе из камеры расширения 2, в которую поступает при всасывании через впускное отверстие 6 всасываемый воздух или сгорающее в камере сгорания топливо, камеры сжатия 1, в которой сжимается воздух для выпуска через отверстие 5 или вытесняются продукты сгорания, цилиндрического корпуса роторного устройства 3, передвижной пластины шибера 4 с пружиной для осуществления его плотного контакта с внешней поверхностью ротора, вала 7, ось которого расположена на центральной части корпуса, эксцентриковой втулки ротора 8, подшипника 9, внешнего цилиндра ротора 10, камеры сгорания 12 с форсункой для впрыска топлива и с электросвечей, клапанов 14, 15, 16, 19, кулачка механизма газораспределения первого ротора 26.

Схема на втором роторе состоит из камеры сжатия 22, из которой вытесняется через отверстие 24 сжатый воздух или продукты сгорания, камеры расширения 23, в которую поступает в зависимости от цикла работы всасываемый воздух или сгорающее топливо через отверстие 25, камеры сгорания 18 с форсункой подачи топлива и электросвечей, клапанов 13, 17, 20, 21, кулачка механизма газораспределения второго ротора 27.

Двигатель работает следующим образом.

Во время первого оборота вала, фиг.1.

При первом роторе в камере сгорания 12 происходит сгорание топлива и подача сгоревшего топлива в камеру расширения 2 через клапан 19 и впускное отверстие 6. Одновременно из камеры сжатия 1 в камеру сгорания второго роторного устройства 18 поступает и сжимается воздух через выпускное отверстие 5 и клапан 14. Клапана 15, 16 закрыты.

Кулачок механизма газораспределения первого ротора 26 осуществляет открытие и закрытие клапанов первого ротора за счет поворота вокруг собственной оси на угол от 0 до 180 градусов (половину своего оборота) по сравнению с первым оборотом вала 7 на 360 градусов.

При втором роторе всасывается воздух в камеру расширения 23 через впускное отверстие 25 и клапан 21. Одновременно из камеры сжатия 22 происходит выталкивание сгоревшего топлива через выпускное отверстие 24 и клапан 20. Клапана 13, 17 закрыты.

Кулачок механизма газораспределения второго ротора 27 осуществляет открытие и закрытие клапанов второго ротора за счет поворота вокруг собственной оси на угол от 180 до 360 градусов по сравнению с первым оборотом вала 7 на 360 градусов.

Во время второго оборота вала, фиг.2.

При первом роторе из камеры сжатия 1 через выпускное отверстие 5 и клапан 15 происходит выхлоп сгоревшего топлива. Одновременно в камеру расширения 2 через впускное отверстие 6 и клапан 16 всасывается воздушная смесь. Клапана 14, 19 закрыты.

Кулачок механизма газораспределения первого ротора поворачивается на угол от 180 до 360 градусов по сравнению со вторым оборотом вала 7 на 720 градусов от начала вращения.

При втором роторе сжимаемый воздух из камеры сжатия 22 через выпускное отверстие 24, клапан 13 поступает в камеру сгорания 12 первого роторного устройства. В камере сгорания 18 происходит сгорание и подача через клапан 17 сгоревшего топлива для расширения в камеру расширения 23. Клапана 20, 21 закрыты.

Кулачок механизма распределения второго ротора поворачивается на угол от 0 (от 360 предварительно) до 180 градусов по сравнению со вторым оборотом вала 7 на 720 градусов от начала вращения.

Во время третьего и четвертого оборотов вала повторяются режимы циклов работы роторного устройства с шиберной перегородкой из двух пластин и двух роторов соответственно режимам во время первого и второго оборотов.

Таким образом, предлагаемое роторное устройство с шиберной перегородкой из двух пластин и двух роторов на одном валу в качестве двигателя внутреннего сгорания осуществляет процесс выделения энергии для вращения вала двигателя при каждом его обороте, что невозможно в однороторном двигателе, производящем этот процесс при двух из четырех оборотов вала и обладает большим КПД за счет двукратного уменьшения количества шиберов, воздуходувов и клапанов, присутствующих в двухроторных двигателях с симметричными роторами эллиптической формы.

Предлагаемая конструкция обеспечивает при прочих равных условиях за один поворот вала величину удельной теоретической работы цикла больше у представленного роторного двигателя, чем у поршневого. Коэффициент полезного действия роторных двигателей 0,85-0,9, поршневых 0,7-0,85. При одинаковой степени повышения давления величина удельной теоретической работы у роторных двигателей больше, чем у поршневых, по расчетам в 1,16 -1,18 раза (Орлин А.С. и др. Теория рабочих процессов поршневых и комбинированных двигателей. Машиностроение, 1971 г., гл.VI, стр.172, гл.XI, стр.336.

