Что такое активная и реактивная мощность двигателя

Что такое активная и реактивная мощность двигателя

Увеличение энергоэффективности путем компенсации реактивной мощности

Мы работаем
по всей России

Необходимость увеличения энергоэффективности промышленного производства становится все более актуальной. Это обусловлено все большим дефицитом и увеличением стоимости энергоресурсов, ростом объемов производства и в конце концов необходимостью увеличения конкурентоспособности предприятия за счет уменьшения энергоемкости производства.

Большинство промышленных потребителей электроэнергии наряду с активной мощностью потребляют и реактивную мощность, которая расходуется на создание электромагнитных полей и является бесполезной. Наличие в электросети реактивной мощности снижает качество электроэнергии, приводит к увеличению платы за электроэнергию, дополнительным потерям и перегреву проводов, перегрузке подстанций, необходимости завышения мощности силовых трансформаторов и сечения кабелей, просадкам напряжения в электросети.

В настоящее время нагрузкой электрической сети переменного тока промышленных предприятий в основном являются асинхронные двигатели и распределительные трансформаторы, имеющие значительную индуктивность. Поэтому данные устройства в процессе работы за счет ЭДС самоиндукции генерируют реактивную мощность, которая, совершая колебательные движения от нагрузки к источнику (генератору) и обратно, распространяется по сети.

Индукционные приемники энергии или потребители реактивной мощности

  • Трансформатор. Он является одним из основных звеньев в передаче электроэнергии от источника электрической энергии до потребителя и предназначен для преобразования посредством электромагнитной индукции системы переменного тока одного напряжения в систему переменного тока другого напряжения при неизменной частоте и без существенных потерь мощности.
  • Асинхронный двигатель. Асинхронные двигатели наряду с активной мощностью потребляют до 65% реактивной мощности энергосистемы.
  • Индукционные печи. Это крупные электроприемники, требующие для своего действия большое количество реактивной мощности. Индукционные печи промышленной частоты часто используются для плавки металлов.
  • Преобразовательные установки, преобразующие переменный ток в постоянный при помощи выпрямителей. Данные установки широко применяются на промышленных предприятиях и железнодорожном транспорте, использующем постоянный ток.

Потребителя обычно интересует активная мощность в нагрузке, которая и определяет полезную работу. Генерация нагрузкой реактивной мощности повышает полную мощность, проходящую по сети. Полная мощность (S) равна корню из геометрической суммы P — активной мощности и Q — реактивной мощности.

Генерация реактивной мощности нагрузкой сопровождается отрицательными явлениями, такими как:

  • повышение активных потерь (т. к. величина полной мощности повышается);
  • снижение нагрузочной способности (т. к. увеличивается токовая нагрузка на питающий кабель и распределительный трансформатор);
  • большее падение напряжения (из-за увеличения реактивной составляющей тока питающей сети).

Хотя на выработку реактивной мощности не тратится энергия генератора, но для передачи ее по сети требуется дополнительная, активная энергия генератора. Дополнительный реактивный ток, проходя по сети, вызывает не только активные потери мощности в проводах сети и генератора, но и уменьшает допустимую активную составляющую тока питающей сети, т. к. сечение питающего кабеля рассчитано под максимальную нагрузку. Уровень реактивной мощности двигателей, генераторов и сети предприятия в целом характеризуется коэффициентом мощности cos φ — это численное отношение активной мощности к полной мощности: cos φ = P/S. Например: cos φ асинхронных двигателей составляет примерно 0,7; cos φ сварочных трансформаторов — примерно 0,4; cos φ станков не превышает 0,5 и т. д. Поэтому полное использование мощностей сети возможно только при компенсации реактивной составляющей мощности.

