Что понимается под вечным двигателем второго рода

Изобретатель вечного двигателя пророчит разорение нефтяным корпорациям

На практике изобретение такого «вечного двигателя» может произвести настоящую революцию в энергетической отрасли. Однако пока что наработками петербургского изобретателя профессиональное сообщество оценивает с осторожностью. Зато зарубежные коллеги уже пригласили ученого на Международный Энергетический конгресс.

Тема вечного двигателя всегда волновала человечество, но до сих пор возможность изобрести устройство, которое бы воспроизводило энергию без затрат топлива или других энергетических ресурсов, отрицала наука. В частности, первое и второе начала термодинамики отрицают возможности perpetuum mobile первого и второго рода.

В нынешнем году тему «Вечного двигателя» обсудят на 22-м Мировом Энергетическом Конгрессе — 2013, который пройдет в Южной Корее в октябре этого года. Корреспондент SPB.AIF.RU побеседовал с Михаилом Стекольщиковым – петербургским ученым, кандидатом технических наук, который будет выступать на этом конгрессе с докладом.

Энергия воды

SPB.AIF.RU: — Расскажите, в чем суть изобретения?

Читайте также:
Ученый из Петербурга получит премию президента
Петербургские учёные создали самую прочную сталь в мире
Номинант на Шнобелевскую премию: «Переключился на научно-техническую юмористику»

М.С.:- В теплоэнергетике, составляющей 80% всей энергетики, возможно присутствие трех разнотипных циклов: изотермический цикл (при постоянной температуре), экзотермический (топливный, «огневой по Карно») цикл и эндотермический (самоохлаждающийся, бестопливный) цикл.

Французский ученый Сади Карно в 1824 году доказал невозможность использования изотермического цикла для получения эксергии (работоспособности). Британский учёный Уильям Томсон (он же, лорд Кельвин) в 1851 году запретил использование эндотермического цикла, якобы из-за гипотетической опасности «исчерпания теплоты моря и суши, и … всего материального мира». С тех пор техника и технологии пошли по использованию в энергетике экзотермических циклов, результатом чего стало повсеместное распространение тепловых электростанций, работающих на углеводородном и атомном топливе. Это привело к экономическому, энергетическому и экологическому кризисам.

Я открыл и изобрел для возможного использования эндотермические бестопливные циклы. Они позволяют использовать солнечную энергию, концентрированную в гидросфере и атмосфере. Суть изобретения — в разработке технологических схем циклов. Доказательством открытия является решение уравнения Гиббса-Гельмгольца для эксергии термомеханических систем. Найденные корни уравнения являются значениями эксергии для искомых циклов.

SPB.AIF.RU: — Каким образом вы планируете получать энергию?

М.С.:- Первое начало термодинамики запрещает производство энергии, а Второе начало запрещает преобразование потенциальной энергии равновесной окружающей среды в кинетическую энергию (эксергию или работоспособность). Людям же всегда требуется эксергия – это та «высококачественная энергия», которая может производить полезную работу. Эксергия проявляется во вращении ротора, движении струи газа или жидкости.

Впечатляющий пример получения эксергии приведён в «Курсе общей физики» Зисмана и Тодеса, опубликованном в 1974 году. «Океанский корабль с двигателем, мощностью 100 тысяч кВт мог бы полностью обеспечить работу своей машины за счет охлаждения морской воды, . охлаждая 1 м3 воды в течение 6 с, т.е. всего 10 м3 воды в минуту. И, плывя по такому, в буквальном смысле, океану энергии, корабль вынужден сжигать уголь или нефть».

При всех экзотермических циклах теплоэнергетики вода служит посредником между реактором и окружающей средой. При эндотермическом цикле топливо не требуется, и вода служит источником производства эксергии. Расчёты показали, что из оборотной воды тепловой электростанции можно произвести 300% эксергии, производимой ТЭС, без использования топлива. Это относится к любым тепловым электростанциям: в том числе ядерным и термоядерным. При этом не учитывается расход воды, затрачиваемый на добычу и транспортировку топлива

Для примера: на строящейся ЛАЭС-2, предусмотрен ежедневный выброс 200 тысяч тонн воды в атмосферу в виде пара.

