Что такое диапазон регулирования скорости асинхронного двигателя

РЕГУЛИРУЕМЫЕ ЭЛЕКТРОПРИВОДЫ С ДВИГАТЕЛЯМИ ПЕРЕМЕННОГО ТОКА

Способы регулирования асинхронного двигателя

Асинхронные двигатели являются наиболее часто применяемыми во всех хозяйствах электрическими двигателями. Эти двигатели выпускают мощностью от 0,1 кВт до нескольких тысяч киловатт. Основными достоинствами асинхронного двигателя являются простота конструкции и невысокая стоимость. Однако принцип действия его таков, что в прямой схеме включения не допускается регулирование его скорости.
Особое внимание следует обратить на то, что во избежание значительных потерь энергии, а следовательно, для короткозамкнутых асинхронных двигателей во избежание перегрева его ротора двигатель должен работать в длительном режиме с минимальными значениями скольжения.
Рассмотрим возможные способы регулирования скорости асинхронных двигателей (рис. 1). Скорость двигателя определяется

Рис. 1. Классификация способов регулирования скорости асинхронных двигателей

двумя величинами (см. (3.4) и (3.5)): скоростью электромагнитного поля статора w и скольжением s:

Исходя из (6.1) принципиально возможны два способа регулирования скорости: регулирование скорости поля статора и регулирование скольжения при постоянной скорости поля статора.

Скорость поля статора определяется двумя величинами (см. (3.1)): частотой напряжения f1 подводимого к обмоткам статора, и числом пар полюсов двигателя рп.

В соответствии с этим возможны два способа регулирования скорости поля статора: изменение частоты напряжения питания посредством преобразователей частоты, включаемых в цепь статора двигателя (частотное регулирование), и путем изменения числа пар полюсов двигателя.

Регулирование скольжения двигателя при постоянной скорости поля статора для короткозамкнутых асинхронных двигателей возможно путем изменения напряжения статора при постоянной частоте этого напряжения. Для асинхронных двигателей с фазным ротором, кроме того, возможны еще два способа: введение в цепь ротора добавочных резисторов (реостатное регулирование) и введение в цепь ротора добавочной регулируемой ЭДС посредством преобразователей частоты, включаемых в цепь ротора (асинхронный вентильный каскад и двигатель двойного питания).

В настоящее время благодаря развитию силовой преобразовательной техники созданы и серийно выпускаются различные виды полупроводниковых преобразователей частоты. Это определило опережающее развитие и широкое применение частотно-регули­руемого асинхронного электропривода. Основные достоинства этого электропривода следующие:

  • плавность регулирования и высокая жесткость механических характеристик, что позволяет регулировать скорость в широком диапазоне;
  • экономичность регулирования, определяемая тем, что двигатель работает с малыми значениями абсолютного скольжения и потери в двигателе не превышают номинальных.

Недостатками частотного регулирования являются сложность и высокая стоимость (особенно для приводов большой мощности) преобразователей частоты, а также сложность реализации в большинстве схем режима рекуперативного торможения.

Изменение скорости переключением числа пар полюсов асинхронного двигателя позволяет получать от двух до четырех рабочих скоростей, т. с. плавное регулирование скорости и формирование переходных процессов при этом способе невозможно. Поэтому, хотя данный способ имеет определенные области применения, он не может рассматриваться как основа для построения систем регулируемого электропривода.

Регулирование скорости асинхронного двигателя изменением питающего напряжения при постоянной (стандартной) его частоте было рассмотрено в гл. 3. Было отмечено, что этот способ регулирования для асинхронных двигателей с короткозамкнутым ротором имеет весьма ограниченное применение вследствие того, что регулирование скорости здесь сопряжено с потерями энергии скольжения в роторе двигателя, ведущими к его перегреву. Получаемые при этом способе механические характеристики нехороши для качественного регулирования. Диапазон регулирования не превышает 1,5:1; больший диапазон регулирования скорости можно допускать только кратковременно. Исходя из этого регулирование изменением напряжения питания применяется главным образом только для обеспечения плавного пуска нерегулируемых асинхронных электроприводов или для кратковременного снижения скорости. Иногда этот способ регулирования используется для регулирования скорости насосов и вентиляторов (механизмов с вентиляторным характером нагрузки) небольшой мощности (до 15 кВт), однако и в этом случае необходимо увеличение установленной мощности двигателя.

