Что такое асинхронный двигатель и его отличия

Чем отличается синхронный двигатель от асинхронного?

В асинхронном двигателе ротор движется «сам по себе». В нем изначально нет ни магнитного поля, на него не подается никакого электрического напряжения. Он даже не обязан быть сделанным из железа — магнитного металла. Ну а вот, поди ж ты, стоит подключить к двигателю трехфазное напряжение, и ротор закрутился. Безо всякого подталкивания. Но по-своему.

Два вида электродвигателей переменного тока

Асинхронные двигатели — наивная простота

Ротор то догоняет волну, то слегка отстает, потому что синхронно с ней бежать просто не может. Такое явление назвали «скольжением», догнав бегущее магнитное поле, ротор с беличьей клеткой теряет магнитную индукцию и дальше некоторое время просто скользит по инерции. А когда трение или нагрузка вынуждают его отстать от бегущего поля, он опять «почувствует» в себе изменения силовых линий обгоняющего его поля и снова обретет индукцию, а вместе с этим и силы двигаться.

То есть, ротор слегка проскальзывает: то догоняет бегущее равномерно по кругу магнитное поле, то «забывает, зачем бежал» и слегка приотстает, то снова «спохватывается» и опять стремится догнать. Постепенно эти отклонения стабилизируются — в зависимости от трения в подшипниках и величины нагрузки на вал — и асинхронный двигатель начинает работать просто со скоростью вращения, чуть меньшей частоты напряжения на статоре. Эта разница частот и называется частотой скольжения.

Двигатели синхронные: сложное в простом

Для того, чтобы ротор был связан с бегущей волной магнитного поля катушек статора жестким образом, придумали электродвигатель синхронный. А проблема решается просто. В роторе вместо изменяющегося магнитного поля от короткозамкнутых токов беличьей клетки нужно использовать постоянные магниты и их магнитное поле.

Вариантов два. Или это поле от постоянного магнита, закрепленного в роторе, или это поле от электромагнитов, установленных в роторе вместо такого магнита.

Обычный магнит, конечно, проще. Но тогда для стандартного функционирования таких электромоторов нужно, чтобы на них на всех — а используются тысячи электромоторов — магниты были строго одинаковы. Иначе параметры движения будут разными, а магниты еще имеют свойство размагничиваться.

Электромагнит, установленный в роторе двигателя, легче заставить вырабатывать поле нужного качества, но требуется электрический ток для его работы. Такой ток, который называется током возбуждения, в свою очередь нужно где-то брать и как-то на ротор подавать.

1 – ротор,
2 – коллектор возбуждения

Отсюда и происходит некоторое разнообразие конструкций синхронных двигателей. Но важнее всего то, что синхронные двигатели крутят свой вал строго синхронно частоте бегающего по кругу поля катушек статора, то есть скорость их вращения точно равна — или кратна (если обмоток статора больше трех) — частоте переменного тока в питающей сети.

Однако кроме всего прочего, синхронный двигатель обладает свойством полной обратимости. Потому что синхронный электродвигатель — это тот же самый генератор электрического тока, но работающий «в обратную сторону». В генераторе некоторая механическая сила вращает вал с ротором, и от этого в обмотках статора возникает наведенное электрическое напряжение от вращающегося магнитного поля ротора. А отличие синхронного двигателя от генератора в том, что напряжение в катушках статора порождает бегающее по кругу магнитное поле, которое, взаимодействуя с постоянным магнитным полем ротора, толкает его, чтобы ротор тоже вращался.

Только если в генераторе вращению ротора можно механически придать любую скорость, и от этого будет изменяться частота переменного тока, им генерируемого, то в синхронном двигателе такой роскоши нет. Синхронный двигатель вращается со скоростью изменения напряжения в сети, а оно у нас выдерживается строго в 50 герц.

Отличия и недостатки этих двигателей

Отличия синхронного и асинхронного двигателей ясны из их названий. Собственно, плюсы имеют и тот, и другой вариант конструкции. Ниже перечислены плюсы, которыми отличаются оба двигателя — синхронный и асинхронный.