SPB.AIF.RU: — То есть, эксергию вы планируете получать из воды?

М.С.:— Совершенно верно. Энтальпия (внутренняя энергия) холодной воды, позволяет сопоставить её с напором воды на гидростанциях. Для этого разделим энтальпию воды (360000 Дж/кг) на ускорение свободного падения (g = 9,8 м/с2) получая эффективный тепловой напор воды: Н* =360000/9,8 = 36,7 км. Таким образом, эффективный тепловой напор воды, примерно в 100 раз превышает гравитационный напор плотинных ГЭС. Это означает, что для получения сопоставимой мощности в эндотермической ГЭС достаточно использовать 1% стока реки.

SPB.AIF.RU: — Противоречит ли это законам физики? Как объяснить это противоречие?

М.С.:- Предлагаемый цикл разработан в соответствии с законами физики и принципами Карно (1824), Стирлинга (1816) и полностью построен на трудах академика СССР Льва Ландау.

Известно, что существует противоречие между термодинамикой и физикой. Термодинамика считает, что все реальные процессы не обратимы, а физика, что все процессы обратимы. Отказ от разрешения этого противоречия привел к огромным последствиям – энергетика пошла по неправильному пути. По большому счету, исправить это можно было еще 50 лет назад после публикации первых томов «Курса теоретической физики» Льва Ландау.

Ландау отрицал принцип абсолютной необратимости, запрещающий эндотермический цикл. «. механика сама по себе полностью симметрична по отношению к обоим направлениям времени… такая симметрия должна сохраниться и в основанной на классической механике статистике. Поэтому, если возможен. процесс, сопровождающийся возрастанием энтропии замкнутой макроскопической системы, то должен быть возможен и обратный процесс, при котором энтропия системы убывает».

Ландау отрицает принцип единственности значения максимальной работы введённой Клаузиусом. По Ландау, окружающая «среда, тоже участвующая в процессе, делает результат неоднозначным, и возникает вопрос о том, какова максимальная работа, которую может произвести тело при данном изменении его состояния». А эксергию системы он определяет уравнением Гиббса-Гельмгольца.

Возможность использования эндотермического цикла отрицается Кельвином (1851) и Оствальдом (1893). По их мнению, вечный двигатель 2-го рода, т.е. работающий за счёт охлаждения равновесной окружающей среды, невозможен.

Ландау возвращается к формулировке Карно: «Двигатель, работающий только за счёт энергии находящихся в тепловом равновесии тел, был бы для практики своего рода «вечным двигателем. Второй закон термодинамики исключает возможность построения такого. вечного двигателя 2-го рода». То есть Ландау запрещает изотермический цикл для получения эксергии и снимает запрет с эндотермического цикла.

«Нефтебароны» перестроятся, а «нефтебараны» разорятся

SPB.AIF.RU: — Где можно применять изобретение?

М.С.:- Везде, где есть теплый воздух и вода. Все зависит от необходимой мощности. В воде есть скрытое тепло фазового перехода вода-лёд, которое возможно использовать для получения эксергии. Совместная генерация эксергии и холода можно производить за счёт Гидросферы или любых тепловыделяющих объектов и сооружений: универсамов, концертно-спортивных комплексов, жилых домов, молочных ферм, холодильных комплексов, химических заводов, градирен хранилищ РАО и ОЯТ и т.д.

SPB.AIF.RU: — Машину можно на таком двигателе использовать?

М.С.: — Нужен большой приток энергии, он существует только для воды. Обогревать дома возможно и электричество получать из воздуха можно. Водный транспорт весь может ходить на таком двигателе. Автомобили будут переоборудованы в электромобили. Электромобили будут заряжаться дешёвой электроэнергией полученной из воды.

SPB.AIF.RU: — Не боитесь угрозы газовых и нефтяных монополистов?

