Что приводит в движение самолеты с поршневым двигателем

Что приводит в движение самолеты с поршневым двигателем

Турбовинтовой двигатель

Турбовинтово́й дви́гатель — тип газотурбинного двигателя, в котором основная часть энергии горячих газов используется для привода воздушного винта через понижающий частоту вращения редуктор, и лишь небольшая часть энергии составляет выхлоп реактивной тяги [ источник не указан 721 день ] . Наличие понижающего редуктора обусловлено необходимостью уменьшения скоростей обтекания концов лопастей до дозвуковых.

Существуют две основные разновидности турбовинтовых двигателей: двухвальные, или со свободной турбиной (наиболее распространенные в настоящее время), и одновальные. В первом случае между газовой турбиной (называемой в этих двигателях газогенератором) и трансмиссией не существует механической связи, и привод осуществляется газодинамическим способом. Воздушный винт не находится на общем валу с турбиной и компрессором. Турбин в таком двигателе две: одна приводит в движение компрессор, другая (через понижающий редуктор) — винт. Такая конструкция имеет ряд преимуществ, в том числе и возможность работы силового агрегата самолёта на земле без передачи на воздушный винт (в этом случае используется тормоз воздушного винта, а работающий газотурбинный агрегат обеспечивает самолёт электрической мощностью и воздухом высокого давления для бортовых систем). Во втором случае (как видно из названия) турбина с компрессором и винт расположены на одном валу.

Содержание

  • 1 Применение
    • 1.1 Экономическая целесообразность
  • 2 История
  • 3 См. также
  • 4 Примечания
  • 5 Ссылки
  • 6 Литература

Применение [ править | править код ]

В связи с уменьшением эффективности воздушного винта при увеличении скорости полёта, турбовинтовые двигатели в основном распространены на относительно малоскоростных летательных аппаратах, таких как самолёты местных авиалиний и транспортные самолёты. Исключение составляет стратегический бомбардировщик Ту-95 и самолеты, созданные на его базе (Ту-114, Ту-126, Ту-142), летающие со скоростью порядка 800 км/ч.

Если учесть, что турбовинтовой двигатель работает только на дозвуковых скоростях, а турбореактивные двигатели лучше использовать для получения очень больших скоростей полёта, то можно сделать вывод, что в некотором диапазоне скоростей комбинирование этих двух двигателей является оптимальным решением (турбовентиляторный двигатель).

Ввиду того, что как лопасти вентилятора, так и лопасти винта для эффективного функционирования должны работать на дозвуковых скоростях, вентилятор в кольцевом обтекателе (который понижает скорость набегающего потока) является более эффективным на больших скоростях.

Экономическая целесообразность [ править | править код ]

Поскольку турбовинтовые двигатели на малых скоростях полёта гораздо экономичнее, чем турбореактивные двигатели, то турбовинтовые самолёты имеют преимущество перед реактивными, прежде всего, из-за низкого расхода топлива. Поэтому в период высоких цен на нефть объём продаж турбовинтовых лайнеров растёт. Так, в 2011 году, когда стоимость нефти была в районе 100 долларов за баррель, в консалтинговом агентстве Ascend Flightglobal Consultancy просчитали, что перевозчикам необходимо задуматься о переходе на турбовинтовые самолёты, поскольку высокая стоимость авиабилетов, связанная с эксплуатацией реактивных лайнеров, отпугивает потенциальных пассажиров.

При этом преимущество турбовинтовых самолётов по сравнению с реактивными на региональных перевозках очевидно. По словам руководства компании Bombardier, лайнеры Q400 (как и соответствующий ему российский Ил-114-300), в сравнении с 70-местным реактивным самолётом эффективнее на 30 % [1] в плане экономии топлива и затрат на эксплуатацию. Соответственно, турбовинтовые самолёты являются идеальной заменой 50-местных реактивных лайнеров. В этом случае авиакомпании смогут увеличить вместимость своих воздушных судов, сохранив затраты на прежнем уровне.

