Что такое электромагнитный момент двигателя постоянного тока

Большая Энциклопедия Нефти и Газа

Электромагнитный момент — двигатель

Механическая характеристика связывает электромагнитный момент двигателя , реализующийся в процессе электромеханического преобразования энергии, с угловой скоростью вала машины, которая определяется условиями движения механической части привода. Так как в системе электропривода приложенные к обмоткам двигателя напряжения иг являются управляющими воздействиями со стороны системы автоматического управления электроприводом, а электромагнитный момент в соответствии с ( 2 — 7а) и ( 2 — 9) зависит от этих воздействий, механическая характеристика двигателя определяет взаимодействие электрической и механической частей привода в электромеханической системе и является основным показателем статических и динамических свойств электропривода. [16]

Уравнения ЭДС и электромагнитный момент двигателя можно получить из уравнений ЭДС обобщенной машины, если сделать следующие допущения: 1) падение напряжения на переходах полупроводниковых приборов значительно меньше падения напряжения на статоре СД; 2) магнитная цепь машины не насыщена, и магнитный поток, создаваемый постоянными магнитами, неизменен; 3) влиянием реакции якоря и коммутационных токов на магнитный поток двигателя можно пренебречь. [17]

Во время разгона электромагнитный момент двигателя должен не только преодолеть момент нагрузки и момент холостого хода, но совершить еще работу по приданию необходимых ускорений вращающимся частям системы. [18]

Приведенным уравнением определяется электромагнитный момент двигателя . Момент на валу двигателя будет меньше электромагнитного момента на значение, соответствующее потерям в стали и механическим потерям. [19]

Приведенным уравнением определяется электромагнитный момент двигателя . [20]

Последнее уравнение выражает зависимость электромагнитного момента двигателя от скорости вращения при небольших напряжениях на управляющей обмотке с учетом параметров усилителя и при действии сигнала, содержащего прямую и квадратурную составляющие несущей частоты. [21]

При отключении электродвигателя от сети электромагнитный момент двигателя падает до нуля, однако вследствие инерции вращающихся частей агрегата частота вращения снижается постепенно. В самом начале режима противотока закрывается обратный клапан, насос снова переходит в насосный режим. [23]

Ниже рассматривается практический способ определения электромагнитного момента двигателя , если известен механический момент на его палу. При этом исходным параметром является мощность электродвигателя. Потери мощности в обмотках возбуждения и якоря машины считаются приблизительно равными, что действительно имеет место в режимах работы, близких к номинальному. [24]

Установившемуся статическому режиму соответствует равенство электромагнитного момента двигателя сумме всех приложенных к механической системе моментов сопротивления М — — Мс. В процессе работы электропривода его нагрузка может изменяться в значительных пределах, соответственно изменяется и момент двигателя. Информация о том, в какой степени изменения момента сказываются на изменениях скорости двигателя и наоборот, заключена в механической характеристике двигателя. [25]

В каком из пунктов вывода электромагнитного момента двигателя постоянного тока допущена ошибка. [26]

Из формулы (XI.42) следует, что электромагнитный момент двигателя определяется произведением масштаба моментов тм на отрезок Ав между точкой А окружности и линией электромагнитной мощности ( см. рис. XI. [28]

Точно так же изменяется во времени электромагнитный момент двигателя . Скорость якоря растет по ступенчатым экспонентам и в конце пуска достигает номинального значения, если пуск происходит при полной нагрузке. [29]

Рассмотрим сначала работу внутреннего контура регулирования электромагнитного момента двигателя при неизменной величине сигнала 1 / РС, поданного на вход модулятора МД. Предположим, что вал двигателя преднамеренно заторможен. Тогда ротор сельсина 2С неподвижен. Если теперь на вход модулятора МД подать постоянное напряжение ( например, с выхода регулятора PC), то на выходах демодуляторов установятся постоянные напряжения, а по обмоткам фаз статора двигателя будут протекать токи, создающие МДС якоря ( статора) машины. [30]

Способы возбуждения двигателей постоянного тока. ЭДС якоря и электромагнитный момент. Способы торможения ДПТ.

Способы возбуждения электродвигателей постоянного тока

Под возбуждением электрических машин понимают создание в них магнитного поля, необходимого для работы электродвигателя.

Схемы возбуждения электродвигателей постоянного тока: а — независимое, б — параллельное, в — последовательное, г — смешанное

Читать еще:  Чем отличаются двигатели vtec

По способу возбуждения электрические двигатели постоянного тока делят на четыре группы:

1. С независимым возбуждением, у которых обмотка возбуждения НОВ питается от постороннего источника постоянного тока.