М.С.: -Не боюсь, мне уже поздно бояться. Ведь, «что написано пером, не вырубишь топором. ». Роспатент публикует заявки и патенты без спроса, по своим правилам, а Интернет разносит их по всему свету. Разработка нового оборудования не требуется, достаточно модернизировать существующее. Технологически развитые страны обладают возможностями для развития новой технологии. Так что, пусть боятся они, умные «нефтебароны» перестроятся, а «нефтебараны» разорятся, как это и бывало неоднократно.

SPB.AIF.RU: — Вы уже представляли эту идею где-либо? Обсуждали? Какова реакция научного сообщества?

М.С.: — Регулярно в течение пяти лет представлял проект на конкурсы: Конкурс русских инноваций, «Белая Книга» – трижды; Конкурс СТАРТ Фонда Бортника – 2011г. и 2012г.; конкурс НИР и ОКР СПБ – 2012 г; конкурс МО РФ – 2012 г.

Читать еще:  Что является рабочим телом в паровом двигателе

Регулярно участвовал в выставках «Российский промышленник» в 2009 – 2011 г.г. Ежегодно участвовал в различных российских научно-технических конференциях 2009 -2012 г.г.

Ни в одном конкурсе не прошёл отборочного тура. Наверное, потому, что формально инновация не соответствует существующим законам термодинамики. А принципы Ландау многие не понимают. При личном обсуждении со специалистами, ни разу не был опровергнут, так как опирался на факты, а не на гипотезы. Оценка всегда положительная. При посылке доклада на 22-й Всемирный Энергетический Конгресс (2013) сразу прошёл квалификационный отбор.

Российские разработки утекают за рубеж

SPB.AIF.RU: — А как реагируют чиновники?

М.С.: — Начиная с 2008 года я регулярно писал письма Председателю правительства РФ или Президенту РФ, или обоим одновременно. Конструктивных ответов не получал.

Следует признать, что среди VIP-экспертов РФ не нашлось способных разобраться в моей работе. Были у меня попытки привлечь внимание и политических партий. Но и обращения в петербургские отделения «Единой России» (2008) и «Яблока» (2012) не привели к ответной реакции.

SPB.AIF.RU: — Власть любит говорить про поддержку инноваций и инноваторов. Как вы оцениваете эту поддержку на личном опыте?

М.С.: — Президент Владимир Путин в феврале этого года сказал: «Нам нужны, безусловно, проекты, сопоставимые с теми, которые уже были в нашей истории. Это и завоевание космоса, и освоение атомной энергии. Проекты, которые в свое время дали импульс практически всем научным дисциплинам и технологиям». Сказано хорошо. Но технологии внедрения инноваций, существовавшие в СССР, потеряны, а новые не работают.

В отрасли инноваций преобладают экономисты и финансисты. Обучали их по заморским лекалам и шаблонам. Они не видят, не отличают «жемчужин» в потоке псевдоинноваций. Их уровень, это «натаскивание» студентов. Боязнь ошибиться заставляет ориентироваться на известные решения, что само по себе ошибка. Инновации, существующие на рынке, устарели для повторного проталкивания.

Для выхода на мировые рынки, необходимы «прорывные, закрывающие» технологии, своим появлением изменяющие рынок. Остальным делать нечего, их просто не примут. Противоречие заключается в том, что изобретение делает человек, а реализовывать его должна организация, обладающая соответствующей базой. Этот переход в России не организован, поэтому обычно российские разработки реализуются за рубежом.

Хочется напомнить о российских изобретателях, им труднее с каждым годом, но в отличие от научных сотрудников, в их защиту никто не выступает. А ведь уровень технической инновации определяется наличием патента.

SPB.AIF.RU: — Есть ли уже у вас предложения по внедрению изобретения?

М.С.: — Пока нет, в данный момент я пытаюсь рассказать о своем изобретении.

SPB.AIF.RU: — Если в России не получится, отдадите изобретение за рубеж?

М.С.: — Суть изобретения опубликована Роспатентом в Интернете, оно уже известно за рубежом. Мое участие поможет выиграть пару лет и соответственно снизить затраты. У меня остались только права на интеллектуальную собственность. Но воспрепятствовать развитию Проекта за рубежом теперь невозможно.