История [ править | править код ]

Впервые схему турбовинтового двигателя (ТВД), в котором воздушный винт имел привод от газовой турбины, разработал русский инженер и авиатор лейтенант флота М. Н. Никольский в 1913 г. [2] Модель этого двигателя была построена и испытана. Его предполагали использовать для самолета «Илья Муромец». [3] Двигатель Никольского развивал мощность 120 квт (160 л. с.) и имел трёхступенчатую газовую турбину. [4]

В 1923 году В. И. Базаров предложил схему своего газотурбинного двигателя (ГТД), близкую к схемам современных турбовинтовых двигателей; в 1930 В. В. Уваров при участии Н. Р. Брилинга спроектировал, а в 1936 построил ГТД с центробежным компрессором. [4] Независимо от отечественных инженеров в Великобритании учёный и инженер Алан Арнольд Гриффит [en] в 1926 году предложил свой проект подобного двигателя.

Первый в практическом смысле работающий ТВД был создан венгерским инженером Дьёрдем Ендрашиком (György Jendrassik). После ряда лет работы над ТВД (и получения патента на его конструкцию в 1929 г.) он построил прототип двигателя мощностью 100 л. с.; первый в мире полномасштабный турбовинтовой двигатель, Jendrassik Cs-1 мощностью около 400 л. с. был построен и испытывался на предприятии Ganz Works в Будапеште между 1939 и 1942 г. Двигатель не был запущен в производство.

В то же время в СССР в 1934 г. была создана и прошла длительные испытания первая отечественная высокотемпературная газотурбинная установка ГТУ-1, ставшая прообразом будущих турбовинтовых двигателей. Установка состояла из одноступенчатого центробежного компрессора, кольцевой камеры сгорания и одноступенчатой газовой турбины. В 1938–1939 гг. под руководством профессора В.В. Уварова для самолета ТБ-3 были впервые построены опытные газотурбинные установки ГТУ-3 мощностью по 1150 л. с., выполненные по схеме турбовинтового двигателя. Под его же руководством с 1943 г. в ЦИАМ разрабатывался летный образец экспериментального ТВД Э-3080, развивавшего мощность на валу 625 л. с. и создававшего дополнительную тягу 160 кгс. [5] [6]

Первый немецкий турбовинтовой двигатель в середине 30-х годов разработал (будучи профессором Технического университета в Берлине) будущий глава отдела планёров самолетов на «Junkers Flugzeugwerke» Герберт Вагнер. Он надеялся, что тот может дать боевому самолету высочайшие ЛТХ.

Работы по ТВД ускорились в послевоенные годы. На 18-м образце реактивного истребителя Gloster Meteor (позднее получил обозначение Trent-Meteor) вместо штатных турбореактивных были установлены турбовинтовые двигатели Rolls-Royce RB.50 «Trent», и он стал первым в мире турбовинтовым самолётом (взлетел 20 сентября 1945 года). Эта машина не строилась серийно и осталась прототипом.

На основе двигателей модели Trent компания Rolls-Royce разработала модель Dart. Этот двигатель устанавливался на первый в мире серийный турбовинтовой самолёт Vickers Viscount (первый полёт в 1948). Конструкция ТВД Rolls-Royce Dart оказалась весьма успешной: с учётом модификаций и усовершенствований, он выпускался порядка 40 лет (до 1987 г) и устанавливался на многие модели самолётов.

Самым мощным из когда-либо созданных ТВД был строившийся в СССР двигатель НК-12.

Одним из самых массовых и широко применяющихся ТВД в настоящее время является семейство ТВД Pratt & Whitney Canada PT6. Серийный выпуск был начат в 1963 г. и продолжается на настоящее время (2012). Двигатель выпускается в ряде модификаций (различной мощности, для самолётов и вертолётов) и устанавливается на более чем 100 типах самолётов различных производителей.

Почему авиационный поршневой двигатель уступил реактивному.

Здравствуйте!

Легендарный ЯК-3, один из лучших поршневых.

Любой, даже мало сведущий в авиации человек знает, что время в котором мы с вами живем – это эра реактивной авиации. Поршневой авиационный двигатель с воздушным винтом хоть и не канул в лету, но позиции свои уже давно сдал. Однако далеко не все задаются вопросом: « А почему, собственно, так произошло? Чем поршневой хуже реактивного?» Ответ достаточно прост, как всегда :-).