Для асинхронных двигателей с фазным ротором регулирование скорости может проводиться воздействием на роторную цепь двигателя. При введении добавочных резисторов в цепь ротора энергия скольжения рассеивается не в объеме двигателя, а в резисторах. Этот способ регулирования не экономичен, так как значительная часть энергии расходуется в добавочных резисторах. При использовании релейно-контакторных схем исключается плавность регулирования скорости. В настоящее время управление с введением добавочных резисторов в цепь ротора используется в основном для пуска асинхронных двигателей с фазным ротором.

Все способы регулирования, основанные на изменении скольжения асинхронного двигателя, связаны с выделением энергии скольжения в роторной цепи двигателя. В рассматриваемых выше способах эта энергия расходовалась на нагрев обмотки ротора и роторных резисторов. Существуют системы регулируемого электропривода, в которых энергия скольжения не теряется в резисторах, а используется полезно: возвращается в питающую сеть, что делает регулирование в этих системах экономичным. К таким системам регулируемого привода относятся асинхронные вентильные каскады и двигатели двойного питания. Особенностью каскадных схем асинхронного привода является ограниченный диапазон регулирования — не больше чем 2:1. В этом диапазоне каскадные схемы обеспечивают плавное и экономичное регулирование скорости. Такие системы электропривода наиболее целесообразны для мощных турбомеханизмов — насосов и вентиляторов.

Асинхронные электроприводы с частотным регулированием скорости

Частотное регулирование скорости асинхронного двигателя путем изменения частоты напряжения питания возможно благодаря тому, что скорость электромагнитного поля статора пропорциональна частоте напряжения питания:

Следует также учесть, что поскольку с изменением частоты напряжения питания изменяется и поток двигателя Ф2:

то в большинстве случаев одновременно с изменением частоты напряжения питания необходимо регулировать и его амплитуду. Регулирование напряжения при уменьшении частоты ниже номинальной частоты необходимо потому, что из-за уменьшения индуктивного сопротивления обмоток двигателя ток намагничивания будет возрастать, что приведет к насыщению магнитопровода двигателя и его перегреву. Регулирование напряжения следует проводить таким образом, чтобы скольжение двигателя было минимальным.
Для реализации способа частотного регулирования асинхронный короткозамкнутый двигатель включают в сеть (рис. 2) с параметрами Uc = const и fc = const через преобразователь частоты UZ. В качестве преобразователей частоты в настоящее время используют в основном полупроводниковые преобразователи частоты.

Рис. 2. Схема включения асинхронного двигателя
с питанием от преобразователя частоты

При частотном регулировании относительное скольжение Sj зависит как от абсолютного скольжения Sабс = w0 — w, так и от относительной частоты f1* напряжения питания

где f1j, w0j, Sj — регулируемые частота напряжения статора и соответствующие скорость поля и скольжение; f1н и w0н номинальные значения частоты статора и скорости поля, соответствующие паспортным данным двигателя.
Подставив (6.2) в (6.5), получим

Читать еще:  Горит чек на шевроле авео двигатель работает нормально

Для анализа электромеханических характеристик двигателя при частотном регулировании рассмотрим Т-образную схему замещения двигателя (рис. 3). В отличие от ранее приведенной схемы замещения (см. рис. 3.4) в данном случае приходится учитывать, что реактивные сопротивления двигателя x1, xm, x2, xk зависят от частоты напряжения питания и изменяются с изменением частоты:

где x1н, xmн, x2н, xkн — номинальное индуктивное сопротивление соответственно обмотки статора, контура намагничивания и короткого замыкания.