2. С параллельным возбуждением (шунтовые), у которых обмотка возбуждения ШОВ включается параллельно источнику питания обмотки якоря.

3. С последовательным возбуждением (сериесные), у которых обмотка возбуждения СОВ включена последовательно с якорной обмоткой.

4. Двигатели со смешаным возбуждением (компаундные), у которых имеется последовательная СОВ и параллельная ШОВ обмотки возбуждения.

Электродвижущая сила якоря. ЭДС одного активного проводника, дви­жущегося в магнитном поле, определяется по формуле Е = Вυlsinα. Так как магнитная индукция вдоль окружности якоря не является постоянной, введем некоторое среднее значение индукции ВСР, которая по своему действию даст тот же эффект. ТогдаЕ = ВСР υl (3)

(sinα= 1, так как в зазоре генератора α = 90°).

Линейная скорость движения проводника якоря равнаυ = πDn, но nD = 2рτ,

где τ — полюсное деление, т. е. расстояние вдоль окружности статора, приходя­щегося на один полюс; 2р — число полюсов в статоре. Магнитная индукция ВСР =

где Ф — магнитный поток полюса.

Виды электрического торможения.

Электрические двигатели, как правило, используют не только для вращения механизмов, но и для их торможения. Электрическое торможение позволяет быстро остановить механизм или уменьшить его частоту вращения без применения механических тормозов.

Различают три вида электрического торможения двигателей постоянного тока: 1) рекуперативное торможение — генераторное торможение с отдачей электрической энергии в сеть; 2) динамическое или реостатное торможение — генераторное торможение с гашением выработанной энергии в реостате, подключенном к обмотке якоря; 3) электромагнитное торможение — торможение противовключением.

Во всех указанных режимах электромагнитный момент М воздействует на якорь в направлении, противоположном и, т. е. является тормозным.

Рекуперативное торможение. Двигатель с параллельным в озбуждением переходит в режим рекуперативного торможения при увеличении его частоты вращения и выше п0 = U/ceФ. В этом случае ЭДС машины становится больше напряжения сети и ток согласно (8.80) изменяет свое направление, т. е. двигатель переходит в генераторный режим. В этом режиме машина создает тормозной момент, а выработанная электрическая энергия отдается в сеть и может быть полезно использована.

В машине с параллельным возбуждением механические характеристики генераторного режима являются продолжением механических характеристик двигательного режима в область отрицательных моментов.

Динамическое торможение. При этом виде торможения двигателя с параллельным возбуждением обмотку якоря отключают от сети и присоединяют к ней реостат Rдо6 .При этом машина работает как генератор, создает тормозной момент, но выработанная электрическая энергия бесполезно гасится в реостате. Регулирование тока Ia = Е/(ΣRa + Rдоб), т. е. тормозного момента М, осуществляют путем изменения сопротивления Rдоб, подключенного к обмотке якоря.

Электромагнитное торможение. В этом режиме изменяют направление электромагнитного момента М, сохраняя неизменным направление тока из сети, т. е. момент делают тормозным. Последнее осуществляют так же, как и при изменении направления вращения двигателя — путем переключения проводов, подводящих ток к обмотке якоря рис. а) или к обмотке возбуждения. Чтобы ограничить значение тока в этом режиме, в цепь обмотки якоря вводят добавочное сопротивление Rдоб. Регулирование тока Ia = (U + Е)/(ΣRa + Rдоб), т. е. тормозного момента М, осуществляют путем изменения сопротивления Rдоб или ЭДС Е (тока возбуждения Iв). Механические характеристики в этом режиме для двигателей с параллельным и последовательным возбуждением показаны на рис. б и в.

7.Электромагнитный момент машины постоянного тока.

При прохождении по пазовым проводникам обмотки якоря тока ia на каждом из проводников появляется электромагнитная сила . Совокупность всех электромагнитных сил Fэм на якоре, действующих на плечо, равное радиусу сердечника якоря (Da/2), создает на якоре электромагнитный момент М.