К чему приводит отсутствие компенсации реактивной мощности у потребителей

  • У трансформаторов при уменьшении cos φ уменьшается пропускная способность по активной мощности вследствие увеличения реактивной нагрузки.
  • Увеличение полной мощности при снижении cos φ приводит к возрастанию тока и, следовательно, потерям мощности, которые пропорциональны квадрату тока.
  • Увеличение тока требует повышения сечений проводов и кабелей, растут капитальные затраты на электрические сети.
  • Увеличение тока при снижении cos φ ведет к увеличению потери напряжения во всех звеньях энергосистемы, что вызывает понижение напряжения у потребителей.
  • На промышленных предприятиях понижение напряжения нарушает нормальную работу электроприемников. Снижается частота вращения электродвигателей, что приводит к снижению производительности рабочих машин, уменьшается производительность электрических печей, ухудшается качество сварки, снижается световой поток ламп, уменьшается пропускная способность заводских электрических сетей, а как итог — ухудшается качество продукции.

Применение емкостных компенсаторов реактивной мощности позволяет снизить объем потребляемой индуктивной реактивной мощности и добиться экономического эффекта в вопросах энергосбережения. Существует несколько способов снижения реактивной мощности, однако применение для этих целей именно конденсаторных установок представляется наиболее предпочтительным. Конденсаторные установки имеют малые потери, просты в наладке и эксплуатации, их можно подключить в любой точке электросети. С их помощью можно компенсировать практически любой объем реактивной мощности.

Принцип работы емкостного компенсатора реактивной мощности заключается в том, что реактивная мощность при этом уже не перемещается между генератором и нагрузкой, а совершает локальные колебания между реактивными элементами — индуктивными обмотками нагрузки и емкостным компенсатором. При этом для снижения потерь, вызываемых перетоком реактивной мощности, необходимо компенсатор располагать как можно ближе к нагрузке.

В качестве коммутирующего элемента в конденсаторных установках могут применяться контакторы или тиристоры.

Контакторные конденсаторные установки получили наиболее широкое распространение в силу более простой реализации и низкой стоимости по сравнению с тиристорными (статическими) конденсаторными установками. Однако на промышленных предприятиях довольно часто нагрузка имеет резкопеременный характер, в таких случаях контакторные компенсаторы малоэффективны из-за недостаточного быстродействия механики контакторов. Более того, контакторы имеют ограниченное расчетное количество срабатываний, что при интенсивных переключениях приводит к преждевременному выходу из строя компенсатора.

Указанных выше недостатков контакторных компенсаторов лишены тиристорные компенсаторы реактивной мощности. Тиристоры обладают гораздо большим быстродействием, что позволяет выполнять компенсацию реактивной мощности в условиях быстропеременной нагрузки. А также не имеют ограничений на количество переключений, так как являются полностью электронными элементами, без движущихся механических частей. А то, что коммутация конденсаторов в тиристорных конденсаторных установках происходит при нулевом значении тока, значительно увеличивает срок службы как конденсаторных батарей, так и всей установки в целом.

НПП «РУМИКОНТ» производит тиристорные компентаторы реактивной мощности (ТКРМ) в диапазоне 50 . 1000 кВАр для трехфазных электрических сетей 380 В и 660 В.

Читать еще:  Ваз 21154 датчик температуры двигателя

Тиристорный компенсатор ТКРМ-500/0,4-07-90-Д-УХЛ4

номинальная мощность 500 кВАр,

напряжение питания 380 В, номинальный потребляемый ток 750 А

Тиристорный компенсатор ТКРМ-500/0,4-07-90-Д-УХЛ4

(компоновка шкафов — вид спереди)

Тиристорный компенсатор ТКРМ-500/0,4-07-90-Д-УХЛ4

(компоновка шкафов — вид сзади)

Модуль тиристорного компенсатора мощностью 120 кВАр

Состав: емкости компенсации, предохраниети, тиристоры,

формирователь импульсов управления тиристорами,

ТКРМ-500/0,4-07-90-Д-УХЛ4 является законченным комплектным устройством, однако требует подключения трансформаторов тока по двум фазам для измерения и регулирования мощности. Состоит из системы управления, панели индикации, четырех регулируемых блоков и одного нерегулируемого блока с конденсаторами.