Рис. 3. Схема замещения асинхронного двигателя:

Глава 3. Способы регулирования скорости асинхронного двигателя. Способы регулирования скорости асинхронного двигателя

билеты_ЭМ / 39.Основные способы регулирования скорости асинхронного двигателя. Достоинства и недостатки каждого способа

39) Основные способы регулирования скорости асинхронного двигателя. Достоинства и недостатки каждого способа

Рис.1. Классификация способов регулирования асинхронных двигателей Исходя из (1) принципиально возможны два способа регулирования скорости: регулирование скорости вращения поля статора и регулирование скольжения при постоянной величине ω0:

Скорость вращения поля статора определяется двумя параметрами (см.3.3): частотой напряжения, подводимого к обмоткам статора f1, и числом пар полюсов двигателя рп. В соответствии с этим возможны два способа регулирования скорости: изменение частоты питающего напряжения посредством преобразователей частоты, включаемых в цепь статора двигателя (частотное регулирование), и путем изменения числа пар полюсов двигателя. Регулирование скольжения двигателя при постоянной скорости вращения поля статора для короткозамкнутых асинхронных двигателей возможно путем изменения величины напряжения статора при постоянной частоте этого напряжения. Для асинхронных двигателей с фазным ротором, кроме того, возможны еще два способа: введение в цепь ротора добавочных сопротивлений (реостатное регулирование) и введение в цепь ротора добавочной регулируемой э.д.с. посредством преобразователей частоты, включаемых в цепь ротора (асинхронный вентильный каскад и двигатель двойного питания).

В настоящее время благодаря развитию силовой преобразовательной техники созданы и серийно выпускаются различные виды полупроводниковых преобразователей частоты, что определило опережающее развитие и широкое применение частотно-регулируемого асинхронного электропривода. Основными достоинствами этой системы регулируемого электропривода являются:

-плавность регулирования и высокая жесткость механических характеристик, что позволяет регулировать скорость в широком диапазоне;

— экономичность регулирования, определяемая тем, что двигатель работает с малыми величинами абсолютного скольжения, и потери в двигателе не превышают номинальных;

Недостатками частотного регулирования являются сложность и высокая стоимость (особенно для приводов большой мощности) преобразователей частоты и сложность реализации в большинстве схем режима рекуперативного торможения.

Подробно принципы и схемы частотного регулирования скорости асинхронного двигателя рассмотрены ниже.

Изменение скорости переключением числа пар полюсов асинхронного двигателя позволяет получать несколько (от 2 до 4) значений рабочих скоростей, т.е. плавное регулирование скорости и формирование переходных процессов при этом способе невозможно.

Поэтому данный способ имеет определенные области применения, но не может рассматриваться, как основа для построения систем регулируемого электропривода.

Способы регулирования скорости асинхронных двигателей

ЧАСТОТНО-РЕГУЛИРУЕМЫИ АСИНХРОННЫЙ ЭЛЕКТРОПРИВОД

Анализ уравнений асинхронного двигателя позволяет определить возможные способы регулирования его частоты вращения.

АД по своей природе обладает ограниченными регулировочными свойствами. При питании от сети со стабильной частотой двигатель имеет установившуюся скорость, близкую к синхронной, которая вследствие высокой жесткости механической характеристики мало зависит от момента нагрузки.

Согласно (1) при постоянном моменте нагрузки Мс изменение угловой скорости (скольжения) может быть достигнуто за счет изменения напряжения питания статора, величины активных и индуктивных сопротивлений, частоты питающего напряжения и числа пар полюсов машины. Причем изменение синхронной угловой скорости возможно только при изменении частоты питающего напряжения или числа пар полюсов. При любом способе регулирования в роторе выделяется мощность, пропорциональная скольжению двигателя. Различие заключается в величине этой мощности и способах ее поглощения.

Перечисленные основные способы обычно классифицируются следующим образом:

1) параметрическое регулирование, связанное с изменением активных или активно — индуктивных сопротивлений в цепи статора;

2) изменение числа пар полюсов двигателя;

3) изменение параметров источника питания двигателя. Этот способ осуществляется изменением:

• напряжения питания двигателя;

• частоты источника питания двигателя.

На практике нашли применение:

частотное регулирование скорости асинхронного двигателя, при котором управляют частотой и формируют напряжение на статоре;

• частотно-токовое, при котором управляют частотой и формируют ток статора;

• векторное управление, при котором регулируют частоту и формируют вектор основного потокосцепления двигателя.

При введении добавочных симметричных активных сопротивлений (реостатное регулирование) в статор их величину можно изменять плавно только у двигателей малой мощности, а для двигателей средней и большой мощности необходимо использовать контактные или бесконтактные ключи. Ввиду ограниченного числа ступеней невозможно получить равномерное регулирование скорости. С увеличением добавочного сопротивления снижаются критический момент Мк и жесткость механических характеристик, а потери скольжения полностью выделяются в самой машине.

