Что такое электропривод с двигателем переменного тока

Модернизация системы частотно-регулируемого асинхронного электропривода

Полный текст:

  • Статья
  • Об авторах
  • Cited By

Аннотация

Ключевые слова

Для цитирования:

Шестаков И.В., Сафин Н.Р. Модернизация системы частотно-регулируемого асинхронного электропривода. Вестник Концерна ВКО «Алмаз – Антей». 2019;(2):25-33. https://doi.org/10.38013/2542-0542-2019-2-25-33

For citation:

Shestakov I.V., Safin N.R. Modernization of a frequency-controlled asynchronous electric drive system. Journal of «Almaz – Antey» Air and Space Defence Corporation. 2019;(2):25-33. https://doi.org/10.38013/2542-0542-2019-2-25-33

Современный частотно-регулируемый асин­хронный электропривод (ЧРАП) широко при­меняется в изделиях военной техники (ВТ) и конверсионной гражданской техники (ГТ). Для изделий первой категории предъявляют жесткие требования к условиям эксплуатации (согласно комплексам государственных во­енных стандартов «Климат-6» и «Мороз-7»). В изделиях ВТ электропривод часто функци­онирует в условиях термонагруженного отсе­ка, что усложняет задачу снижения тепловы­деления и рассеивания теплоты. Требования по обеспечению гарантийной работоспособ­ности приводного/рабочего механизма связа­ны в том числе и с повышением энергоэффек­тивности ЧРАП. Такая задача в первую оче­редь зависит от степени минимизации потерь в компонентах электропривода, приводящих к снижению КПД и повышенному энергопо­треблению. Исходя из этого задача повыше­ния энергоэффективности ЧРАП в таких ус­ловиях является актуальной.

Объект данного исследования — частот­но-регулируемый электропривод переменно­го тока, в силовой цепи которого использует­ся трехфазный асинхронный двигатель (АД) с короткозамкнутым ротором, получающим питание от преобразователя частоты (ПЧ) — силового контроллера с широтно-импульсной модуляцией (ШИМ).

Цель работы — исследование возможно­стей повышения энергоэффективности ЧРАП электрогидравлической трансмиссии самоход­ного грузоподъемного агрегата. Статья являет­ся продолжением работ [1, 2].

Один из вариантов решения данной за­дачи — совершенствование существующих и разработка новых типов электродвигателей и полупроводниковых преобразователей с улуч­шенными энергетическими характеристиками.

В области электромашиностроения оте­чественная промышленность освоила произ­водство нескольких серий асинхронных дви­гателей общего назначения (АИ, 5А), которые имеют более высокие КПД и коэффициент мощности. Например, в ОАО «РУСЭЛПРОМ» разработаны специальные крановые двигатели серий 5МТК и 7МТК для частотно-регулиру­емого электропривода. Усовершенствованные технологии изготовления обмотки статора и конструкция магнитопровода обеспечивают надежную эксплуатацию электродвигателей при питании от автономных инверторов на­пряжения (АИН) и возможность регулирова­ния частоты вращения в широком диапазоне.

Сегодня успехи в развитии микропроцес­сорных средств управления позволяют решать практические задачи повышенной сложно­сти: идентификация параметров, оценка пере­менных состояния, адаптивное и оптимальное управление. Одним из важных направлений в теории и практике регулируемого электроприво­да остается разработка электроприводов, кото­рые обеспечивали бы технологические процес­сы при минимальных энергетических затратах.

Практически допустимые области функ­ционирования ЧРАП определяются в том числе и законом частотного управления , а также каче­ством его реализации в системе регулирования.

В настоящее время существуют разные типы управления АД, реализуемые в ПЧ на основе скалярных и векторных систем управления. В свою очередь векторное управление под­разделяется на два основных вида: с прямой ориентацией по полю ротора (с датчиком по­ложения ротора, датчиком скорости, датчиком магнитного потока в воздушном зазоре) и с косвенной ориентацией по полю ротора (без- датчиковое/бессенсорное).