Тиристорный компенсатор реактивной мощности укомплектован вводным автоматическим выключателем, обеспечивающим защиту ТКРМ от сверхтоков, а также защиту оборудования подстанции от внутренних коротких замыканий в ТКРМ.
Каждый из конденсаторных блоков снабжен дополнительно предохранителями, установленными в двух фазах. Предохранители обеспечивают селективную защиту ТКРМ от сверхтоков внутри отдельных блоков. Защита от перенапряжений осуществляется блоком варисторов, которым укомплектован стационарный блок. Микропроцессорная система управления укомплектована внутренними датчиками, позволяющими отследить пропадание напряжения собственных нужд и отключить ТКРМ.

На панели индикации отображаются следующие параметры:

  • линейное напряжение a-b, В;
  • линейное напряжение b-c, В;
  • ток нагрузкм фазы а, А;
  • ток нагрузки фазы с, А;
  • ток конденсаторной батареи фазы а;
  • ток конденсаторной батареи фазы с;
  • коэффициент мощность (cos φ);
  • реактивная мощность, вКАр;
  • активная мощность, кВт;
  • полная мощность, кВА.

В современных сетях электроснабжения из-за нелинейности нагрузки (например при работе импульсных стабилизаторов и преобразователей электроэнергии) возникают высшие гармоники тока, которые по своей величине часто становятся соизмеримыми с основной гармоникой. Конденсаторы установок компенсации реактивной мощности в совокупности с индуктивностью нагрузки могут образовывать колебательные контуры, близкие по частоте резонанса к частоте одной из высших гармоник. Это приводит к значительному увеличению тока конденсаторов и существенно сокращает их срок службы. Перенапряжения, возникающие при резонансе на элементах конденсаторной установки и нагрузки могут привести к пробою изоляции. Для устранения подобных проблем, а также для оптимизации характеристик компенсатора, до внедрения ТКРМ выполняется исследование электросети заказчика. Для подавления резонансов применяются реакторы, настроенные на частоту наиболее значительных гармоник.

Ниже приведены реальные результаты исследования электросети потребителя до и после внедрения ТКРМ.

Суточный график потребления активной (P) и реактивной (Q) мощности производственного участка

до внедрения компенсатора реактивной мощности

Суточный график коэффициента мощности (cos φ) производственного участка

до внедрения компенсатора реактивной мощности

Суточный график потребления активной (P) и реактивной (Q) мощности производственного участка

после внедрения компенсатора реактивной мощности

Суточный график коэффициента мощности (cos φ) производственного участка

после внедрения компенсатора реактивной мощности

Технические характеристики моделей тиристорных компенсаторов реактивной мощности

Компенсация реактивной мощности

Компенса́ция реакти́вной мо́щности — целенаправленное воздействие на баланс реактивной мощности в узле электроэнергетической системы с целью регулирования напряжения, а в распределительных сетях и с целью снижения потерь электроэнергии [1] . Осуществляется с использованием компенсирующих устройств. Для поддержания требуемых уровней напряжения в узлах электрической сети потребление реактивной мощности должно обеспечиваться требуемой генерируемой мощностью с учетом необходимого резерва. Генерируемая реактивная мощность складывается из реактивной мощности, вырабатываемой генераторами электростанций и реактивной мощности компенсирующих устройств, размещенных в электрической сети и в электроустановках потребителей электрической энергии.

Компенсация реактивной мощности особенно актуальна для промышленных предприятий, основными электроприёмниками которых являются асинхронные двигатели, в результате чего коэффициент мощности без принятия мер по компенсации составляет 0,7— 0,75. Мероприятия по компенсации реактивной мощности на предприятии позволяют:

  • уменьшить нагрузку на трансформаторы, увеличить срок их службы,
  • использовать провода, кабели меньшего сечения за счет уменьшения нагрузки на них,
  • улучшить качество электроэнергии у электроприемников (за счёт уменьшения искажения формы напряжения),
  • уменьшить нагрузку на коммутационную аппаратуру за счет снижения токов в цепях,
  • избежать штрафов за снижение качества электроэнергии пониженным коэффициентом мощности,
  • снизить расходы на электроэнергию.