Этот способ регулирования пригоден только для двигателей, имеющих повышенное скольжение в номинальном режиме. Диапазон регулирования скорости таким способом не превышает 1,15-1,2.

При введении индуктивных сопротивлений в статор также уменьшаются sK и Мк, кроме того, снижается не только КПД двигателя, но и его коэффициент — мощности. Потери энергии скольжения будут такими же, как и при введении активных соп ротивлений.

Многие механизмы не требуют плавного регулирования скорости. В этом случае в приводе можно использовать многоскоростные асинхронные двигатели. Такие двигатели имеют два конструктивных исполнения:

• с уложенными в одни пазы статора несколькими обмотками на различное число пар полюсов;

• с одной обмоткой, допускающей такое переключение ее секций, что образуется различное число пар полюсов.

Многоскоростные двигатели с несколькими обмотками в одном пазу статора существенно уступают второй разновидности по габаритам, массе, КПД, коэффициенту мощности. Однако способ регулирования скорости переключением секций обмотки малопригоден для автоматизации.

В АД с короткозамкнутым ротором имеются два входных независимых управляющих воздействия — амплитуда и частота напряжения, подводимого к статору. Применение тиристорных преобразователей напряжения (регуляторов напряжения), обеспечивающих регулирование амплитуды первой гармоники напряжения при постоянной частоте сети, позволяет обеспечить плавный пуск и оптимизировать энергетические показатели (потери, потребляемую мощность, коэффициент мощности) при изменении нагрузки. Однако, наиболее эффективным и экономичным является частотное регулирование.

К одним из наиболее распространенных устройств современной силовой электроники относятся автономные инверторы напряжения. В составе преобразователей частоты они преобразуют постоянное напряжение в переменное напряжение регулируемой частоты и среднего значения. Они …

Читать еще:  Холодный двигатель cfna стучит

С начала 90-х годов ведущие электротехнические фирмы выпускают ПЧ третьего поколения, среди которых наиболее значительной является группа преобразователей со звеном постоянного тока и автономным инвертором напряжения с широтно-импульсной модуляцией для …

5.1 Элементная база В истории развития преобразовательной техники для электроприводов переменного тока можно выделить три этапа. До начала 80-х годов частотно-регулируемые приводы строились на базе тиристорных ПЧ с аналоговым управлением, …

Глава 3. Способы регулирования скорости асинхронного двигателя — МегаЛекции

Почти все станки в качестве электропривода оснащаются асинхронными двигателями. У них простая конструкция и не высокая стоимость. В связи с этим важным оказывается регулирование скорости асинхронного двигателя. Однако в стандартной схеме включения управлять его оборотами можно только с помощью механических передаточных систем (редукторы, шкивы), что не всегда удобно. Электрическое управление оборотами ротора имеет больше преимуществ, хотя оно и усложняет схему подключения асинхронного двигателя.

Для некоторых узлов автоматического оборудования подходит именно электрическое регулирование скорости вращения вала асинхронного электродвигателя. Только так можно добиться плавной и точной настройки рабочих режимов. Существует несколько способов управления частотой вращения путём манипуляций с частотой, напряжением и формой тока. Все они показаны на схеме.

Из представленных на рисунке способов, самыми распространёнными для регулирования скорости вращения ротора являются изменение следующих параметров:

  • напряжения подаваемого на статор,
  • вспомогательного сопротивления цепи ротора,
  • числа пар полюсов,
  • частоты рабочего тока.

Последние два способа позволяют изменять скорость вращения без значительного снижения КПД и потери мощности, остальные способы регулировки способствуют снижению КПД пропорционально величине скольжения. Но и у тех и других есть свои преимущества и недостатки. Поскольку чаще всего на производстве применяются асинхронные двигатели с короткозамкнутым ротором, то все дальнейшие обсуждения будут касаться именно этого типа электродвигателей.

Для частотного регулирования применяют в основном полупроводниковые преобразователи. Их принцип действия основан на особенности работы асинхронного двигателя, где частота вращения магнитного поля статора зависит от частоты напряжения питающей сети.