Соответственно векторное управление с косвенной ориентацией по полю ротора по­зволяет исключить использование датчика ско­рости (и датчиков других типов), но данный вариант имеет следующие неблагоприятные особенности:

  • в режиме малого скольжения, т. е. при работе электродвигателя на низких скоростях, снижается качество регулирования скорости [3];
  • усложняется и удорожается програм­мно-аппаратная часть электропривода.

Использование датчика скорости в опре­деленной степени снижает надежность ЧРАП ввиду влияния комплекса физико-химических и климатических факторов широкого диа­пазона, например в условиях ограниченного термонагруженного пространства с вибро-, те­пловыделяющим оборудованием. Кроме того, датчики скорости (энкодеры) в крановом элек­троприводе являются наименее надежными элементами, выход их из строя происходит достаточно часто [4]. С учетом всего этого в системе управления ЧРАП реализован скаляр­ный принцип частотного управления.

Одновременно с этим выбор АД для ра­боты в регулируемом электроприводе является важным фактором, влияющим на надежность эксплуатации приводного/рабочего механиз­ма. В данной статье рассматривается новый тяговый АД (получен патент РФ на полезную модель № 184734) с характеристиками: номи­нальная мощность PN = 15 кВт; номинальное фазное напряжение UN = 127 В; номинальный фазный ток IN = 50,38 А; частота питающего напряжения fN = 400 Гц; КПД ηΝ = 0,8651; коэффициент мощности cos φ N = 0,8351; чис­ло пар полюсов z p = 4; относительное сколь­жение s = 0,0269; скорость вращения ротора Ω2 = 611,42 рад/c. Электродвигатель изготов­лен для работы в жестких условиях при вли­янии различных негативных факторов. Для повышения надежности электродвигателя его конструктивная часть включает в том числе охлаждающий контур с охлаждающими канала­ми, проходящими через ротор в осевом направ­лении. Принятые решения позволяют улучшить циркуляцию внутреннего воздуха и тем самым усовершенствовать схему теплопередачи.

Питание АД от ПЧ не улучшает энерге­тические показатели системы ЧРАП непосред­ственно. Наоборот, потери электродвигателя, питаемого от инвертора с ШИМ напряжением, выше, чем у электродвигателя, питаемого от сети. Это обусловлено как снижением действу­ющего напряжения в номинальном режиме, так и увеличенными электрическими и маг­нитными потерями из-за влияния коммутаци­онной составляющей тока и высших гармоник поля статора [5].

Таким образом, эксплуатация ЧРАП со­провождается рядом негативных факторов: возникновение высших гармоник питающего напряжения, вызывающих импульсные пере­напряжения в обмотке статора; повышенные потери, снижающие КПД, полезную мощность АД и увеличивающие нагрев; дополнитель­ные инерционные моменты, увеличивающие вибрацию и шум.

В связи с этим для количественной оцен­ки предлагается проведение сравнительного математического моделирования конкретно­го АД при питании от сети и от ПЧ. Модели­руется режим прямого пуска АД до скорости идеального холостого хода (Ω0N = 628,3 рад/с) с последующим набросом активной нагрузки Mc = 24,6 Н-м, при этом скорость снижается до Ω2 = 611,4 рад/с (относительное значение номи­нальной скорости ротора ω 2 = 1 — s = 0,9731).

Проведен ряд экспериментов на мате­матической модели АД при питании от сети (рис. 1), в которых снимались значения ско­рости вращения вала, действующие значения токов и электрических потерь в обмотках ста­тора и ротора. Результаты приведены в табл. 1.

Рис. 1. Математическая модель АД при питании от сети в пакете MATLAB Simulink

1. ТРЕБОВАНИЯ К ПИТАЮЩИМ СЕТЯМ

1.1 . Питание электроприводов должно предусматриваться от трехфазных промышленных сетей переменного тока частоты 50 (60) Гц высокого (3; 6; 10; 35 кВ) либо низкого (220; 380; 500; 660 В) напряжения через входные согласующие трансформаторы либо реакторы. Допустимое отклонение силового напряжения ± 5 % для высокого напряжения и ± 10 % для низкого напряжения.