Содержание

  • 1 Физика процесса
  • 2 Основные компоненты КРМ
  • 3 См. также
  • 4 Примечания
  • 5 Ссылки

Физика процесса [ править | править код ]

Переменный ток идет по проводу в обе стороны, в идеале нагрузка должна полностью усвоить и переработать полученную энергию. При рассогласованиях между генератором и потребителем происходит одновременное протекание токов от генератора к нагрузке и от нагрузки к генератору (нагрузка возвращает запасенную ранее энергию). Такие условия возможны только для переменного тока при наличии в цепи любого реактивного элемента, имеющего собственную индуктивность или ёмкость. Индуктивный реактивный элемент стремится сохранить неизменным протекающий через него ток, а ёмкостный — напряжение. Через идеальные резистивные и индуктивные элементы протекает максимальный ток при нулевом напряжении на элементе и, наоборот, максимальное напряжение оказывается приложенным к элементам, имеющим ёмкостной характер, при токе, протекающем через них, близком к нулю.

Значительную часть электрооборудования любого предприятия составляют устройства, обязательным условием нормальной работы которых является создание в них магнитных полей, а именно: трансформаторы, асинхронные двигатели, индукционные печи и прочие устройства, которые можно обобщенно охарактеризовать как «индуктивная нагрузка». Гораздо реже применяются устройства, запасающие энергию, которые можно обобщенно считать ёмкостной нагрузкой.

Поскольку одной из особенностей индуктивности является свойство сохранять неизменным ток, протекающий через неё, то при протекании тока нагрузки появляется фазовый сдвиг между током и напряжением (ток «отстает» от напряжения на фазовый угол). Разные знаки у тока и напряжения на период фазового сдвига, как следствие, приводят к снижению энергии электромагнитных полей индуктивностей, которая восполняется из сети. Для большинства промышленных потребителей это означает следующее: по сетям между источником электроэнергии и потребителем, кроме совершающей полезную работу активной энергии, также протекает реактивная энергия, не совершающая полезной работы. Активная и реактивная энергии составляют полную энергию, при этом доля активной энергии по отношению к полной определяется косинусом угла сдвига фаз между током и напряжением — cosφ. Однако, протекая по кабелям и обмоткам в обратную сторону, реактивный ток снижает в пределах их пропускной способности долю протекающего по ним активного тока, вызывая при этом значительные дополнительные потери в проводниках на нагрев — активные потери. В случае, когда cosφ = 1, вся энергия дойдет до потребителя. В случае cosφ = 0 ток в проводе возрастет вдвое, поскольку одинаковый по величине ток будет протекать в обоих направлениях одновременно. В этом режиме активная мощность нагрузкой не потребляется, за исключением нагрева проводников.

Читать еще:  Что такое датчик детонации двигателя на мазде 3

Таким образом, нагрузка принимает и отдает в сеть практически всю энергию, при этом возникает ситуация, в которой потребитель вынужден оплачивать энергию, которая не была использована фактически. В противоположность индуктивным элементам, ёмкостные элементы (например, конденсаторы) стремятся сохранять неизменным напряжение на своих зажимах, то есть для них ток «опережает» напряжение. Поскольку величина потребляемой электроэнергии никогда не является постоянной и может меняться в существенном диапазоне за достаточно малый промежуток времени, то, соответственно, может изменяться и соотношение активной потребляемой энергии к полной (cosφ). При этом чем меньше активная нагрузка потребителя, тем меньше значение cosφ. Из этого следует, что для компенсации реактивной мощности необходимо оборудование (см. статью Компенсирующие устройства), обеспечивающее регулирование cosφ в зависимости от изменяющихся условий работы оборудования. Плавное регулирование cosφ обеспечивают синхронные двигатели и синхронные компенсаторы, ступенчатое — установки компенсации реактивной мощности (УКРМ), состоящие, как правило, из батарей ёмкостных элементов (конденсаторов), коммутационного оборудования и устройств управления. Принцип работы УКРМ заключается в подключении к сети необходимого в данный момент времени количества конденсаторов для известного мгновенного значения реактивной мощности.