Со времен первого полета Братьев Райт авиация совершенствовалась все ускоряющимися темпами. Очень быстро стало ясно, что для войны и армии она имеет очень большое значение. Уже в Первую Мировую пока еще примитивные самолеты достаточно активно участвовали в боевых действиях. А во Второй Мировой роль авиации была просто огромной. Одна из важнейших характеристик военного самолета (хотя в наше время не только военного :-)) – это скорость, и вполне естественно, что задача ее увеличения всегда стояла перед создателями самолетов.

Читать еще:  Электрическая схема проводки газель бизнес двигатель умз 4216

Первоначально эта задача довольно успешно выполнялась. Начиная с 50-ти км/ч для первых аэропланов, она выросла уже в 20-х годах до 320 км/ч. Интересно, что в это время человек на самолете обогнал самую быструю птицу на свете – сокола-сапсана, который не летает быстрее 315-ти км/ч. А уже к началу второй мировой войны максимально достигнутая скорость была порядка 750 км/ч. И вот тут дело, так сказать, застопорилось :-). Несмотря на постоянную работу по модернизации поршневых авиационных двигателей и их движителей винтов, становилось ясно (уже в конце 30-х годов), что они близки к границе своих возможностей.

Fokker DR-1. Самолет Первой Мировой войны. На таком летал Красный Барон.

Основные причины две. Первая – это сам поршневой авиационный двигатель (точнее принцип его действия). Для лучшего понимания позволю все-таки себе привести маленькую формулу :-). Дело в том, что для любого двигателя есть такое понятие, как полезная мощность Р . Она равна произведению тяги двигателя R (создаваемой, как мы помним, воздушным винтом) на скорость движения летательного аппарата (т.е. на его перемещение в единицу времени) V : P = RV . Мощность поршневого двигателя при изменении скорости меняется мало, поэтому из формулы видно, что при увеличении скорости ( то самое, к чему мы стремимся :-)) тяга двигателя будет падать.

Однако это как раз то, что нам совсем не нужно. Ведь с ростом скорости увеличивается сопротивление воздуха и единственное, что мы можем ему противопоставить – это тяга. Надо, чтобы движок «тянул» ( иначе самолет совсем остановится 🙂 (шучу)). Это сопротивление в зоне не очень больших скоростей увеличивается пропорционально квадрату скорости полета, а когда скорость полета приближается к скорости звука, то сопротивление уже растет пропорционально четвертой-шестой степени скорости полета. И для того, чтобы такое сопротивление преодолеть и далее разгонять самолет нужно мощность двигательной установки увеличивать пропорционально скорости полета в пятой-седьмой степени. Например, в околозвуковой области для того, чтобы увеличить скорость всего на 10%, нужно мощность двигателя увеличить вдвое.

Английский истребитель Supermarine Spitfire. Лучший истребитель наших союзников.

Но что такое мощность поршневого двигателя? Как бы не изощрялась наука и какие бы новые технологии не придумывались, в конечном итоге мощность зависит от количества цилиндров, площади поршней и т.д. То есть чем больше двигатель, тем он мощнее, а величина — это масса. А масса – это враг авиации . Зачастую при проектировании самолета идет битва чуть ли не за каждый грамм веса, особенно для истребителя. По примерным расчетам для совсем умеренной тяги в 3000 кг и средней скорости в 1000 км/ч масса авиационного поршневого двигателя составила бы примерно 15 тонн. Цифра совсем несуразная :-). Ведь, например, масса пустого истребителя СУ-27 – 16 тонн, МИГ-29 , соответственно 10,9 тонны. И летают они с гораздо большей скоростью, чем 1000 км/ч. Думаю, здесь дальнейшие комментарии излишни :-)… Летать на больших скоростях с поршневым двигателем просто невозможно.