Питание цепей собственных нужд электроприводов должно предусматриваться от трехфазных сетей переменного тока 220; 380; 500 или 660 В частотой 50 (60) Гц.

1.2 . Электропривод должен обеспечивать нормальную безаварийную работу при:

отклонениях силового напряжения от номинального значения до ±10 % для высокого напряжения и от плюс 10 % до минус 15 % низкого напряжения;

отклонении напряжения питания собственных нужд от плюс 10 % до минус 15 %;

кратковременных провалах мгновенных значений питающего напряжения площадью до 400 %, умноженных на электрический градус (γ · D U % £ 400 % ´ электрический градус, где γ — угол коммутации в электрических градусах, D U % — падение напряжения при провале в процентах от мгновенного значения) причем максимальная длительность провала питающего напряжения не должна превышать 40 электрических градусов;

отклонении частоты питающих сетей до ±2 % от номинального значения.

2. ТРЕБОВАНИЯ ПО УСТОЙЧИВОСТИ К ВНЕШНИМ ВОЗДЕЙСТВИЯМ

2.1 . Электроприводы должны быть предназначены для работы в следующих условиях:

Читать еще:  Шланги для двигателя тюнинг

высота над уровнем моря не более 1000 м;

температура окружающего воздуха от 1 до 40 °С при воздушном охлаждении. При охлаждении водой температура охлаждающей воды на входе должна быть не выше 30 °С;

относительная влажность окружающего воздуха не более 80 % при температуре 20 °С без выпадения росы;

окружающая среда невзрывоопасная, не содержащая агрессивных газов и паров в концентрациях, разрушающих металлы и изоляцию, не насыщенная токопроводящей пылью и водяными парами;

в закрытых стационарных помещениях при отсутствии непосредственного воздействия солнечной радиации.

2.2 . По запыленности атмосферы электроприводы должны допускать эксплуатацию при содержании нетокопроводящей пыли не более 0,5 мг/м 3 .

2.3 . Электропривод должен допускать вибрацию с частотой до 100 Гц при ускорении не более 9,81 м/с 2 .

2.4 . Рабочее положение шкафов электропривода должно быть вертикальное. Должно допускаться отклонение от вертикального положения не более 5° в любую сторону.

3. ТРЕБОВАНИЯ К СИСТЕМЕ УПРАВЛЕНИЯ ПРЕОБРАЗОВАТЕЛЕМ И СИСТЕМЕ РЕГУЛИРОВАНИЯ

3.1 . В электроприводах должна быть предусмотрена возможность местного непосредственно со щита преобразовательного устройства или дистанционного (с выносного пульта) управления частотой вращения.

3.2 . Системы регулирования и управления электроприводов без датчика скорости должны обеспечивать:

1 ) разгон и торможение двигателей по сигналу задатчика интенсивности в пределах допустимой перегрузки преобразователя частоты;

2 ) диапазон времени изменения частоты от минимальной до максимальной от 1 с до 60 с;

3 ) статическую точность поддержания скорости, определяемую наклоном механической характеристики двигателя.

3.3 . Системы управления и регулирования электроприводов с датчиком скорости должны обеспечивать:

1 ) статическое отклонение скорости не более 5 % от установленного значения при использовании аналоговых тахогенераторов и не более 1 % при использовании импульсных датчиков скорости;

2 ) возможность регулирования величины ускорения и замедления с точностью поддержания заданной величины темпа ±10 %;

3 ) величину перерегулирования скорости при изменении задания не более 10 % и время отработки сигнала до 0,3 с;

4 ) ограничение величины тока двигателя в динамических режимах и при перегрузках на заданном уровне с точностью ±15 % от уставки.

4. ТРЕБОВАНИЯ К СИСТЕМАМ ЗАЩИТЫ, ИЗМЕРЕНИЯ И СИГНАЛИЗАЦИИ

4.1 . Электроприводы должны быть снабжены аппаратурой защиты, сигнализации (внешней и внутренней) и индикации рабочих и аварийных режимов.

4.2 . Электропривод должен быть термически и динамически устойчив при всех аварийных режимах в течение времени срабатывания установленных в нем защитных аппаратов.