Асинхронный двигатель отличается от синхронного следующими параметрами:

  • простота конструкции и невысокая стоимость;
  • нет скользящих контактов, надежность в эксплуатации;
  • напряжение прикладывается к неподвижным катушкам статора;
  • ротор очень прост по конструкции;
  • при запуске и разгоне постепенно наращивает мощность;
  • возможность реверсировать направление вращения, просто поменяв местами две питающих фазы;
  • при остановке движения (слишком большая механическая нагрузка на вал ротора) никакой аварии не происходит, может произойти перегрев беличьей клетки.

Отличия синхронного двигателя от асинхронного заключаются в следующем:

  • стабильная скорость вращения вне зависимости от нагрузки на вал;
  • невысокая чувствительность к перепадам напряжения в сети;
  • при уменьшении механической нагрузки способен по инерции работать как генератор, не забирая энергию, а отдавая ее в сеть;
  • высокий КПД;
  • способен компенсировать реактивную мощность сети.

Но у каждого имеются и присущие только ему недостатки.

Асинхронный имеет следующие отрицательные черты:

  • трудность регулировки частоты вращения;
  • невысокая частота вращения;
  • зависимость отставания частоты вращения от нагрузки на ось;
  • при работе ротор нагревается за счет короткозамкнутых токов — требуется дополнительное охлаждение.

Недостатки синхронного двигателя:

  • сложнее по конструкции;
  • в некоторых конструкциях для проводки тока возбуждения в обмотки ротора используется коллектор, как в двигателе постоянного тока;
  • труднее запускается.

Несмотря на различия, оба электрических двигателя нашли себе применение в технике и используются в самых разных исполнениях и размерах.

Отличия асинхронных двигателей от синхронных

Применение электродвигателей в различных отраслях промышленности и быта широко распространено, в связи с экономичностью и простотой подключения и обслуживания. Для различных механизмов, применяются двигатели разной мощности и устройства. В этой статье рассмотрим, чем отличается синхронный двигатель от асинхронного, в каких механизмах они применяются и как правильно выбрать тип электрического мотора.

Читать еще:  Opel шум на холодном двигателе

Асинхронные двигатели

Как и любые электрические двигатели, асинхронные моторы представляют собой устройства, которые создают крутящий момент при помощи преобразования электрического тока. Если говорить простыми словами, асинхронный двигатель – это электромотор с неравнозначной частотой вращения ротора и магнитного поля. Магнитное поле ротора в таких устройствах всегда вращается с меньшей частотой, чем поле статора.

Строение асинхронного двигателя в целом аналогично с синхронным. Он состоит из:

  • Цилиндрического статора из металлических пластин с пазами для обмотки;
  • Фазного либо короткозамкнутого ротора;
  • Подвижных и неподвижных деталей корпуса, таких как вал, подшипники, вентилятор охлаждения, электрического оборудования.

Используется тип двигателя асинхронный в различных приводах как в промышленности, так и быту. Например, для обеспечения работы конвейеров, подъемных механизмов кранов и экскаваторов, деревообрабатывающих станков и других механизмов, как крупногабаритных, так и небольших бытовых.

Обслуживание и ремонт такого типа электромоторов не требует больших затрат, однако, для трансформации крутящего момента и понижения частоты вращения необходимо использовать редуктора различной сложности, часто с большим передаточным числом.

Синхронные двигатели

Основное отличие синхронного двигателя от асинхронного в том, что частота вращения магнитных полей при его работе совпадает, то есть является синхронной. Для синхронизации частот вращения используется дополнительный источник постоянного питания, что делает конструкцию синхронного электродвигателя сложнее и частично ограничивает сферу применения такого вида машин. Кроме того, работа такого типа двигателя возможна только с использованием частотного преобразователя.

В сфере применения, электродвигатели синхронные – это промышленные моторы большой мощности, которые используются в различных промышленных устройствах и оборудовании, где необходима повышенная мощность и возникают перегрузки.

Важной особенностью такого типа электромоторов является то, что при работе с перегрузкой устройство отдает часть реактивной мощности в сеть, что способствует повышению мощности, компенсирует падение мощности.

Синхронные двигатели бывают также таких типов:

  • Гистерезисные двигатели используются в точных механизмах для создания вращения. Например, в звукозаписи, медицинском оборудовании, машиностроении
  • Шаговые электродвигатели применяются в точных приборах и механизмах, таких как, например, станки с числовым программным обеспечением.

Преимущества и недостатки синхронных и асинхронных электродвигателей

Что бы определить, какой двигатель лучше синхронный или асинхронный, необходимо рассмотреть сферу применения этих устройств.