Однако считаю нужным упомянуть еще об одной причине, не напрямую, но все же касающейся нашего вопроса. Это воздушный винт. Для поршневого авиационного двигателя – это, к сожалению, единственный «преобразователь мощности в движение», то есть движитель. И у него существует такое неприятное явление, как «эффект запирания» . Он выражается в том, что на больших скоростях при увеличении мощности винт уже не в состоянии увеличить тягу. Он как бы«запирается», становится «тормозом» 🙂 . Физика этого явления достаточно сложна, но по простому говоря это объясняется тем, что определенные участки лопастей (особенно близкие к концам) при увеличении скорости вращения (или же увеличении диаметра винта, что равносильно увеличению скорости вращения для концов лопастей) начинают двигаться в воздухе с около- или сверхзвуковой скоростью. А это уже аэродинамика сверхзвука , и законы в ней работают другие. Традиционный винт на таких скоростях уже не может корректно выполнять свое предназначение. Стоит сказать, что довольно давно ведутся работы по созданию сверхзвуковых винтов, но пока ощутимых практических результатов не достигнуто.

Lockheed SR-71 Blackbird. Знаменитый американский разведчик. Максимальная скорость в 3,3 раза превышает скорость звука. Какие уж тут винты :-).

Вот, пожалуй, и все. Таковы основные причины, из-за которых турбореактивный двигатель сменил поршневой и стал основой современной авиации. Произошло это главным образом из-за того, что поршневой движок проиграл «битву за вес». ТРД при одинаковой мощности несравнимо легче поршневого, и тяга его во всем диапазоне скоростей меняется вобщем–то мало, что значительно повышает его конкурентноспособность. Поршневой авиационный двигатель на малых скоростях конечно гораздо экономичнее, чем ТРД , но многолетняя практика человечества говорит о том, что коэффициент полезного действия не всегда в нашей жизни является определяющим.

Школьная Энциклопедия

Nav view search

Navigation

Search

Двигатель называют сердцем самолёта. И это действительно так. Ведь без него самолёт перестанет быть самолётом. Чем мощнее двигатель, тем быстрее самолёт преодолеет силу сопротивления воздуха и тем большую скорость он сможет развить.

«Но то же самое можно сказать и об автомобиле», — возразите вы. И будете правы. Без двигателя ни самолёт, ни автомобиль не смогут двигаться.

Для чего же нужен двигатель?

Любой двигатель, авиационный или автомобильный, предназначен для создания тяги. И принцип работы у них почти одинаков. Но авиационные двигатели всё-таки имеют свои особенности. Они отличаются от автомобильных размерами и меньшим удельным весом, то есть, весом, приходящимся на единицу мощности. Удельный вес авиационных двигателей в десятки и даже сотни раз меньше удельного веса автомобильных. Ну и, конечно же, в авиации они выполнятся из более лёгких и прочных материалов. Конструкция авиационного двигателя такова, что он может надёжно работать в любом перевёрнутом положении, ведь самолёту иногда приходится выполнять различные манёвры в воздухе. И ещё одна его важная особенность – возможность устойчиво работать, не теряя мощность, на высоте, когда падают плотность и давление воздуха.

Авиационные двигатели

Первые двигатели, предназначенные специально для авиации, начали проектировать и строить в начале ХХ века. Они представляли собой двигатели внутреннего сгорания, устройство которых было позаимствовано у автомобильных двигателей.

По мере развития авиации изменялись и авиационные двигатели. Все известные современные их модификации можно разделить на 2 принципиально отличающиеся группы: двигатели, способные работать только в пределах атмосферы и такие, для работы которых наличие атмосферы не требуется.

Двигатели первой группы называются воздушными, или атмосферными. А вторая группа получила название ракетных. Их принципиальное различие в том, что для воздушных двигателей рабочим телом, совершающим механическую работу, является атмосфера. А у ракетных рабочее тело находится в самом летательном аппарате.

Авиационный двигатель, как и любой другой, преобразует энергию топлива в кинетическую энергию. В любом из них происходит реакция горения топлива. А для протекания этой реакции необходим кислород. В воздушных двигателях этот кислород берётся из атмосферы. А в ракетных окислитель находится на борту летательного аппарата.

Винтовые двигатели

Воздушные двигатели делятся на винтовые и реактивные.

В свою очередь, винтовые подразделяются на винто-моторные, или поршневые, и турбовинтовые. И у тех, и у других движителем служит воздушный винт. Но у винтомоторных тепловой машиной является мотор, а у турбовинтовых – турбокомпрессор.