4.3 . Преобразователи частоты должны снабжаться следующими видами защит:

1 ) от токов короткого замыкания в преобразовательном устройстве и в нагрузке;

2 ) от выхода из строя тиристоров;

3 ) от внешних и внутренних перенапряжений на тиристорах;

4 ) от недопустимых перегрузок по току;

5 ) от исчезновения или недопустимого снижения напряжения в силовой питающей сети или сети собственных нужд;

6 ) от исчезновения потока охлаждающей среды;

7 ) от работы на двух фазах приводного двигателя;

8 ) от замыканий на землю.

4.4 . По согласованию между изготовителем и потребителем могут быть предусмотрены дополнительные виды защит.

4.5 . Электроприводы должны быть снабжены приборами для измерения:

1 ) напряжения на выходе преобразователя;

2 ) тока на выходе преобразователя;

3 ) частоты на выходе преобразователя или скорости вращения двигателя при наличии датчика скорости.

4.6 . Внутренняя сигнализация (установленная на шкафах преобразователей частоты или системы управления и регулирования) должна сигнализировать:

1 ) о состоянии коммутационных аппаратов в силовой цепи и цепях собственных нужд;

2 ) о наличии силового напряжения и напряжения собственных нужд;

3 ) о готовности электропривода к работе;

4 ) об аварийном отключении.

4.7 . Внешняя сигнализация должна содержать три группы сборных сигналов:

1 ) о готовности электропривода к работе;

2 ) о включенном состоянии электропривода;

3 ) аварийную сигнализацию (отключение электропривода системой защиты).

4.8 . Для электроприводов специального исполнения количество измерительных и сигнальных приборов, оговоренных пп. 4.5 , 4.6 и 4.7 , может быть сокращено.

5. ТРЕБОВАНИЯ К РЕЖИМАМ РАБОТЫ

5.1 . Электроприводы должны обеспечивать:

1 ) частотные пуск и регулирование, а также при необходимости торможение и реверс двигателей в функции задания частоты в виде электрического сигнала на выходе задатчика интенсивности;

2 ) работу при изменении момента нагрузки в диапазоне от 0 до Мном;

3 ) максимальный момент двигателя, определяемый допустимой кратностью перегрузки преобразователя частоты по току, соответствующей от 1,5 до 2,0 I ном .

4 ) работу в замкнутой системе автоматического регулирования технологических параметров.

5.2 . Электроприводы должны допускать нагрузки, приведенные в таблице.

Пять ключевых контрольных точек для диагностики эффективности и проверки рабочих характеристик электроприводов

Электроприводы являются широко распространенной технологией, которая позволяет преобразовывать непрерывное напряжение от сети переменного тока в напряжение, которое можно изменять и таким образом регулировать крутящий момент и скорость электродвигателей. Эта технология идеально подходит для электродвигателей, которые приводят в движение нагрузки механического оборудования. Электроприводы являются более эффективными, чем простые электродвигатели прямого пуска, и отличаются высокой управляемостью, которая недоступна на простых двигателях прямого привода. Все это обеспечивает снижение расходов на электроэнергию, повышает производительность и увеличивает срок службы электродвигателя.

В соответствии с отчетом Министерства энергетики США (DOE) системы электродвигателей имеют крайне важное значение для работы почти каждого предприятия. На электродвигатели приходится 60–70 % всей потребляемой электроэнергии. В документах Министерства энергетики США также говорится о том, использование частотно-регулируемых приводов (ЧРП) на предприятиях позволяет обеспечить значительную экономию средств. Неудивительно, что электроприводы широко распространены во многих отраслях промышленности и на многих предприятиях. Диагностика и техническое обслуживание таких систем электродвигателей являются ключевыми условиями обеспечения их безотказной работы.