Для эффективной работы асинхронного электродвигателя без потерь нужно вместе с частотой изменять и подаваемое напряжение. Напряжение должно меняться в зависимости от момента нагрузки. Если нагрузка постоянная, то напряжение изменяется пропорционально частоте.

Регулировка скорости вращения асинхронного двигателя методом изменения числа пар полюсов также относится к наиболее распространённым методам управления электродвигателей с короткозамкнутым ротором. Такие моторы называются многоскоростными. Есть два способа осуществления этого метода:

· укладывание сразу нескольких обмоток с разными числами пар полюсов в общие пазы статора,

· применение специальной намотки с возможностью переключения существующих обмоток под нужное число пар полюсов.

В первом случае чтобы уложить в пазы дополнительные обмотки нужно уменьшить сечение провода, а это приводит к уменьшению номинальной мощности электродвигателя. Во втором случае имеет место усложнение коммутационной аппаратуры, особенно для трёх и более скоростей, а также ухудшаются энергетические характеристики. Более подробно этот и другие способы регулирования скорости асинхронного двигателя описаны в архивном файле, который можно скачать внизу страницы.

Обычно многоскоростные двигатели выпускаются на 2, 3 или 4 скорости вращения, причем 2-х скоростные двигатели выпускаются с одной обмоткой на статоре и с переключением числа пар полюсов в отношении 2 : 1 = р2 : pt , 3-х скоростные двигатели — с двумя обмотками на статоре, из которых одна выполняется с переключением 2 : 1 = Рг : Pi , 4-х скоростные двигатели — с двумя обмотками на статоре, каждая из которых выполняется с переключением числа пар полюсов в отношении 2:1. Многоскоростными электродвигателями оснащаются различные станки, грузовые и пассажирских лифты, они используются для приводов вентиляторов, насосов и т.д.

Что такое диапазон регулирования скорости асинхронного двигателя

Асинхронный двигатель является наиболее массовым электрическим двигателем. Эти двигатели выпускаются мощностью от 0,1 кВт до нескольких тысяч киловатт и находят применение во всех отраслях хозяйства. Основным достоинством асинхронного двигателя является простота его конструкции и невысокая стоимость. Однако по принципу своего действия асинхронный двигатель в обычной схеме включения не допускает регулирования скорости его вращения. Особое внимание следует обратить на то, что во избежание значительных потерь энергии, а, следовательно, для короткозамкнутых асинхронных двигателей во избежание перегрева его ротора, двигатель должен работать в длительном режиме с минимальными значениями скольжения.

Рассмотрим возможные способы регулирования скорости асинхронных двигателей (см. рис.1). Скорость двигателя определяется двумя параметрами: скоростью вращения электромагнитного поля статора ω0 и скольжением s:

Исходя из (1) принципиально возможны два способа регулирования скорости: регулирование скорости вращения поля статора и регулирование скольжения при постоянной величине ω0.

Скорость вращения поля статора определяется двумя параметрами (см.3.3): частотой напряжения, подводимого к обмоткам статора f1, и числом пар полюсов двигателя рп. В соответствии с этим возможны два способа регулирования скорости: изменение частоты питающего напряжения посредством преобразователей частоты, включаемых в цепь статора двигателя (частотное регулирование), и путем изменения числа пар полюсов двигателя.

Регулирование скольжения двигателя при постоянной скорости вращения поля статора для короткозамкнутых асинхронных двигателей возможно путем изменения величины напряжения статора при постоянной частоте этого напряжения. Для асинхронных двигателей с фазным ротором, кроме того, возможны еще два способа: введение в цепь ротора добавочных сопротивлений (реостатное регулирование) и введение в цепь ротора добавочной регулируемой э.д.с. посредством преобразователей частоты, включаемых в цепь ротора (асинхронный вентильный каскад и двигатель двойного питания).

В настоящее время благодаря развитию силовой преобразовательной техники созданы и серийно выпускаются различные виды полупроводниковых преобразователей частоты, что определило опережающее развитие и широкое применение частотно-регулируемого асинхронного электропривода. Основными достоинствами этой системы регулируемого электропривода являются:

  • плавность регулирования и высокая жесткость механических характеристик, что позволяет регулировать скорость в широком диапазоне;
  • экономичность регулирования, определяемая тем, что двигатель работает с малыми величинами абсолютного скольжения, и потери в двигателе не превышают номинальных.