Читать еще:  Гидрокомпенсатор двигателя принцип работы

Поршневой (винто-моторный) двигатель

Поршневые двигатели можно назвать ровесниками современной авиации. Они устанавливались на первых самолётах, поднятых в воздух братьями Райт. И вплоть до 40-х годов ХХ века альтернативы им не было. Но, несмотря на то, что впоследствии были изобретены и другие двигатели, основанные на совершенно другом принципе работы, поршневые используются в авиации и сейчас.

Современный авиационный поршневой двигатель представляет собой двигатель внутреннего сгорания (ДВС). Принцип его работы такой же, как и у автомобильных ДВС. Разница лишь в том, что движение поршня через специальные механизмы в автомобиле передаётся на колёса, а в самолёте – на воздушный винт. А лопасти винта захватывают воздух, отбрасывают его назад, тем самым создавая тягу.

Турбовинтовой двигатель (ТВД)

1 — воздушный винт; 2 — редуктор; 3- турбокомпрессор.

Турбовинтовой двигатель является разновидностью газотурбинного двигателя.

Простейшую конструкцию газотурбинного двигателя можно представить как вал, на котором находятся два диска с лопатками, между которыми расположена камера сгорания. Первый диск – диск компрессора. Второй – диск турбины. Атмосферный воздух сжимается в компрессоре и подаётся в камеру сгорания. Туда же подаётся и топливо. Смесь воздуха с топливом с помощью свечи зажигания поджигается и сгорает, образуя продукты сгорания под высоким давлением, которые приводят во вращение диск турбины. Таким образом, энергия сжатого и нагретого газа преобразуется в механическую работу.

Газотурбинный двигатель первоначально был разработан вовсе не для авиации. В нём нет выходящей реактивной струи. Вся его мощность сосредоточена на валу, который вращает нужные агрегаты. Но в турбовинтовом авиационном двигателе вал приводит во вращение винт, который через редуктор укрепляется на нём перед компрессором. А винт уже и создаёт тягу.

Существуют вертолётные турбовинтовые двигатели, которые приводят в движение несущий винт вертолёта.

Реактивные двигатели

К реактивным относятся турбореактивные, турбореактивные двухконтурные, прямоточные и пульсирующие реактивные двигатели.

Турбореактивный двигатель (ТРД)

Этот тип двигателя является основным в реактивной авиации.

Сила тяги, необходимая для движения, создаётся путём преобразования внутренней энергии топлива в кинетическую энергию реактивной струи продуктов сгорания топлива.

В теплотехнике существует понятие «рабочее тело». Это какое-то условное тело, которое расширяется при нагревании и сжимается при охлаждении. Энергию рабочее тело получат при сжатии, а при расширении оно выполняет механическую работу, благодаря которой приводится в движение рабочий орган.

В турбореактивном авиационном двигателе рабочим телом является атмосферный воздух, который через входное устройство подаётся в компрессор, где и сжимается. Следующий этап – камера сгорания, где воздух нагревается и смешивается с продуктами сгорания керосина. Образовавшаяся газовоздушная смесь попадает на турбину, через рабочие лопатки вращает её, расширяется и теряет часть своей энергии. Эта энергия превращается в механическую энергию основного вала, расходуется на работу компрессора, а также на работу топливных и масляных насосов, привода электрогенераторов, которые вырабатывают электроэнергию для различных бортовых систем самолёта.

Но основная часть энергии газовоздушной смеси разгоняется в специальном сужающемся устройстве, которое называется реактивное сопло. За счёт реактивной струи появляется сила тяги двигателя.

На сверхзвуковых самолётах применяют турбореактивные двигатели с форсажной камерой. В них между турбиной и соплом установлена дополнительная камера, которая и называется форсажной. В этой камере сжигается дополнительное топливо, что вызывает увеличение тяги (форсаж) до 50 %. Но его расход в таких двигателях значительно выше, чем у обычных ТРД.

Турбореактивный двухконтурный двигатель (ТРДД)

1 — компрессор низкого давления; 2 — внутренний контур; 3 — выходной поток внутреннего контура; 4 — выходной поток внешнего контура.