Синхронные двигатели, кроме повышенной мощности, обладают еще одним важным преимуществом – возможностью генерации низкой частоты вращения без использования дополнительных передач в редукторах. При этом, мощность на выходном валу остается неизменной. Синхронный двигатель имеет повышенный коэффициент полезного действия, более полно трансформируя электрическую энергию в крутящий момент.

Однако, синхронные двигатели имеют и недостатки. Кроме того, что требуется дополнительное питание и оборудование запуска, в таком типе электродвигателей происходит быстрый износ подвижных токосъемных деталей, таких как щётки и контактные кольца. Для замены изношенного оборудования требуются средства, что еще более увеличивает стоимость использования синхронных моторов.

Кроме того, настройка и обслуживание синхронных двигателей имеет ряд особенностей и требует более глубоких знаний технических особенностей.

Какой тип двигателя выбрать

При выборе типа электрического двигателя следует учитывать такие факторы:

  • Сферу применения и оборудование, которое приводится в движение электродвигателем;
  • Стоимость оборудования и его обслуживания;
  • Тип преобразующего редуктора, применяемого для понижения скорости вращения;
  • Тип питания и электрической сети.

Учитывая эти факторы и принимая во внимание расчет механизма, можно подобрать тип двигателя, который будет обеспечивать бесперебойную работу устройства, максимально экономить электроэнергию и обеспечивать необходимую мощность.

При использовании любого вида электрических двигателей стоит помнить, что срок их службы зависит от соблюдение технического регламента при подключении, настройке и последующему обслуживанию такого оборудования. При нарушении технических требований электродвигатель выйдет из строя, несмотря на его преимущества и надежность.

Чем асинхронные электродвигатели отличаются от синхронных

Что представляет собой синхронный двигатель?

К синхронным принято относить электродвигатели, которые функционируют на переменном токе и имеют ротор с частотой вращения, совпадающей с частотой оборотов магнитного поля в конструкции агрегата.

Ключевые элементы синхронного электродвигателя:

  1. якорь;
  2. индуктор.

Первый элемент агрегата располагается на статоре. Индуктор размещается на роторе, который отделен от статора воздушной прослойкой. Структура якоря представлена обмоткой (одной или несколькими). Токи, которые подаются в соответствующий элемент двигателя, формируют магнитное поле, вращающееся с заданной частотой и взаимодействующее с полем индуктора. Индуктор включает 2 полюса — в виде постоянных магнитов.

Синхронный агрегат может функционировать в двух режимах:

  • как собственно электродвигатель;
  • как генератор.

Первый режим работы предполагает взаимодействие магнитного поля, формирующегося на якоре, и поля, которое образуется на полюсах индуктора. Синхронный двигатель в режиме генератора функционирует за счет электромагнитной индукции: в процессе вращения ротора магнитное поле, которое формируется на обмотке, по очереди взаимодействует с фазами обмотки на статоре, вследствие чего образуется электродвижущая сила.

Применение синхронных двигателей:

  • Эти двигатели используются как первичные двигатели (приводы) для центробежных насосов, поршневых компрессоров с ременным приводом, воздуходувок, бумажных фабрик, резиновых фабрик и т.д. Из-за их высокой эффективности и высоких скоростей (об / мин выше 600).
  • Низкоскоростные синхронные двигатели (об / мин ниже 600) широко используются для привода многих поршневых насосов. Таких как винтовые и шестеренные насосы, вакуумные насосы, дробилки, машины для прокатки алюминиевой фольги.
  • Эти моторы также широко используются на борту судов. Навигационное оборудование корабля, такое как гирокомпас, использует специальный тип синхронного двигателя. Они также используются в качестве первичных двигателей для Viscometer. Это устройства для измерения / регулирования вязкости мазута главного двигателя.
  • Большинство фабрик и производств используют бесконечное количество индуктивных нагрузок. Они могут варьироваться от ламповых ламп до мощных асинхронных двигателей. Таким образом, эти индуктивные нагрузки имеют значительный коэффициент мощности отставания. Синхронный двигатель с избыточным возбуждением (синхронный конденсатор), имеющий ведущий коэффициент мощности, используется для улучшения коэффициента мощности этих систем питания.
  • Эти двигатели также используются для регулирования напряжения, когда происходит сильное падение / повышение напряжения. Так же когда тяжелая индуктивная нагрузка включается / выключается в конце длинных линий электропередачи.
  • Синхронные двигатели могут работать на сверхнизких скоростях с помощью мощных электронных преобразователей, которые генерируют очень низкие частоты. Примерами этих двигателей являются диапазоны мощностью 10 МВт, используемые для привода дробилок, вращающихся печей и шаровых мельниц с регулируемой скоростью.
Читать еще:  Авто ока тюнинг двигателя

Что представляет собой асинхронный электродвигатель?