Недостатками частотного регулирования являются сложность и высокая стоимость (особенно для приводов большой мощности) преобразователей частоты и сложность реализации в большинстве схем режима рекуперативного торможения.

Подробно принципы и схемы частотного регулирования скорости асинхронного двигателя рассмотрены ниже.

Изменение скорости переключением числа пар полюсов асинхронного двигателя позволяет получать несколько (от 2 до 4) значений рабочих скоростей, т.е. плавное регулирование скорости и формирование переходных процессов при этом способе невозможно.

Читать еще:  Шум при работе двигателя акцент

Поэтому данный способ имеет определенные области применения, но не может рассматриваться, как основа для построения систем регулируемого электропривода.

Частотный регулятор скорости для асинхронного двигателя

Регулировка скорости изменением величины напряжения снижает момент и также увеличивает потери мощности. Регулировка частоты вращения путем изменения числа полюсов осуществляется ступенчато, кроме того, этот способ пригоден только для специальных многоскоростных двигателей с несколькими обмотками неподвижной части.

Асинхронный двигатель – самый распространенный электропривод технологического оборудования. Главная особенность таких электрических машин – постоянная скорость вращения вала. Ее регулировку осуществляют:

  • Механическим способом. Для этого вал подключают к редукторам, муфтам и другим устройствам.
  • Путем изменения числа пар полюсов, величины или частоты питающего напряжения обмоток статора.

Механическое регулирование усложняет кинематическую схему электропривода, ведет к потерям мощности и нерациональному расходу электроэнергии.

Наиболее перспективный метод регулирования уголовной скорости ротора – преобразование частоты питающего напряжения. Этот способ обеспечивает сохранение механических характеристик во всем диапазоне и обладает рядом других преимуществ.

Устройство и принцип работы частотного регулятора

Принцип частотного регулирования основан на зависимости угловой скорости вращения ротора от частоты напряжения на обмотках статора. С появлением IGBT-транзисторов и GTO-тиристоров наибольшее распространение получила схема преобразования частоты на базе широтно-импульсного модулятора.

Такие преобразователи частоты состоят:

  • Из силового выпрямителя с С или LC фильтром для сглаживания пульсаций.
  • Из инвертора на IGBT-транзисторах для преобразования постоянного напряжения в переменное, заданной частоты и амплитуды.
  • Из блока управления для генерации отпирающих силовые транзисторы импульсов.

Переменное напряжение выпрямляется и преобразуется в постоянное, затем снова инвертируется в переменное. Частота на силовом выходе ПЧ определяется длительностью отпирающих силовые транзисторы импульсов, поступающих со схемы управления.

Такой способ регулирования позволяет изменять частоту и амплитуду напряжения в силовой цепи электродвигателя, а значит управлять скоростью вращения ротора и моментом на валу электрической машины.

Структура частотного регулятора

Большинство частотных преобразователей для электродвигателей до 690 В выполнены по схеме двухуровневых инверторов напряжения. Они позволяют моделировать напряжение питания необходимой формы, амплитуды частоты. Такие устройства состоят из неуправляемого выпрямителя, 2-х транзисторных ключей на каждую фазу и конденсатора. Выходное напряжение содержит высшие гармоники, которые сглаживаются индуктивной нагрузкой. Специальные фильтры применяют относительно редко.

К недостаткам такой схемы является ограничение величины выходного напряжения, которое определяется максимальным напряжением полупроводниковых устройств.

Для высоковольтных приводов используются многоуровневые схемы регулирования. Они состоят из нескольких однофазных инверторов, соединенных последовательно. Такая схема позволяет избежать резонансов, обеспечивает высокое быстродействие, снижает скорость нарастания напряжения. Такие ПЧ имеют модульную конструкцию. При выходе из строя одной из ячеек, ее легко заменить. К недостаткам этой схемы относятся необходимость отдельного источника питания для каждого модуля, функции которого выполняет трансформатор специального назначения.

Преобразователи частоты с плавающими конденсаторами позволяют обойтись без входного трансформатора и увеличивать число ячеек в зависимости от требуемой мощности. Такое решение обеспечивает снижение высших гармоник, уменьшает скорость нарастания напряжения.