Этот двигатель имеет два контура: внутренний и внешний. Его отличие от обычного турбореактивного заключается в том, что весь воздушный поток сначала попадает в компрессор низкого давления. Затем основная часть воздуха проходит по внутреннему контуру такой же путь, как и в обычном турбореактивном двигателе. То есть, попадает в другой компрессор, сжимается, нагревается, смешивается в камере сгорания с топливом и разгоняется в сопле для образования реактивной тяги. А вторая часть воздуха проходит напрямую по внешнему контуру поверх внутреннего контура, оставаясь холодной, и выбрасывается, не сгорая. Тем самым создаётся дополнительная тяга и уменьшается расход топлива, что очень важно для самолёта. А также снижается и шум двигателя.

Прямоточный воздушно-реактивный двигатель (ПВРД)

1 — воздух; 2 — впрыск горючего; 3 — стабилизатор пламени; 4 — камера сгорани; 5 — сопло; 6 — форсунки.

Этот двигатель не имеет ни турбины, ни компрессора. Он состоит из трёх обязательных элементов: диффузора, камеры сгорания и сопла.

Диффузор повышает статистическое давление за счёт торможения встречного потока воздуха. В камере сгорания происходит сгорание топлива. Окислителем служит кислород воздуха, поступающий из диффузора. Тяга создаётся за счёт реактивной струи, вытекающей из сопла.

В зависимости от скорости полёта ПВРД подразделяют на дозвуковые, сверхзвуковые и гиперзвуковые. Каждая из групп имеет свои конструктивные особенности.

Пульсирующий воздушно-реактивный двигатель

1 — воздух; 2 — горючее; 3 — клапанная решётка; 4 — форсунки; 5 — свеча зажигания; 6 — камера сгорания; 7 — сопло.

В таком двигателе имеется камера сгорания с входными клапанами и длинное выходное сопло цилиндрической формы. Когда клапаны открываются, в камеру сгорания подаются воздух и топливо. Искра свечи зажигания поджигает смесь. Образуется избыточное давление, которое закрывает клапаны. А продукты сгорания выбрасываются через сопло, тем самым создавая реактивную тягу.

И прямоточные, и пульсирующие воздушно-реактивные двигатели на практике применяются довольно редко.

Ракетные двигатели

В авиации ракетные двигатели используются в особых случаях как дополнительные двигатели для сокращения длины разбега самолёта при взлёте или сокращения длины пробега при посадке, а также для увеличения мощности при полётах в чрезвычайных ситуациях. Применяют их и на исследовательских или экспериментальных самолётах.

Ракетные двигатели разделяются на твёрдотопливные и жидкостные. В твёрдотопливных (РДТТ) и топливо, и окислитель находятся в твёрдом состоянии, а в жидкостных (ЖРД) – в жидком агрегатном состоянии. Сгорание топлива происходит в камере сгорания – основной части ракетного двигателя. А газы, образуемые при сгорании, выбрасываются через реактивное сопло, создавая реактивную тягу.

Так как окислитель для горения ракетные двигатели везут с собой, то они не зависят от воздушной среды, и прекрасно зарекомендовали себя в разреженном и безвоздушном пространстве. Их используют для подъёма и разгона баллистических ракет, космических кораблей, запуска спутников.

Авиационные газотурбинные двигатели

Здравствуйте! В начале сороковых годов XX века газовая турбина нашла применение в авиации. За сравнительно короткий срок поршневые двигатели были вытеснены из скоростной авиации более совершенными газотурбинными двигателями (ГТД).

Очень важным показателем для авиации является удельная масса двигателя. У поршневого двигателя она составляет 0,55— 0,82 кг/кВт, а у газотурбинного — всего лишь 0,11—0,14 кг/кВт.

Принципиальное отличие газотурбинного двигателя от поршневого состоит в характере движения рабочего органа. Если в поршневом двигателе поршень совершает возвратно — поступательное движение, которое затем с помощью коленчатого вала преобразуется во вращательное, то в ГТД рабочий орган (ротор турбины) сразу же совершает вращательное движение.

Это обстоятельство в основном и предопределило успех ГТД, так как оно позволило получить большее число оборотов и, следовательно, увеличить мощность двигателя при одинаковой массе. Кроме того, поперечные габаритные размеры ГТД, отнесенные к силе тяги, оказались во много раз меньшими, чем у лучших поршневых двигателей. Все это позволило резко увеличить скорость полета самолетов при установке на них газотурбинных двигателей. Если для самолетов с поршневыми двигателями скорость полета обычно составляет 200—300 км/ч, то самолеты гражданской авиации, оснащенные газотурбинными двигателями, развивают скорость значительно выше.