К асинхронным принято относить электродвигатели, в которых частота вращения одного из ключевых элементов — ротора — не совпадает с частотой оборотов магнитного поля, формирующегося током, который возникает на обмотке статора. Асинхронные агрегаты иногда именуются индукционными. Это обусловлено тем, что в обмотке ротора осуществляется индуцирование тока при воздействии магнитного поля статора.

В конструкции асинхронного электродвигателя присутствуют статор и ротор, которые разделены воздушной прослойкой. Основные активные элементы агрегата:

  • обмотка;
  • магнитопровод.

Важную роль в функционировании асинхронного двигателя играют дополнительные конструктивные элементы, которые обеспечивают прочность, охлаждение и устойчивость работы агрегата.

Объяснение принципа работы синхронного электродвигателя для «чайников»

С детства мы помним, что два магнита, если их приблизить друг к другу, в одном случае притягиваются, а в другом отталкиваются. Происходит это, в зависимости от того, что какими сторонами магнитов мы их соединяем, разноимённые полюса притягиваются, а одноимённые отталкиваются. Это – постоянные магниты, у которых магнитное поле присутствует постоянно. Существуют и переменные магниты.

В школьном учебнике по физике есть рисунок, где изображён электромагнит в виде подковы и рамка с полукольцами на концах, которая расположена между его полюсами.

При расположении рамки в горизонтальном положении в пространстве между полюсами магнитов, из-за того, что магнит притягивает разноимённые полюса и отталкивает одноимённые, на рамку подаётся ток, одинакового знака. Вокруг рамки появляется электромагнитное поле (вот пример переменного магнита!), полюса магнитов притягивают рамку, и она поворачивается в вертикальное положение. При достижении вертикали, на рамку подаётся ток противоположного знака, электромагнитное поле рамки меняет полюсность, и полюса постоянного магнита начинают отталкивать рамку, вращая её до горизонтального положения, после чего цикл вращения повторяется.

В этом заключается принцип работы электродвигателя. Причём, примитивного синхронного электродвигателя!

Итак, примитивный синхронный электродвигатель работает, когда на рамку подаётся ток. У настоящего синхронного электродвигателя, роль рамки выполняет ротор с катушками проводов, называемых обмотками, на которые подаётся ток (они служат источниками электромагнитного поля). А роль подковообразного магнита выполняет статор, изготовленный либо из набора постоянных магнитов, либо тоже из катушек проводов (обмоток), которые, при подаче тока являются также источниками электромагнитного поля.

Ротор синхронного электродвигателя будет вращаться с такой же частотой, с какой меняется ток, подаваемый на клеммы обмотки, т.е. синхронно. Отсюда название этого электродвигателя.

Сравнение

Главное отличие синхронного двигателя от асинхронного заключается в соотношении величины частот вращения ротора и магнитного поля. В агрегате первого типа оба показателя одинаковые. В асинхронной машине — разные.

Можно отметить, что электродвигатели второго типа в целом более распространены, чем первые. При этом асинхронные агрегаты чаще всего представлены в разновидности, в которой инсталлирован короткозамкнутый ротор. Данные устройства имеют ряд важнейших преимуществ перед электродвигателями иных категорий. А именно:

  1. простота конструкции, надежность;
  2. относительно невысокая себестоимость производства, эксплуатации;
  3. способность функционирования при задействовании имеющихся ресурсов сети без подключения преобразователей.

Вместе с тем асинхронные машины с короткозамкнутым ротором обладают и рядом недостатков. А именно:

  • наличие малого пускового момента;
  • наличие большого пускового тока;
  • пониженный коэффициент мощности;
  • низкая управляемость с точки зрения регулирования скорости;
  • зависимость максимальной скорости от частоты электрической сети;
  • электромагнитный момент в асинхронных двигателях рассматриваемого типа характеризуется сильной чувствительностью к снижению напряжения в сети.