Исходя из прямоугольного распределения магнитной индукции в зазоре, следует считать, что сила Fэм одновременно действует на число пазовых проводников NiiN. Следовательно ЭМ момент постоянного тока М = Fэм αiN Da/2. Т.о. можем получить конечное выражение для ЭМ момента постоянного тока:

Читать еще:  Барсик трактор схема двигателя

М = Вδli[Ia/2a]αiN Da/2

Используя выражение основного магнитного потока получим выражение электромагнитного момента:

М = смФIa

cм – величина, постоянная для данной машины и определяется .IA-ток в обмотке якоря. Электромагнитный момент машины при ее работе в двигательном режиме является вращающим, а при генераторном режиме – тормозящим по отношения к вращающему моменту приводного двигателя.

8.Потери и кпд машины постоянного тока.

В машинах постоянного тока имеют место магнитные, электрические и механические потери (составляющие группу основных потерь) и добавочные потери.

Магнитные потери. Магнитные потери Рм происходят только в сердечнике якоря, т.к. только этот элемент магнитопровода машины постоянного тока подвергается перемагничиванию. Величина магнитных потерь, состоящих из потерь на гистерезис, и потерь от вихревых токов, зависит от частоты перемагничивания (от частоты вращения якоря), значений магнитной индукции в зубцах и спинке якоря, толщины листов электротехнической стали, ее магнитных свойств и качества изоляции этих листов в пакете якоря.

Электрические потери. В коллекторной машине постоянного тока электрические потери обусловлены нагревом обмоток и щеточного контакта. Потери в цепи возбуждения определяются потерями в обмотке возбуждения и в реостате, включенном в цепь возбуждения: . Потери в обмотках цепи якоря, где— сопротивление обмоток в цепи якоря. Электрические потери также имеют место и в контактных щетках: , где — переходное падение напряжения. Электрические потери в цепи якоря и в щеточном контакте зависят от нагрузки машины, поэтому их называют переменными.

Механические потери. В машине постоянного тока механические потери складываются из потерь от трения щеток о коллектор , трения в подшипниках и потерь на вентиляцию: . Механические и магнитные потери при стабильной частоте вращения можно считать постоянными. Сумма магнитных и механических потерь составляют потери хх

В машинах постоянного тока имеется ряд трудно учитываемых потерь, называемых добавочными. Эти потери складываются из потерь от вихревых токов в меди обмоток, потерь в уравнительных соединениях, в стали якоря и тд. Они принимаются равными от 0,5 до 1% от полезной мощности.

КПД. Представляет собой отношение мощностей: отдаваемой (полезной) Р2 к подводимой (потребляемой) Р1: η=Р2/Р1.

Определяем суммарную мощность выше перечисленных потерь

можно посчитать КПД машины:

для генератора

для двигателя

КПД можно определить 2 методами:1)Методом непосредственной нагрузки по результатам измерений подведений Р1и отдаваемой Р2.2)Косвенным методом по результатам измерений и последующих вычислений потерь.

Электромагнитный момент машины постоянного тока. Электромагнитная мощность.

согласно 1 з-ну Ньютона в применении к вращающемуся телу действующая на это тело движущая и тормозные вращающие м-ты уравновешивают др.др поэтому в генераторе при установившемся режиме работы эл-маг м-т Мэм=Мв-Мтр-Мс, где Мв — м-т на валу генератора развиваемый первичным двигателем, Мтр- м-т сил трения в подшипниках о воздух и на коллекторе ЭМ, Мс — тормозной м-т, вызываемый потерями на гистер.и вихревые токи в сердечнике якоря. Эти потери мощности появляются в рез-те вращения сердечника якоря в неподвижном магнитном поле полюсов. Возникающие при этом эл-маг силы оказывают на якорь тормозящее действие и в этом отношении проявляют себя подобно силам трения. В двигателе при устан.режиме работы Мэм=Мв+Мтр+Мс, где Мв — тормозной м-т на валу двигателя, развиваемый рабочей машиной. В генераторе Мэм является тормозным, а вдвигателе — вращающим м-ом, причем в обоих случаях Мв и Мэм противоположны по направлению. Развиваемая эл-маг м-ом Рэм- называется эл-маг мощностью и равна Рэм=Мэм2 пи n,( где 2 пи n представляет собой угловую скорость вращения). Если учесть, что линейная скорость на окружности якоря v=Pi*Da*n, тогда получим , что Рэм=2B*l*v*Ia, или Рэм=Еа*Ia. В обмотке якоря под действием ЭДС Еа и тока Ia развивается внутренняя эл мощность якоря Ра=Еа*Iа.получили, что внутренняя эл мощность якоря равна эл-маг мощности, развиваемой эл-маг м-ом, что отражает процесс преобразования мех.энергии в эл в генераторе и обратный процесс в двигателе. Для генератора имеем Ua*Ia=Ea*Ia-Ia^2*ra и для двигателя Ua*Ia=Ea*Ia+Ia^2*ra. Левые части этих выражений представляют собой эл мощности на зажимах якоря, первые члены правых частей- эл-маг мощность якоря и последние члены- эл потери мощности в якоре. Эти соотношения являются выражением з-на сохранения энергии и отражают процесс преобразования энергии в МПТ.