Читать еще:  Что чаще всего выходит из строя в дизельном двигателе

Роторно-лопастной двигатель Гридина

Это прототип роторного двигателя Ванкеля, но автор считает, что его проект имеет более удачное решение – он технологичнее, дешевле и имеет много вариантов исполнения.

На двигатель разработана и прошла патентную чистоту (заявка № 2005129592) схема компрессионного уплотнительного контура. Она позволит создать необходимую компрессию в прямоугольной камере.

Задача изобретения – избавиться от вибрационных процессов, вызванных невозможностью уравновесить вращающиеся детали, предложить решение, позволяющее получать любые степени сжатия между двумя парами лопастных роторов и повысить плавность изменения угловых скоростей лопастных роторов, увеличить надежность механизма периодического изменения скоростей.

Новый двигатель содержит кольцевую рабочую камеру с впускными и выпускными отверстиями, торцовые крышки, выходной вал и лопастные роторы (разделяющие внутренний объем камеры на изолированные друг от друга сектора), свечу зажигания и механизм периодического изменения скоростей. Последний выполнен в виде зубчатой передачи с внешним или внутренним зацеплением, колесо которой жестко связано с лопастным ротором. Шестеренка располагается с торца двигателя, имеет неподвижную ось вращения и жестко связана с кривошипом, на полуоси которого крепится ползун, скользящий по направляющей, жестко закрепленной на валу, который имеет неподвижную ось вращения, находящуюся между осью шестеренки и полуосью кривошипа, и кинематическое соединение с ведущим валом.

Кроме того, кинематическое соединение осуществляется через жесткое крепление валов с направляющими на выходном валу или через зубчатую передачу двух и более зубчатых колес, одно из которых жестко закреплено на ведущем валу, а другие – на валах с направляющими.

Помимо этого, каждая пара лопастных роторов может иметь одну и более шестеренок с кривошипом, расположенных на одной торцовой крышке корпуса или на двух противоположных, и соответствующее количество валов с направляющими.

Анализ работы экспериментальной модели показывает, что двигатель отличается конструкцией механизма периодического изменения скоростей, он лишен вибрации, так как в его конструкции все детали уравновешиваются, он обеспечивает любые степени сжатия, которое зависит от расположения оси вращения вала с направляющей относительно оси шестеренки с кривошипом и полуосью кривошипа. Надежность двигателя достигается выбором схемы механизма периодического изменения скоростей, количеством необходимых узлов, составляющих этот механизм, и их размеров.

Двигатель содержит механизм периодического изменения скоростей, каждая пара лопастных роторов имеет жесткую связь с колесом зубчатой передачи, шестеренка которой жестко связана с кривошипом, на полуоси которого крепится ползун, скользящий по направляющей, жестко закрепленной на валу.

Работа двигателя осуществляется следующим образом. В рабочих камерах, между двумя парами лопастных роторов, одновременно проходят все циклы рабочего процесса двигателя: сжатие горючей смеси, сгорание, выхлоп и всасывание. В двигателе предусмотрены свеча зажигания и два отверстия, через одно из которых подается горючая смесь, а через другое удаляются отработанные газы. Движение в камере двух пар лопастных роторов происходит по кругу в одном направлении, причем в мертвой точке их угловые скорости одинаковы и равны половине угловой скорости вращения вала с направляющими. Угол между лопастными роторами в этой точке минимальный и определяется расположением оси вращения вала с направляющей относительно оси шестеренки с кривошипом и полуосью кривошипа. После прохождения мертвой точки одна пара лопастных роторов снижает угловую скорость до минимальной, а другая плавно набирает скорость.

Цикл повторяется через 360 градусов для вала с направляющими, при этом благодаря наличию между кривошипом и лопастными роторами понижающей зубчатой передачи лопастные роторы поворачиваются лишь на 180 градусов, обеспечивая полный цикл работы четырехтактного двигателя.

Схемы, обеспечивая работу двигателя в четырехтактном режиме, по совокупности признаков ведут к получению одного и того же технического результата, а именно к плавному изменению угловых скоростей между лопастными роторами, созданию между ними необходимой степени сжатия, обеспечивают передачу крутящего момента на ведущий вал.

Предлагается новая кинематическая схема роторно-лопастного двигателя (компрессора) и устройство его уплотнения, позволяющее осуществить необходимую компрессию в прямоугольной цилиндрической камере.