В свою очередь, у синхронных агрегатов также есть неоспоримые достоинства. К таковым можно отнести:

  • относительно невысокую чувствительность к перепадам напряжения в сети;
  • стабильность вращения вне зависимости от нагрузки на ротор.

Есть у синхронных двигателей и недостатки:

  • относительная сложность конструкции;
  • сложность запуска ротора в ход.

Отмеченные особенности работы синхронных и асинхронных агрегатов делают оптимальным использование первых в случае, если требуемая мощность двигателя в системе (например, как части инфраструктуры фабричной линии) должна составлять порядка 100 кВт и более. В остальных случаях задействование асинхронных машин, как правило, становится более предпочтительным.

Рассмотрев, в чем разница между синхронным и асинхронным двигателем, отразим выводы в таблице.

Принцип действия и устройство электромашин разных типов

Асинхронные и синхронные электродвигатели похожи по конструкции, но есть и отличия.

Устройство и принцип действия асинхронных электродвигателей

Это самые распространённые машины переменного тока. Такие электродвигатели состоят из трёх основных частей:

  • Корпус с подшипниковыми щитами и лапами или фланцем.
  • В корпусе находятся магнитопровод из железных пластин с обмотками. Этот магнитопровод носит название статор.
  • Вал с подшипниками и магнитпроводом. Эта конструкция называется ротор. В электродвигателях с короткозамкнутым ротором в магнитопроводе находятся соединённые между собой алюминиевые стержни, эта конструкция носит название «беличья клетка». В машинах с фазным ротором вместо стержней намотаны обмотки.

В пазах статора со сдвигом 120° намотаны три обмотки. При подключении к трёхфазной сети в статоре наводится вращающееся магнитное поле. Скорость вращения называется «синхронная скорость».

Справка! В однофазных электродвигателях вращающееся поле создаётся дополнительной обмоткой или конструктивными особенностями статора.

Это поле наводит ЭДС в роторе, возникающий при этом ток создаёт своё поле, взаимодействующее с полем статора и приводящее его в движение. Скорость вращения ротора меньше синхронной скорости. Эта разница называется скольжение.

Читать еще:  Датчик температуры двигателя ваз 2110 инжектор 8 клапанов замена

Рассчитывается скольжение по формуле S=(n1-n2)/n1*100%, где: · n1 — синхронная скорость; · n2 — скорость вращения ротора.

на скольжения в обычных электромоторах 1-8%. При увеличении нагрузки на валу двигателя скольжение и вращающий момент растут до критической величины, при достижении которой двигатель останавливается.

В электродвигателях с фазным ротором вместо беличьей клетки в пазах ротора намотаны три обмотки. Через токосъёмные кольца и щётки они подключаются к добавочным сопротивлениям. Эти сопротивления ограничивают ток и магнитное поле в роторе. Это увеличивает скольжение и уменьшает скорость двигателя.

Такие аппараты используются при тяжёлом пуске и в устройствах с регулировкой скорости, например, в мостовых кранах.

Принцип действия синхронных электродвигателей

Эти двигатели устроены сложнее и дороже асинхронных машин. Их достоинство в постоянной скорости вращения, не меняющейся при нагрузке.
Статор синхронной машины не отличается от асинхронной. Отличие в роторе. В отличие от асинхронного двигателя, вращение осуществляется за счёт взаимодействия вращающегося магнитного поля статора и постоянного поля ротора. Для его создания в роторе находятся электромагниты. Напряжение к катушкам подводится при помощи токосъёмных колец и графитных щёток.

Справка! В роторе синхронных машин малой мощности вместо электромагнитов установлены постоянные или просто магнитопровод имеет явновыраженные полюса. Скольжение, как в асинхронных машинах, отсутствует, и частота вращения определяется только частотой питающего напряжения.