SPB.AIF.RU: — Вас пригласили на 22-й Мировой Энергетический Конгресс в Южную Корею, готовитесь к участию?

М.С.: — Да, был квалификационный отбор, я посылал свою работу на конкурс докладчиков и получил приглашение. Но есть одна загвоздка – участие не бесплатное. Так что сейчас всеми силами ищу спонсорскую поддержку. Также я заявляю о готовности вести публичную дискуссию с представителями ортодоксальной науки.

Физики экспериментально подтвердили необратимость процессов в квантовой системе

Производство энтропии и ее отток из системы

M. Brunelli et al. / Physical Review Letters

Физики измерили скорость производства энтропии в двух простейших системах, — оптической полости и бозе-конденсате, — и показали, что экспериментальные зависимости совпадают с теоретическими расчетами. Обе эти системы можно схематически описать с помощью двух связанных гармонических осцилляторов, а их энтропия производится за счет квантовомеханических колебаний. Таким образом, ученые показали, что обратимость законов квантовой механики во времени не противоречит второму закону термодинамики. Статья опубликована в Physical Review Letter, кратко о ней сообщает Physics, препринт работы выложен на сайте arXiv.org.

Энтропию очень удобно использовать, чтобы описывать ход термодинамических процессов: с ее помощью можно измерить и связать между собой такие разные характеристики системы, как температура, беспорядок и информация, а также определить направление процесса и доказать его необратимость. В частности, второй закон термодинамики утверждает, что энтропия замкнутой системы не может убывать — из этого закона следует, что холодное тело не может передать тепло горячему (не затрачивая на это работу), а вечный двигатель второго рода не существует. Другими словами, скорость необратимого производства энтропии всегда не отрицательна. Для незамкнутых систем второй закон немного усложняется: помимо необратимого производства энтропии внутри системы Π(t) необходимо учитывать, что часть энтропии может «утекать» во внешнее пространство с потоком Φ(t). Система находится в состоянии термодинамического равновесия только в том случае, если обе величины обращаются в ноль. Если же они постоянны, но отличны от нуля, говорят, что система достигла неравновесного стационарного состояния (при этом, очевидно, должно выполняться неравенство Π > Φ).

К сожалению, физики до сих пор плохо понимают, почему второй закон термодинамики работает. Проблема в том, что уравнения квантовой механики инвариантны относительно обращения времени (замены t → −t), а закон не убывания энтропии явным образом нарушает эту симметрию. Грубо говоря, законы механики не могут отличить процессы, в результате которых молекулы газа равномерно распределяются по сосуду (энтропия растет) или собираются в одной его половине (энтропия уменьшается), хотя термодинамика запрещает процессы второго типа. Более того, недавно ученые обнаружили системы, которые нарушают второй закон термодинамики, — например, заставили холодное тело отдавать тепло горячему, не совершая над ними работу, или показали, что энтропия системы двух запутанных спинов может уменьшаться. Впрочем, во всех этих случаях второй закон термодинамики можно сохранить, если добавить к классическому определению энтропии «квантовый беспорядок». Тем не менее, физики пытаются придумать эксперименты, которые помогли бы связать законы квантовой механики и термодинамики.

Группа ученых под руководством Маттео Брунелли (Matteo Brunelli) придумала и реализовала на практике такой эксперимент, а также показала, что скорость необратимого производства энтропии простейших систем можно рассчитать в рамках квантовой механики. Для этого физики рассмотрели две простые системы, которые можно схематически описать с помощью двух связанных гармонических осцилляторов, соединенных с тепловыми резервуарами. Скорость необратимого производства энтропии в такой системе можно рассчитать с помощью функции Вигнера, которая описывает квантовые состояния каждого осциллятора и может изменяться со временем. Если усреднить эти функции по пространству состояний, можно связать зависимость Π(t) с заселенностью квантовых уровней и константами связи осцилляторов. Грубо говоря, в этой системе энтропия производится за счет квантовых флуктуаций. При нулевых константах связи флуктуациями можно пренебречь, энтропия не производится, и в системе устанавливается термодинамическое равновесие. В противоположном случае величина Π(t) всегда положительна, что согласуется со вторым законом термодинамики.