Сложности при проверке электроприводов

Обычно диагностика и проверка электроприводов, также известных как частотно-регулируемые приводы (ЧРП), приводы с регулируемой частотой вращения (ПРЧВ) или электроприводы с регулируемой скоростью (ЭРС), выполняется с использованием нескольких измерительных приборов, включая осциллографы, цифровые мультиметры и другие приборы. В ходе таких проверок часто используется метод проб и ошибок, а также традиционный метод исключения. Из-за сложности систем электродвигателей их проверка обычно выполняется раз в год, за исключением случаев, когда система начинает выходить из строя. Документация по истории работы оборудования часто отсутствует или предоставлена не в полном объеме, в связи с этим сложно решить, с чего следует начинать проверку. К такой документации относятся документы о проведении конкретных проверок и ранее выполненных измерений, отчеты о проведенных работах и описание состояния отдельных компонентов после проведения тех или иных работ. Новые достижения в области выполнения проверок позволили решить некоторые проблемы. Современные приборы, такие как анализаторы работы электроприводов Fluke MDA-510 и MDA-550, делают проверку электроприводов более эффективной и информативной благодаря функции документирования каждого этапа работы. Эти отчеты можно хранить и сравнивать с дальнейшими результатами проверок для получения более полного представления об истории обслуживания электропривода.

Более легкий способ выполнения диагностики ЧРП

Эти современные анализаторы электроприводов сочетают в себе функции измерительного прибора, портативного осциллографа и регистратора. На экране прибора отображаются подсказки, понятные диаграммы по настройке, а также пошаговые инструкции, написанные специалистами по работе с электроприводами, которые помогут вам провести основные проверки. Этот новый метод заключается в разделении на части и упрощении сложных проверок. Он позволяет опытным специалистам по работе с электроприводами работать быстрее и получать достоверную необходимую информацию. Кроме того, этот метод позволяет менее опытным техническим специалистам быстрее научиться выполнять процедуры анализа электроприводов.

Поиск первопричины неисправности системы электропривода или выполнение регулярных проверок в рамках профилактического технического обслуживания лучше всего выполнять с помощью набора стандартных тестов и измерений в ключевых точках системы. Проверки начинаются на входе питания, ключевые проверки с использованием различных методов измерения и критериев оценки выполняются по всей системе, и завершаются проверки на выходе.

Читать еще:  Шестеренчатый насос как двигатель

Ниже приводятся основные проверки для диагностики электроприводов:

Обратите внимание, что выполнение этих проверок на анализаторах электроприводов Fluke осуществляется с пошаговыми инструкциям, кроме того, многие необходимые расчеты выполняются автоматически, поэтому вы можете быть уверены в полученных результатах. Вы также можете сохранять данные в отчете практически в любой момент проверки, что позволяет загрузить документацию в компьютеризированную систему управления техобслуживанием (CMMS) или отправить ее коллеге или эксперту-консультанту.

Примечание по технике безопасности: Помните, что перед началом проверки всегда необходимо прочитать информацию по технике безопасности для конкретного прибора. Не работайте в одиночку и соблюдайте региональные и государственные правила техники безопасности. Используйте средства индивидуальной защиты (утвержденные резиновые перчатки, маски и огнестойкую одежду) для предотвращения поражения электрическим током и получения травмы в результате дугового разряда при работе с опасными проводниками под напряжением.

Для начала проверки с помощью анализатора электроприводов Fluke просто подключите измерительные датчики в соответствии со схемой, затем нажмите кнопку «Далее».

1. Вход привода

Анализ электропитания, поступающего на электропривод, является эффективным первым действием для определения наличия в питающей цепи искажений, помех или шумов, которые могут повлиять на заземление.

Проверки

Сравните номинальное напряжение привода с фактическим подаваемым напряжением, чтобы быстро определить, находятся ли значения в допустимых пределах. Если выход за пределы диапазона составляет более 10 %, это может говорить о наличии проблем с напряжением питания. Убедитесь, что входной ток находится в пределах максимально допустимого номинала, а проводники имеют подходящий размер.