Что такое реактивная мощность и как с ней бороться

Реактивная мощность определяет периодический обмен электрической энергией между источником и электроприемником с двойной частотой по отношению к частоте переменного тока без преобразования ее в другой вид энергии и может рассматриваться как характеристика скорости обмена электроэнергией между источником и магнитным полем электроприемника.

Суммарная энергия, связанная с существованием этой составляющей мгновенной мощности, равна нулю. Ее появление, очевидно, связано с наличием в системе производства, передачи и распределения электроэнергии элементов, в которых возможно периодическое накопление и последующий возврат определенного количества энергии. В противном случае обмен электрической энергией между источником и электроприемником был бы невозможен.

Физика процесса и практика применения установок компенсации реактивной мощности

Чтобы разобраться с понятием реактивной мощности, вспомним сначала, что такое электрическая мощность. Электрическая мощность – это физическая величина, характеризующая скорость генерации, передачи или потребления электрической энергии в единицу времени.

Чем больше мощность, тем большую работу может совершить электроустановка в единицу времени. Измеряется мощность в ваттах (произведение Вольт х Ампер). Мгновенная мощность – это произведение мгновенных значений напряжения и силы тока на каком-то участке электрической цепи.

Физика процесса

В цепях постоянного тока значение мгновенной и средней мощности за какой-то промежуток времени совпадают, а понятие реактивной мощности отсутствует. В цепях переменного тока так происходит только в том случае, если нагрузка чисто активная. Это, например, электронагреватель или лампа накаливания. При такой нагрузке в цепи переменного тока фаза напряжения и фаза тока совпадают и вся мощность передается в нагрузку.

Если нагрузка индуктивная (трансформаторы, электродвигатели), то ток отстает по фазе от напряжения, если нагрузка емкостная (различные электронные устройства), то ток по фазе опережает напряжение. Поскольку ток и напряжение не совпадают по фазе (реактивная нагрузка), то в нагрузку (потребителю) передается только часть мощности (полной мощности), которая могла бы быть передана в нагрузку, если бы сдвиг фаз был равен нулю (активная нагрузка).

Активная и реактивная мощности

Часть полной мощности, которую удалось передать в нагрузку за период переменного тока, называется активной мощностью. Она равна произведению действующих значений тока и напряжения на косинус угла сдвига фаз между ними (cos φ ).

Мощность, которая не была передана в нагрузку, а привела к потерям на нагрев и излучение, называется реактивной мощностью. Она равна произведению действующих значений тока и напряжения на синус угла сдвига фаз между ними (sin φ).

Таким образом, реактивная мощность является величиной характеризующей нагрузку. Она измеряется в вольт амперах реактивных (вар, var). На практике чаще встречается понятие косинус фи, как величины характеризующей качество электроустановке с точки зрения экономии электроэнергии.

Действительно, чем выше cos φ, тем больше энергии, подаваемой от источника, попадает в нагрузку. Значит можно использовать менее мощный источник и меньше энергии пропадает зря.

Реактивная мощность может рассматриваться как характеристика скорости обмена электрической энергией между источником и магнитным полем электроприемника. В отличие от активной мощности реактивная мощность не выполняет непосредственно полезной работы, она служит для создания переменных магнитных полей в индуктивных электроприемниках (например, в асинхронных двигателях, силовых трансформаторах и др.), непрерывно циркулируя между источником и потребляющими ее электроприемниками.