Схематическое изображение системы двух связанных гармонических осцилляторов

M. Brunelli et al. / Physical Review Letters

Еще раз о концепции вечного двигателя

надо сразу оговорится, что вечный двигатель в понимании черпающий работу из неоткуда (эфира) впринципе невозможен, это обсуждать я не собираюсь. речь пойдет о «типа вечном двигателе» можно назвать это вечным двигателем второго рода, только немого луше :), но как не называй сути это не меняет. конечно данная машина преобразует один вид энергии в другой.

Читать еще:  Двигатель isuzu 6bg1 расход топлива

и так начнем из далека.
1. первое что надо понимать, что ничто не берется из неоткуда и что-то в «халявную» энергию должно преобразовыватся.
2. мы будем использовать теорию Эйнштейна, точнее положение теории, а именно то, что нельзя рассматривать магнитное поле отделно от электрического.

ну что страшно? навсамом деле все уже сказано и ниже пойдет лишь размазывание соплей по клавиатуре.

начнем с того что волновало Эйнштейна — ведь он говорил, что все процессы в инерциальных системах текут одинакого. навсамом деле это основное положение ТО. именно из этого простого на первый взгляд утверждения много чего следует. например если в одной системе поле магнитное, то можно найти такую систему в которой оно электрическое. я уже много раз писал почему это следует из условия эквивалентности инерциальных систем — не буду повторятся. просто задумаемся, а что если взять магнитное поле — постоянное, то можно найти такую систему в которой оно электрическое, тоже кстати постоянное — т.е. постоянный электрический ток. простое устройство т.е. генератор который это делает называется униполярным.

т.е. все просто берем постоянные магниты, делаем на их основе униполярный генератор и у нас «почти вечняк». почему почти? да потому что нам нужен источник магнитного поля. как только магниты не смогут его обеспечивать наш генератор прекратит своё существование. при этом понятно, что магниты долны быть постоянные, а не электрические. т.е. условно бесплатное магнитное поле создоваемое этими магнитами. т.е. магниты являются как бы топливом установки.

так то оно так, но есть одно «НО». нужны очень большие напряженности магнитного поля — большие это единицы Тесла — где вы последний раз видели такой магнит? Радиус его должен быть единицы метра (плошадь пропорционална квадрату радиуса тогда ЭДС можно прикинуть по простой формуле — Е = nBS где n число оборотов в секунду), что тоже наводит грусть ну и в довершении энергии на работу такого генератора тоже надо затрачивать мало, я уже молчу про «дурное влияние» полезных токов. однако с этим можно жить, благо еще Фараадей указал на пути решения этой проблемы, идею развил Форбс.

т.е. основные условия такой установки:

  • использование сильных постояных магнитов.
  • компенсация магнитных полей полезных токов.
  • на врашение ротора необходимо затрачивать минимум энергии

ну вот вкраце и все — да простой «типа вечняк» возможен. однако врядли вы купите для него материалы в ближайщем магазине радиотоваров

кстати в сообществе называемом СЕ — я называю се-кролики, принято теорию Эйнштейна ругать. ну что же за что боролись на то и напоролись, только наоборот — как говорится ржунемогу.

воообще данная установка похожа на тепловой насос в том смысле, что выкачевает энегию из окружающего пространства. только тепловой насос использует низкопотенциальное тепло, а такая установка будет использовать магнитное поле. т.е. ни о каких «волшебных» КПД речи не идет.

для полноты картины неплохо бы расмотреть извесный в определенных кругах рисунок за авторством Теслы, но для начала стоит немного разобратся с данным персонажем.

первое и основное — жил в 19 веке, о природе тока в металлах имел некоторые дагадки и примерные предстравления, верил в сказки (теорию эфира) одним словом 19 и 21 век — две большие разницы.