В ходе развития и совершенствования ГТД появились различные конструктивные решения. Однако все авиационные ГТД подразделяются на две основные группы: турбореактивные (ТРД, рис. 1.) и турбовинтовые (ТВД, рис. 2).

Турбореактивный двигатель состоит из входного устройства 1, осевого компрессора 2, топливной системы 3, камеры сгорания 4, турбины 5 и выходного устройства (сопла) 6. Воздух, поступающий через входное устройство 1 внутрь двигателя, сжимается в компрессоре 2 и нагнетается им в камеру сгорания 4.

Сюда же подается через форсунки жидкое топливо. Образующиеся в процессе сгорания топлива газы повышенной температуры и высокого давления направляются на рабочие лопатки турбины 5, приводя во вращение ее ротор, который опирается на роликовые 7 и шариковые раднально -упорные 8 подшипники. Затем через сопло газы отводятся наружу.

Выходное устройство 6 служит для преобразования потенциальной энергии газового потока в кинетическую и отвода газов из двигателя. Скорость истечения газов из реактивного насадка дозвукового выходного устройства близка к критической или равна ей и составляет 500—600 м/с.

Для газовой турбины характерны непрерывность рабочего процесса, высокие скорости газа и отсутствие возвратного движения масс. Газовая турбина служит приводом компрессора, а избыток энергии используется для сообщения газу большой скорости. При истечении газа в сторону, противоположную направлению полета, возникает реактивная тяга, которой приводится в движение самолет. Реактивная струя частично создается турбиной и частично соплом, отсюда и название — турбореактивный двигатель.

Таким образом, движущей силой или тягой в турбореактивном двигателе является реакция струи горячих газов, истекающих из сопла. Тяга — основная характеристика ТРД. Для создания постоянной тяги в течение продолжительного времени топливо непрерывно сжигается в камере. Благодаря этому в камере поддерживается давление, большее давления окружающей среды. Под действием перепада давления и происходит истечение газов из сопла в атмосферу и образование реактивной струи.

Постоянство тяги и давления в камере сгорания обеспечивается при условии, что количество газа, образующегося в единицу времени при сжигании топлива, равно количеству газа, истекающего за это же время из камеры. Величина тяги зависит в основном от секундного расхода газов и скорости их истечения из двигателя в атмосферу. Чем больше расход газов и скорость истечения, тем большей (при прочих равных условиях) будет тяга. Для увеличения скорости истечения и, следовательно, тяги служит сопло.

Основными элементами турбовинтового двигателя (рис.2.) являются воздушный винт 1, редуктор числа оборотов 2, компрессор 3, камера сгорания 4, турбина 5 и выходное устройство б. Характерная особенность турбовинтового двигателя состоит в том, что его газовая турбина приводит в действие наряду с компрессором воздушный винт, причем основная тяга создается винтом, а расширение выхлопных газов в реактивном сопле дает дополнительную тягу. Однако скорость выхода газов из сопла в ТВД значительно меньше, чем в ТРД. Теплоперепад здесь срабатывается более полно, поэтому ТВД отличаются большей экономичностью. Таким образом, разница между ТВД и ТРД состоит в методе преобразования энергии сжатых газов в работу силы тяги.

Существует различие также между движителями указанных двигателей. Если в ТРД движитель состоит из выхлопной трубы и сопла, то в ТВД, кроме отмеченных узлов, он включает дополнительную турбину или отдельные ступени, связанные с воздушным винтом. Количество и скорости отбрасываемого воздуха у них будут также различными.

Турбовинтовые двигатели обычно применяются при дозвуковых скоростях полета, а турбореактивные — при сверхзвуковых. По конструктивным признакам элементов ГТД различают двигатели с центробежными, осевыми и осецентробежными компрессорамн, с трубчатыми, кольцевыми и трубчато — кольцевыми камерами сгорания, с осевыми и радиальными турбинами, с прямоточным и петлевым движением газов и т. д.