Реактивная мощность бытовых потребителей

Итак, потребители переменного тока имеют такой параметр, как коэффициент мощности cosφ.

На графике ток сдвинут на 90° (для наглядности), то есть на четверть периода. Например, электрооборудование имеет cosφ = 0,8, что соответствует углу arccos 0,8 ≈ 36.8°. Этот сдвиг происходит из-за наличия в потребителе электроэнергии нелинейных компонентов – ёмкостей и индуктивностей (например, обмотки электродвигателей, трансформаторов и электромагнитов).

Для дальнейшего понимания происходящего требуется учет того факта, что, чем выше коэффициент мощности (максимум 1), тем более эффективно потребитель использует получаемую из сети электроэнергию (то есть большее количество энергии преобразуется в полезную работу) – такую нагрузку называют резистивной.

При резистивной нагрузке ток в цепи совпадает с напряжением. А при низком коэффициенте мощности нагрузку называют реактивной, то есть часть потребляемой мощности не совершает полезной работы.

Таблица ниже демонстрирует классификацию потребителей по коэффициенту мощности.

Классификация потребителей переменного тока

Следующая таблица демонстрирует коэффициент мощности распространённых в быту потребителей электроэнергии.

Читать еще:  Чуть плавают обороты двигателя

Коэффициент мощности бытовых электроприборов

Юмор электрика

Что такое реактивная мощность? Все очень просто!

Способы компенсации реактивной мощности

Из сказанного выше вытекает, если нагрузка индуктивная, то следует компенсировать ее с помощью емкостей (конденсаторов) и наоборот емкостную нагрузку компенсируют с помощью индуктивностей (дросселей и реакторов). Это помогает увеличить косинус фи (cos φ) до приемлемых значений 0.7-0.9. Этот процесс называется компенсацией реактивной мощности.

Экономический эффект от компенсации реактивной мощности

Экономический эффект от внедрения установок компенсации реактивной мощности может быть очень большим. По статистике он составляет от 12 до 50% от оплаты электроэнергии в различных регионах России. Установка компенсации реактивной мощности окупается не более чем за год.

Для проектируемых объектов внедрение конденсаторной установки на этапе разработки позволяет экономить на стоимости кабельных линий за счет снижения их сечения. Автоматическая конденсаторная установка, например, может поднять cos φ с 0.6 до 0.97.

Выводы

Итак, установки по компенсации реактивной мощности приносят ощутимые финансовые выгоды. Они также позволяют дольше сохранять оборудование в рабочем состоянии.

Вот несколько причин, по которым это происходит.

1. Уменьшение нагрузки на силовые трансформаторы, увеличение в связи с этим срока их службы.

2. Уменьшение нагрузки на провода и кабели, возможность использования кабелей меньшего сечения.

3. Улучшение качества электроэнергии у электроприемников.

4. Ликвидация возможности штрафов за снижение cos φ.

5. Уменьшение уровня высших гармоник в сети.

6. Снижение уровня потребления электроэнергии.

Большая Энциклопедия Нефти и Газа

Активная мощность — двигатель

Активная мощность двигателя Pt определяет среднюю мощность необратимого преобразования в двигателе электрической энергии, получаемой из трехфазной сети, в механическую, тепловую и другие виды энергии, а реактивная мощность d — максимальную мощность обмена энергией между источником и магнитным полем двигателя. [1]

Активная мощность двигателя PI определяет среднюю мощность необратимого преобразования в двигателе электрической энергии, получаемой из трехфазной сети, в механическую, тепловую и другие виды энергии, а реактивная мощность Qt — максимальную мощность обмена энергией между источником и магнитным полем двигателя. [2]

Активная мощность двигателя PI определяет среднюю мощность необратимого преобразования в двигателе электрической энергии, получаемой из трехфазной сети, в механическую, тепловую и другие виды энергии, а реактивная мощность 2i — максимальную мощность обмена энергией между источником и магнитным полем двигателя. [3]