из этого следует, что свободные электроны в металле он для него были не доказанным фактом, а некой математической абстракцией, неким сверхмалым обёмом — dv. силу Лоренца не призновал — и максимум заменял силой Ампера, действующей на некий сверхмалый объем — dv. ну основное все.после чего нетрудно понять все это обилие стрелочек. конечно он имел ввиду что зарядики концентрировались в одном месте диска, потом тек уравняющий ток, который мало того взаимодействовал с основным полем. в общем ничего нового. исключая то, что Тесла считал что не скомпенсированный ток нагрузки будет диск раскручивать. нуда конечно — энергия из нигуя. кстати магниты не должны вызывать изменение потока магнитной индукции в диске, чего легко добится, если магниты покрывают диск полностью. кстати сам Тесла говорил («о униполярном динамо») что-то типа «вихревыетоки будут взаимодействовать с током «типа электронов», но диск тормозиться не будет как этого следовало бы ожидать. » и тому подобный бред.

хороший ролик. любителям эфира должно понравится.

Реферат: Есть «Вечный двигатель второго рода»!

Есть «Вечный двигатель второго рода»!

. — Г-голубчики, — сказал Федор Симеонович озадаченно, разобравшись в почерках. — Это же п-проблема Бен Б-бецалая. К-калиостро же доказал, что она н-не имеет р-решения.

— Мы сами знаем, что она не имеет решения, — сказал Хунта, немедленно ощетиниваясь. — Мы хотим знать, как ее решать.

— К-как-то ты странно рассуждаешь, К-кристо. К-как же искать решение, к-когда его нет? Б-бесмыслица какая-то.

— Извини, Теодор, но это ты странно рассуждаешь. Бессмыслица — искать решение, если оно и так есть. Речь идет о том, как поступать с задачей, которая решения не имеет.

А.Стругацкий, Б.Стругацкий. Понедельник начинается в субботу.

Вечный двигатель второго рода это такой двигатель, который не подчиняется Второму закону термодинамики.

В 1824 году С. Карно в своем сочинении «Размышления о движущей силе огня и о машинах, способных развивать эту силу» высказал мысль, что «тепловая машина не поглощает тепло, превращая ее в работу, а передает его холодному телу». В. Томпсон (лорд Кельвин), Р. Клаузиус, М. Планк возвели эту мысль в ранг закона. Современная трактовка Второго закона термодинамики звучит так: «Для перевода теплоты в работу необходим источник тепла и охладитель более низкой температуры». Того, кто осмеливался противоречить этому закону, называют изобретателями вечного двигателя второго рода.

Этот закон распространяется на тепловые электростанции. Наверное, все знают, что для выработки электроэнергии надо подвести тепло к воде в парогенераторе «ПГ» (см. Рис. 1), затем испарить ее и поднять давление пара. После этого пар с высоким давлением поступает в турбину «Т», вращает ее ротор вместе с ротором генератора «Г», а последний вырабатывает электроэнергию. После турбины, пар с низким давлением поступает в конденсатор «К» (охладитель) и там конденсируется — пар переходит в состояние жидкости (воды). После конденсатора, вода снова подается в парогенератор конденсатным насосом «КН».

При отводе тепла из конденсатора, в окружающую среду (реки, озера, моря) выбрасывается более половины подведенного тепла. Вот как мы греем «матушку Землю!

Выброс тепла в конденсаторе делается для того, чтобы уменьшить затраты энергии на поднятие давления пара. Для поднятия давления водяного пара с низким давлением, сначала его надо перевести в состояние жидкости (сконденсировать), поднять давление воды в насосах, подать в парогенератор, снова подвести к воде тепло для ее испарения и поднятия давления пара.

Я решил придумать что-нибудь для увеличения КПД цикла и улучшения экологической обстановки в местах размещения ГРЭС, ТЭЦ, АЭС.

Для изобретательства в теплоэнергетике надо знать азы термодинамики.