Читать еще:  Что такое асинхронный двигатель и его отличия

2. Общие сведения об измерительных преобразователях. Делители напряжения, шунты, добавочные резисторы.

Для того чтобы ту или иную неэлектрическую величину измерить, ее нужно

предварительно преобразовать в электрич. сигнал. Такое преобразование осуществляется с помощью датчиков или первичных преобразователей. На рис. показана структурная схема для измерения неэлектрич. вел-ны электрич. методом. Здесь ПП- первичный преобразователь, ЭЦ- электрическая измерительная цепь, ВУ- выходное устройство. Измеряемая неэлектрич. вел-на Х поступает на вход ПП, на выходе которого появляется эл. сигнал У(Х). Далее этот сигнал преобразуется в ЭЦ в другой эл. сигнал У’ , который воспринимается ВУ, в результате чего на выходе всего устройства получается , например, отклонение указателя а(Х). Шкала выходного устройства градуирована непосредственно в знач. неэлектрич. вел-ны Х. Первичные преобразователи (ПП), используемые в измерениях, делятся на генераторные и параметрические. Генераторные ПП вырабатывают э.д.с. или ток и для их работы , как правило, не требуется дополнительный источник питания ( термозлектрические, пьезоэлектр., гальванические преобразователи). Параметрические ПП преобразуют изменение измеряемой неэлектрич. вел-ны в изменения того или иного параметра эл. цепи (R,L,M,C) и для их работы требуется дополнит. источник питания ( терморезисторы , реостатные, индуктивные и емкостные преобразователи). Электрич. измерительные цепи (ЭЦ) в рассматриваемых устройствах состоят обычно из мостов или измерительных потенциометров. В простейшем случае ЭЦ может отсутствовать, и сигнал У поступает непосредственно на выходной прибор. Выходные устройства весьма различны –от стрелочного магнитоэлетр. вольтметра до самопишущего прибора. Делители напряжения. В зависимости от назначения эл. цепи ее зл-ты могут соединяться различным образом. Сущ-ют 4 основных вида соединений эл-тов: последовательное, параллельное, треугольником и звездой. Послед. назыв. соед. , при котором ток в каждом элементе один и тот же. Для этих схем можно написать: U1+U2+…+Un=U или R1*I+R2*I+…+Rn*I=Rэк*I , следовательно Rэк=R1+R2+…+Rn. Послед. соед. Приемников используют обычно только а том случае, когда напряжения ,на которые они рассчитаны , меньше напряжения источника эл. энергии. Недостатком послед. соед. Приемников явл.то, что напряжение на каждом из них зависит от сопрот. других приемников. Поскольку напряжение источника равно сумме напряжений на последовательно включенных эл-тах цепи, последовательное соед. эл-тов применяют часто а качестве делителей напряжений и для регулир. напряж. на приемнике. Так, при исполозовании двигателей постоянного тока последоват. с цепью якоря включ. реостаты для ограничения пускового тока ( пусковые реостаты) и регулирования частоты вращения (регулировачные реостаты).Для измерения больших токов применяют амперметры, в которых магнитоэлектрический измерительный механизм включается в сочетании с шунтом. Шунтом называют резистор малого сопротивления, подключаемый параллельно к измерительному механизму(ИМ). Шунт служит для расширения предела измерения прибора по току. Сопротивление шунта выбирают из соотношения

Rш=Rи/(n-1), где Rи-сопритивление обмотки ИМ, n=I/Iи-коэф. шунтирования; I – измеряемый ток; Iи- допустимый ток обмотки. В вольтметре для расширения пределов измерения по напряжению последовательно с измерительным механизмом подключают резистор большого сопротивления, называемый добавочным резистором. Сопротивление добавочного резистора опред. из соотношения Rn=Rи*(m-1), где Rи-спротивление обмотки ИМ; m=U/Umv- масштабный коэф.; U- измеряемое напряжение ; Umv- допустимое напряжение на обмотке ИМ.

Шунты и добавочные резисторы являются простейшими измерительными преобразователями.

Билет №5

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Ссылка на основную публикацию
Adblock
detector