Для измерения перепада давлений и активной мощности двигателя , как правило, используются стационарные приборы, входящие в систему КИПиА данной насосной установки. [4]

Умножая показания ваттметра на 3, получаем активную мощность двигателя . [6]

В каталогах на синхронные машины, помимо номинального значения активной мощности двигателя , указана его полная мощность S ква. Зная фактическую нагрузку Р на валу синхронного двигателя, можно вычислить по формуле ( 10 — 5) наибольшую реактивную мощность, которую двигатель может вырабатывать для компенсации реактивной мощности, потребляемой индуктивными приемниками, например асинхронными двигателями. Таким образом, недогруженный синхронный двигатель может вырабатывать реактивную энергию для повышения коэффициента мощности группы потребителей. [8]

При холостом ходе машины, когда энергия расходуется только на покрытие небольших потерь в статоре и незначительных механических потерь, активная мощность двигателя мала, а реактивная мощность велика, поскольку в машине при номинальном напряжении возбуждается вращающееся магнитное поле с максимальной величиной потока полюса. [9]

KV j — tz и значительно возрастет если возможно уменьшение мощности нагрузки при / / яе Установленная мощность конденсаторов примерно в уг раз больше активной мощности двигателя . [10]

Как следует из формул (3.64) и (3.65), потери в выпрямителе зависят от тока статора, а потери в автономном инверторе — от тока статора и активной мощности двигателя . Рпч — В частности, режим минимальных потерь АД обеспечивает минимум электрических потерь в источнике питания АЙН. [11]

Сигнал токовой защиты с выдержкой времени снимается с — диодно-емкостного фильтра ( ЗС, R5, 8Д), который формирует сигнал, пропорциональный среднему току преобразователя. Среднее значение тока питания инвертора примерно пропорционально активной мощности двигателя , и следовательно, моменту двигателя. Сигнал с выхода фильтра ЗС может быть использован для введения положительной токовой связи на вход регулятора напряжения. Сигнал на реле времени подается через стабилитрон ЗСт, который определяет уставку токовой защиты. С этого момента полупроводниковое реле времени на транзисторах 6Т, 7Т начинает отсчет времени. После открывания транзистора 8Т конденсатор 5С начинает заряжаться. Пока напряжение на нем не превышает напряжения пробоя стабилитрона 2Ст, сдвоенный транзистор 6Т — 7Т закрыт. [12]

Результаты исследований статических характеристик АД показывают, что асинхронный двигатель как объект управления обладает экстремальными характеристиками по ряду частных критериев качества. В том числе имеют экстремумы ток статора i и активная мощность PI двигателя , от которых зависят электрические потери преобразователя частоты. [13]

Практический интерес представляет оценка влияния закона частотного управления на потребление реактивной мощности Q. При выбранном режиме частотного управления двигателем процедура расчета сводится к следующей последовательности действий. Сначала рассчитывается ток статора и активная мощность двигателя , соответствующие заданным значениям скорости и момента нагрузки двигателя. Для этого используется методика расчета характеристик АД. Затем полученные значения тока /, и мощности PI подставляются в выражения для коэффициентов В и С биквадратного уравнение (3.74), и из него определяется ток / в. [14]

Анализ уравнения электрического состояния фазы статора (14.116) показывает, что при постоянном значении напряжения U между выводами фазной обмотки статора и тока 1 1ном магнитный поток вращающегося поля двигателя 4в также постоянен и не зависит от ее нагрузки. Это означает, что энергия, запасаемая в магнитном поле асинхронного двигателя, и реактивная мощность двигателя также постоянны и не зависят от его нагрузки. Но так как с ростом нагрузки активная мощность двигателя увеличивается, то из (14.21) следует, что с ростом нагрузки и коэффициент мощности двигателя увеличивается. [15]

Ссылка на основную публикацию
Adblock
detector