При нормальных условиях для выкипания воды, сначала надо нагреть ее до 100°С, затем подвести тепло для испарения. Испарение происходит при отрыве молекул воды с поверхности кипения. О распределении внутренних энергий в процессе кипения можно судить по Рис.2.

Читать еще:  Двигатель b6294t технические характеристики

Здесь, I’ — теплота идущая на нагрев воды до температуры кипения.

R — теплота идущая на испарение кипящей воды — теплота парообразования

При дальнейшем подводе тепла к пару, идет его перегрев – увеличение внутренней энергии с повышением температуры.

Теплота парообразования R состоит из теплоты разъединения молекул U и теплоты расширения L. При нормальных условиях теплота расширения L в 12,5 раз меньше теплоты разъединения U.

В процессе получения электроэнергии, теплота разъединения U выбрасывается в окружающую среду, а теплота расширения L участвует в полезной работе. Вот из-за неё то и вся драка пойдет.

Я подумал, все дело в состоянии массы — жидкое оно, или газообразное. Как это так? Для поднятия давления в жидкости надо затратить энергии во много раз меньше, чем для поднятия того же давления в паре? Значит надо найти другой, менее энергоемкий способ поднятия давления пара, или найти другой способ перевода пара в состояние жидкости (воды).

Известно, что «Удавалось перегревать воду при нормальных условиях на десятки градусов. Однако, в конце концов, такая вода вскипает. Кипение происходит крайне бурно, напоминая взрыв».

Я задал себе задачу успокоить перегретую воду — найти способ ее успокаивания (чтобы не взрывалась). Потом создать такие условия, когда внутренняя энергия перегретой воды была бы больше, чем внутренняя энергия пара при том же давлении сжатия.

Моя профессия — инженер теплоэнергетик, специализация — виброналадка вращающегося оборудования. Т.е. в голове всякие ускорения, центробежные силы и др. Поэтому, возник вопрос, как влияют центробежные силы инерции на процесс кипения жидкости?

Представьте, что Вас послали на Солнце в барокамере и термостате. На Солнце вес увеличивается в 30 раз и составит для человека 2 — 3 тонны. Ну и как в этих условиях бегать, прыгать? Короче, летальный исход от веса! Ну а молекулы воды другое дело. К ним можно подвести много тепла и тогда произойдет их отрыв (прыжок) с поверхности. Но с увеличением тепла в жидкой массе должна расти ее температура кипения. Т.е. воду для кипения надо будет нагревать не до 100°С, а до большей температуры.

Имитировать увеличение веса в молекулах воды можно во вращающемся цилиндре (см. Рис. 3). Вес молекул увеличится от возрастания центробежных сил в массе.

Я провел опыт по испарению воды во вращающемся цилиндре. При увеличении центробежных сил, от увеличения радиуса поверхности кипения возрастала температура кипения. В первом приближении определил увеличение внутренней энергии, при увеличении радиуса кипения на один сантиметр.

Получилось, что температура кипения чистой воды увеличивается не только от увеличения давления сжатия, но и от увеличения центробежных сил в молекулах на вращающейся поверхности. Этот эффект был также открыт в 1971 году в Америке.

Согласно данных измерений в опыте, я просчитал, что для того, чтобы внутренняя энергия кипящей воды была равна внутренней энергии пара, при нормальных условиях, надо иметь радиус внутренней вращающейся поверхности воды в цилиндре 1,9 метра. Т.о. если этот радиус будет больше, то пар с нормальными параметрами будет переходить в состояние жидкости на этой поверхности (силы не хватит оторваться от поверхности «Солнца»). Процесс перехода пара в состояние жидкости на вращающейся поверхности назван «Коллапсация пара».

Расчеты показали, что энергия массы, вращающейся с частотой n = 3000 об/мин на поверхности с радиусом 1,9 метра близка к энергии движения массы со звуковой скоростью и к теплоте расширения L.