Таблица

Синхронный двигатель Асинхронный двигатель
Вращение ротора и магнитного поля в синхронных двигателях осуществляется с одинаковой частотой Вращение ротора и магнитного поля в асинхронных агрегатах осуществляется с разной частотой
Имеет часто более сложную конструкцию Обычно имеет менее сложную конструкцию
Оптимален при необходимой мощности в 100 кВт и выше Оптимален при необходимой мощности менее 100 кВт

Особенности коллекторного устройства

Двигатели такого типа относятся к механизмам постоянного тока. Поэтому они встречаются в большинстве случаев в бытовых приборах, таких как стиральные машины. Устройство и принцип работы коллекторного мотора можно описать несколькими пунктами:

  1. Движущей частью двигателя является якорь, который состоит из множества пластинок. Он окружен специальными магнитами. Ток подается на двигатель с помощью щеток.
  2. Чтобы ротор постоянно вращался, нужно периодически менять направление тока. Поэтому щетки подключаются к пластинам, которые разделены между собой. Количество сегментов зависит от числа движущихся рамок.

Благодаря такой конструкции двигатель и называют коллекторным. Недостатком конструкции можно считать наличие щеток, которые со временем могут повреждаться или стираться.

Принципиальные отличия синхронного и асинхронного двигателя

ПРИНЦИПИАЛЬНЫЕ ОТЛИЧИЯ СИНХРОННОГО И АСИНХРОННОГО ДВИГАТЕЛЯ

Электродвигатели бывают двух основных типов — синхронные и асинхронные. В данной статье будут рассмотрены принцип действия, положительные и отрицательные стороны данных двигателей.

На статоре (1) асинхронного двигателя находится фазная обмотка (2), при подключении к сети в этой обмотке протекают токи, имеющие сдвиг во времени по 120 электрических градусов, которые создают вращающиеся магнитное поле [2]. Вращающиеся магнитное поле перемещается в пространстве и индуктирует электродвижущие силы, как в собственной обмотке, так и в обмотке ротора (3). В роторе образуется электродвижущая сила и в обмотке начинают протекать токи. При взаимодействии этих токов с потоком создаётся вращающийся момент. Под действием этого момента ротор начинает вращаться по направлению поля.

Структурная схема асинхронного двигателя представлена на рисунке 1.

Рисунок 1. Асинхронная машина.

Асинхронный электрический двигатель широко используется в качестве привода в деревообработке и металлообработке, а также в ткацкой промышленности, для швейного, кузнечнопрессового, грузоподъемного и других видов оборудования. Применяются они и в бытовой технике различного назначения, например, в холодильниках, стиральных машинах, электромясорубках, кондиционерах и т.п.

Синхронная машина — это электрическая машина переменного тока, частота вращения ротора которой равна частоте вращения магнитного поля в воздушном зазоре [1]. Главными элементами такой электрической машины являются якорь (1) и индуктор (2), которые отделены друг от друга воздушной прослойкой. Якорь, как правило, располагается на статоре (3), а индуктор на роторе (4). Принцип работы основан на взаимодействии сформированного магнитного поля в якоре, при подаче на его обмотки (5) переменного электрического тока, с магнитным полем индуктора.

Структурная схема синхронной машины представлена на рисунке 2.

Рисунок 2. Синхронная машина.

Синхронный агрегат может функционировать в двух режимах:

как собственно электродвигатель;

Первый режим работы предполагает взаимодействие магнитного поля, формирующегося на якоре, и поля, которое образуется на полюсах индуктора. Синхронная машина в режиме генератора функционирует за счет электромагнитной индукции: в процессе вращения ротора магнитное поле, которое формируется на обмотке, по очереди взаимодействует с фазами обмотки на статоре, вследствие чего образуется электродвижущая сила.

Двигатели с синхронным типом действия способны развивать мощность до 20 тысяч кВт, что очень важно для приведения в действие исполнительных механизмов мощных обрабатывающих станков в машиностроении и других отраслях производства. Синхронные электрические двигатели с успехом используются в качестве источников реактивной мощности в узлах нагрузки для поддержания стабильного уровня напряжения.

Синхронные электродвигатели отличаются от асинхронных гораздо большей мощностью и полезной нагрузкой. Изменения тока возбуждения позволяет регулировать в них нагрузку. В отличие от асинхронных двигателей в синхронных при ударных нагрузках сохраняется постоянство частоты вращения, что позволяет их использовать в различных механизмах металлургической и металлообрабатывающей промышленности.

Список использованной литературы:

Антонов М. В., Герасимова Л. С. Технология производства электрических машин. — М., 1982.

Кацман М.М. Электрические машины: Учебник для студентов средних профессиональных учебных заведений. 2001.

Ссылка на основную публикацию
Adblock
detector