Двигатель, созданный на основе этой схемы, исключительно компактен, так, двигатель в 1,7 литра имеет форму цилиндра и размеры 22‑23 см в диаметре и 11‑12 см в длину, не имеет впускных и выпускных клапанов.

Схема может быть использована для создания разного рода компрессоров, газовых и водяных насосов.

В отличие от аналогичных двигателей, использующих для периодического изменения угловых скоростей, например, планетарные кривошипные механизмы или механизмы, выполненные на нецилиндрических шестеренках, предлагаемая мною схема лишена таких серьезных недостатков, как недостаточно малый угол схождения лопастей, обеспечивающий четырехтактному двигателю необходимую степень сжатия и увеличивающий КПД.

В отличие от схем, использующих кривошипные планетарные механизмы, предлагаемая кинематическая схема, уравновешена, надежна, компактна, технологична.

Эта схема многовариантна – то есть позволяет создать несколько вариантов двигателя на основе одного решения для разных условий его эксплуатации.

При использовании его в качестве четырехтактного двигателя внутреннего сгорания в двигателе могут быть использованы новые материалы, например неупругие керамические или углепластиковые уплотнительные элементы, аналогичные по функциональному назначению уплотнительным кольцам поршневого двигателя, благодаря чему увеличивается износостойкость кольцевой камеры сгорания, уменьшаются потери на трение.

Предлагаемая схема компрессии позволяет поддерживать ее даже со значительным износом трущихся поверхностей уплотнительных элементов кольцевой рабочей камеры. Тем самым предполагается, что срок непрерывной эксплуатации такого двигателя будет в несколько раз выше по сравнению с поршневым.

В двигателе использованы новые идеи, отличающие его от существующих и аналогичных решений, он технологически прост в исполнении, его разработка перспективна, так как область его применения безгранична.

И, наконец, самое интересное и неожиданное решение ждет создателей автомобилей, так, на основе этого двигателя разработана схема многосекционного, многофункционального автомобильного двигателя, который при объеме в 4‑6 литра будет потреблять топливо при эксплуатации в городских условиях не более двухлитрового двигателя, т. к. все секции двигателя включаются в работу только при необходимости.

Автомобиль, имеющий такой двигатель, не нуждается в такой функциональной единице, как коробка передач, ее место занимает дифференциальная схема, соединяющая несколько секций в единый многофункциональный механизм.

Автомобиль, имеющий такой двигатель, не нуждается в такой функциональной единице, как сцепление, его место занимает система газораспределительных клапанов, обеспечивающая компрессионное сцепление и всю многофункциональную работу двигателя.

Такой автомобиль может иметь приятную функцию, экономящую топливо в режиме эксплуатации автомобиля в городских условиях. Эта функция связана с накоплением кинетической энергии автомобиля при его торможении в виде сжатого воздуха и использовании его при последующем разгоне автомобиля.

Автор предполагает, что в самое ближайшее время он может вытеснить с рынка поршневой двигатель внутреннего сгорания.

Ванкеля двигатель, роторно-поршневой двигатель внутреннего сгорания (ДВС), конструкция которого разработана в 1957 инженером Ф. Ванкелем (F. Wankel, ФРГ). Особенность двигателя – применение вращающегося ротора (поршня), размещенного внутри цилиндра, поверхность которого выполнена по эпитрохоиде. Установленный на валу ротор жестко соединен с зубчатым колесом, которое входит в зацепление с неподвижной шестерней. Ротор с зубчатым колесом как бы обкатывается вокруг шестерни. Его грани при этом скользят по эпитрохоидальной поверхности цилиндра и отсекают переменные объемы камер в цилиндре. Такая конструкция позволяет осуществить четырехтактный цикл без применения специального механизма газорас­пределения. Герметизация камер обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаемыми к цилиндру центробежными силами, давлением газа и ленточными пружинами. Смесеобразование, зажигание, смазка, охлаждение, запуск принципиально такие же, как и у обычного поршневого ДВС.

Практическое применение получили двигатели с трехгранными роторами, с отношением радиусов шестерни и зубчатого колеса: r:R = 2/3, которые устанавливают на автомобилях, лодках и т. п.

Масса и габариты В. д. в 2‑3 раза меньше соответствующих им по мощности ДВС обычной схемы. Серийный выпуск двигателей осуществляется в ФРГ, Японии, США.

«> Роторно-лопастной двигатель Гридина Код PHP » data-description=»Это прототип роторного двигателя Ванкеля, но автор считает, что его проект имеет более удачное решение – он технологичнее, дешевле и имеет много вариантов исполнения.

Ссылка на основную публикацию
Adblock
detector