Материалы по опытам со сверхзвуковыми движениями потоков газов говорят об одной физической природе скачков уплотнения на острие крыла и переходом пара в состояние жидкости на вращающейся поверхности. Причем, затрачиваемые энергии в процессах перехода пара в состояние жидкости равны теплоте расширения пара L. Исходя из этого, для уточнения, мной выполнен расчет радиуса коллапсации пара для компенсации теплоты расширения. Этот радиус получился равным 1,05 метра.

Для подтверждения правильности рассуждений рассмотрен процесс эрозионного износа лопаток паровых турбин (вырывы металла жидкостью), работающих на сухом насыщенном паре при атмосферном давлении. Начало эрозионного износа лопаток начинается на радиусе примерно 1 метр. Эти наблюдения подтверждают также специалисты МЭИ. Значит, рассуждения и расчеты радиуса коллапсации выполнены правильно.

Т.о. найден новый способ перевода пара в состояние жидкости!

Представьте, что в цилиндре Рис. 3 близко к наружному диаметру выполнены отверстия, а сам цилиндр помещен в корпус с напорным и всасывающим патрубками и системой уплотнений. Это будет центробежный насос с гидрозатвором в рабочем колесе. На Рис. 4 показан разрез насоса.

Работа насоса происходит следующим образом.

Пар с низким давлением поступает во всасывающий патрубок насоса. Попадая в отверстия барботажного цилиндра, он раскручивается и приобретает центробежную силу. Под действием этой силы пар направляется к поверхности гидрозатвора. Когда молекулы пара окажутся на этой поверхности, они перейдут в состояние перегретой жидкости. Центробежные силы не дадут им снова оторваться от поверхности. По радиусу гидрозатвора будет происходить приращение давления сжатия перегретой воды, как в обычном центробежном насосе. С большим давлением перегретая вода будет выходить из гидрозатвора рабочего колеса насоса. После выхода из рабочего колеса перегретая вода прекратит вращаться и снова перейдет в состояние пара, но с высоким давлением.

Энергия, затрачиваемая на коллапсацию единицы массы пара будет равна теплоте расширения L. Т.е. для повышения давления пара не надо будет выбрасывать теплоту разъединения U. Для перевода пара в состояние жидкости надо будет затрачивать работу равную теплоте расширения L. Т.к. теплота L в турбинах также используется для совершения работы, то тепло, используемое полезно, будет равно теплоте перегрева пара.

Схема работы паросиловой установки с применением двухфазного насоса будет выглядеть, как показано на Рис. 5.

Здесь: ПП – пароперегреватель; Т – турбина; Г – Генератор; ДН – Двухфазный насос.

Из двухфазного насоса, пар с высоким давлением поступает в пароперегреватель и там перегревается. Перегретый пар с высоким давлением из пароперегревателя поступает на турбину. В турбине тепловая энергия пара переходит в энергию вращения ротора турбины. Последний вращает ротор генератора, который вырабатывает электроэнергию. После турбины, пар низкого давления поступает в двухфазный насос. В двухфазном насосе происходит повышение давления пара низкого давления до давления пара высокого давления. Далее цикл повторяется.

Никаких тебе конденсаторов, где выбрасывается тепло в природу! Теплота разъединения U в процессе не участвует. Правда, для совершения полезной работы надо перегревать пар. Тепловые расчеты показывают, что при хорошем перегреве и давлении, КПД цикла можно довести до 70 %.

Вот так и был опрокинут Второй закон термодинамики.

В 2000 году, я взял патент на «Способ работы двухфазного насоса». При защите патента, эксперт отказался включать в заявку «Способ перегрева жидкости на вращающейся поверхности», т.к. это открытие было сделано в Америке в 1971 году. Эксперт также отказался включать в патент «Цикл паросиловой установки с двухфазным насосом» пока не будет открытой публикации по опровержению Второго закона термодинамики.

За заслуги в теплоэнергетике и за патент, я удостоен звания «Лауреат конкурса инженер года России» за 2000 год.

После получения патента, я пытался найти заинтересованных лиц во внедрении моего изобретения, однако тщетно. Все понимают важность моих предложений, но ссылаются на финансовые трудности.

Ссылка на основную публикацию
Adblock
detector