В основном применяются осевые компрессоры, так как они имеют высокий к.п.д., малый вес, малые поперечные габариты и позволяют получать большую степень повышения давления. Они хорошо вписываются в плавные контуры двигательной установки, снижая тем самым лобовое сопротивление самолета. Среди камер сгорания наибольшее распространение получили кольцевые и трубчато — кольцевые, поскольку их стенки могут быть включены в силовые корпусы двигателя, что приводит к снижению его веса.

В двигателях большой тяги используются газовые турбины только осевого типа и лишь на малых ТРД и ТВД встречаются радиальные турбины. Число ступеней турбины определяется величиной срабатываемого теплоперепада и его распределения по ступеням. В турбореактивных самолетах основной упор делается на скорость полета, поэтому они оборудуются турбинами с малым числом ступеней — от одной до трех. В турбовинтовых самолетах скорости полета меньшие, теплоперепад срабатывается более полно за счет применения многоступенчатых турбин (число ступеней 3—5).

Число оборотов роторов ТВД находится в пределах 6000—18 000 об/мин. С помощью редуктора оно снижается до наивыгоднейшего числа оборотов винта, равного 800—1500 об/мин. Компрессор, камера сгорания, турбина и реактивное сопло как в ТВД, так и в ТРД располагают обычно так, чтобы обеспечить прямоточное движение воздуха и продуктов сгорания. Этим снижаются гидравлические потери двигателя.

На тепловой экономичности ГТД сказывается также высота полета самолета, так как ею определяется температура T2 холодного источника. С увеличением высоты отношение максимальной температуры Т1 к минимальной Т2 в цикле растет (при высоте 10 км T2 = 232 К или t2 = — 41°C), а это положительно влияет на к.п.д. двигателя. Кроме того, относительно небольшой срок службы двигателя в авиации облегчает его создание для работы на повышенных температурах.

При сверхзвуковых скоростях полета в ТРД применяется форсирование двигателей по тяге. Наиболее распространенным способом форсирования является применение в выхлопной системе двигателей форсажных камер. Скорость газов, выходящих из турбины, снижается диффузором до 150—200 м/с. В форсажной камере в этот поток газов впрыскивается топливо, которое при сгорании создает дополнительную тягу. Ее величина может составлять 20—50% от номинальной тяги двигателя.

Важнейшими параметрами, характеризующими совершенство ГТД и их технические данные, являются тяга, удельный расход топлива, масса, габаритные размеры и ресурс (продолжительность безотказной работы двигателя в эксплуатации). По мере развития и совершенствования конструкции ГТД, технологии изготовления, применения новых материалов отмеченные параметры существенно изменяются: тяга двигателей непрерывно возрастает, улучшается экономичность, снижается масса на единицу тяги, уменьшаются габаритные размеры, а ресурс возрастает.

Существенным показателем для оценки ТРД является удельная масса, под которой понимается отношение массы двигателя к его номинальной тяге: mуд = mдв/R. С начала строительства турбореактивных двигателей их удельная масса снизилась в несколько раз, и начиная с 1951 г. средние значения удельной массы ТРД с осевыми компрессорами имеют меньшую величину, чем с центробежными.

Для турбовинтовых двигателей удельная масса оценивается отношением массы двигателя к суммарной мощности Ne, которая равна сумме мощности Nв на валу винта и мощности Np реакции струи газов: mуд = mдв/Ne. За период строительства ТВД их удельная масса снизилась примерно в несколько раз. Удельная масса является важнейшим показателем для авиационных двигателей, поскольку ею определяется скороподъемность и дальность полета самолета. Как следует из статистических данных, увеличение массы двигателя на 1 кг приводит к увеличению массы самолета на 3—5 кг.

Благодаря небольшой удельной массе ГТД целесообразно использование их в водном и наземном транспорте. Имеется также опыт применения ГТД на морских судах, локомотивах, автомашинах, и только недостаточная экономичность сдерживает пока их широкое применение. Исп. литература: 1) Теплотехника, под редакцией А.П.Баскакова, Москва, Энергоиздат, 1982. 2) Теплотехника, Бондарев В.А., Процкий А.Е., Гринкевич Р.Н. Минск, изд. 2-е,»Вышейшая школа», 1976.

Ссылка на основную публикацию
Adblock
detector