Для регулировки скорости электродвигателей с повторно-кратковременным режимом работы частыми реверсами применяют инверторы тока. Эти устройства представляют собой управляемый выпрямитель и инвертор на тиристорах. Для уменьшения помех в цепи нагрузки в схему включается расщепленный индуктивный фильтр. Выходное напряжение таких устройств имеет форму аппроксимированной синусоиды. Для сглаживания его формы обязательно включение перед электродвигателем конденсаторов. Главное достоинство таких ПЧ – возможность рекуперации электроэнергии обратно в электросеть.

Прямые преобразователи частоты не содержат конденсаторов. Главное их преимущество – небольшие габариты и значительная мощность нагрузки. Такие устройства используются в составе мощных электроприводов работающих на низких скоростях. ПЧ этого типа выполнены на базе тиристорных преобразователей. На входе прямых ПЧ установлен фазосдвигающий трансформатор, устраняющий низшие гармоники и выполняющий функцию источника питания для каждого преобразователя. Прямые ПЧ требуют сложной схемы управления.

Состав частотных преобразователей

Кроме выпрямителя, ШИМ-модулятора и инвертора, в состав частотного преобразователя входят:

Устройство для ввода данных и обмена информаций с ПК, другими частотными преобразователями.

  • Встроенная энергонезависимая память. В этом устройстве фиксируются аварийные отключения, изменения настроек, а также другие данные.
  • Управляющий контроллер, обеспечивающий реализацию алгоритмов управления, обработку данных с датчиков, защитное отключение при ненормальных режимах работы.
  • ЭМ-фильтр. Это устройство обеспечивает снижение реактивной высокочастотной составляющей, снижающей качество электроэнергии и отрицательно влияющей на работу электродвигателя.
  • Вентилятор и радиатор для принудительного охлаждения и отвода тепла силовых транзисторов.
  • Тормозной прерыватель и другие элементы.

Кроме аппаратной части, преобразователи частоты содержат программное обеспечение. Контроллеры с открытой логикой позволяют вносить изменения в стандартное ПО, поставляемое производителем, и самостоятельно программировать ПЧ.

Однофазные преобразователи частоты

Однофазные асинхронные электродвигатели широко применяются в качестве приводов насосных агрегатов, вентиляторов, маломощных станков. Для регулирования частоты вращения этих электрических машин применяются 2 основных способа:

  • Изменение величины напряжения питания.
  • Изменение частоты питающего напряжения.

Для регулирования питающего напряжения применяются трансформаторные, автотрансформаторные, тиристорные, симисторные и транзисторные преобразователи. Изменение частоты вращения путем регулирования напряжения имеет ряд серьезных недостатков:

  • Увеличение скольжения и сильный нагрев обмоток статора.
  • Узкий диапазон регулирования.

Кроме того, постоянная составляющая питающего напряжения на выходе тиристорных и симисторных устройств вызовает увеличение шума при работе, рывки и другие нежелательные явления.

Частотное регулирование лишено этих недостатков. Однофазные ПЧ применяются в холодильном оборудовании, системах вентиляции, бытовых насосах.

Такие электроприводы обеспечивают:

  • Стабильную работу однофазного двигателя при любой частоте вращения.
  • Снижение потребления электроэнергии.
  • Возможность автоматической регулировки частоты вращения с обратной связью по изменению одного или нескольких технологических параметров.
  • Удаленное управление и контроль характеристик.
  • Защиту от ненормальных режимов работы и коротких замыканий.
  • Интеллектуальное управление электродвигателем в соответствии с заданным алгоритмом.
  • Возможность пуска без фазосдвигающего элемента.
  • Поддержание необходимого момента на валу во всем диапазоне изменения скорости.

Кроме базовых составляющих, в состав однофазного преобразователя частоты входят ПИД-регулятор, ПЛК-контроллер, устройство для обмена данными с удаленным оборудованием, пульт дистанционного управления. При введении дополнительных настроек допустимо применение трехфазного ПЧ для однофазных двигателей переменного тока.

Таким образом, управление однофазными и трехфазными асинхронными электродвигателями путем изменения частоты значительно превосходит метод регулирования величины напряжения, механические способы.

Ссылка на основную публикацию
Adblock
detector