  • Сравните измеренное значение частоты с заданным значением. Разница, составляющая более 0,5 Гц, может привести к возникновению проблем.
  • Убедитесь, что гармоническое искажение находится в пределах допустимого уровня. Визуально проверьте форму сигнала или просмотрите экран гармонического спектра, на котором показано как общее гармоническое искажение, так и отдельные гармоники. Например, формы сигнала с плоской вершиной могут свидетельствовать о нелинейной нагрузке, подключенной к той же питающей цепи. Если общее гармоническое искажение (THD) превышает 6 %, это говорит о наличии потенциальной проблемы.
  • Проверьте асимметрию напряжения на входных клеммах, чтобы убедиться в том, что асимметрия фаз не слишком высокая (меньше 6–8 %), и что чередование фаз является правильным. Высокое значение асимметрии напряжения может указывать на обрыв фазы. Показание, превышающее 2 %, может привести к прерыванию напряжения и срабатыванию системы защиты привода от перегрузки или нарушить работу другого оборудования.
  • Проверка асимметрии тока. Чрезмерная асимметрия может указывать на неисправность выпрямителя привода. Асимметрия тока более 6 % может указывать на неисправность преобразователя электропривода и привести к потенциальным проблемам.

2. Шина постоянного тока

Преобразование переменного тока в постоянный в приводе имеет огромное значение. Правильное напряжение и соответствующее сглаживание с низким уровнем пульсаций необходимо для обеспечения максимальной производительности привода. Высокий уровень пульсаций напряжения может быть признаком неисправности конденсаторов или некорректного определения размеров подключенного электродвигателя. Функцию записи анализатора электроприводов Fluke серии MDA-500 можно использовать для динамической проверки производительности шины постоянного тока в рабочем режиме с нагрузкой. В качестве альтернативы для выполнения данной проверки можно использовать измерительный прибор Fluke ScopeMeter® или усовершенствованный мультиметр.

Проверки

  • Определите, является ли напряжение шины постоянного тока пропорциональным пиковому значению входного напряжения линии. За исключением управляемых выпрямителей, напряжение должно быть кратно 1,31–1,41 среднеквадратичного значения напряжения линии. Низкие показания напряжения постоянного тока могут привести к срабатыванию привода, что может быть вызвано низким входным напряжением сети или каким-либо искажением входного напряжения, например искажением плоской вершиной.
  • Проверьте наличие любых искажений или ошибок в пиковой амплитуде напряжения линии. Это может привести к ошибке, связанной с повышенным или пониженным напряжением. Показание напряжения постоянного тока ±10 % от номинального напряжения может свидетельствовать о наличии неисправности.
  • Определите, имеют ли пики пульсации переменного тока разный уровень повторений. После преобразования переменного тока в постоянный на шине постоянного тока будет оставаться небольшая составляющая пульсации переменного тока. Напряжения пульсации выше 40 В могут быть вызваны неисправностью конденсаторов или недостаточным номиналом привода для подключенного электродвигателя или нагрузки.

3. Выход привода

Проверка на выходе привода имеет огромное значение для обеспечения правильной работы электродвигателя и может помочь в решении проблем, возникающих в цепях привода.

Проверки

  • Убедитесь, что напряжение и ток находятся в соответствующих пределах. Из-за высокого выходного тока электродвигатель может перегреваться, что сокращает срок службы изоляции статора.
  • Убедитесь, что отношение напряжения к частоте (В/Гц) находится в пределах установленного диапазона для электродвигателя. При высоком отношении электродвигатель может перегреться, при низком отношении произойдет снижение крутящего момента электродвигателя. Стабильное значение частоты и нестабильное значение напряжения могут указывать на неисправность шины постоянного тока; нестабильное значение частоты и стабильное значение напряжения могут свидетельствовать о проблемах переключения (БТИЗ). Нестабильные значения частоты и напряжения свидетельствуют о потенциальных проблемах с цепями регулировки скорости.
  • Проверьте выходную мощность привода, обращая внимание на отношение напряжения к частоте (Н/Ч) и на модуляцию напряжения. При высоком соотношении напряжения/частоты электродвигатель может перегреться. При низким отношении Н/Ч подключенный электродвигатель может не обеспечивать крутящий момент под нагрузкой, необходимый для эффективного выполнения заданного процесса.
  • Проверьте модуляцию напряжения, используя измерения между фазами. Высокие пики напряжения могут повредить изоляцию обмотки электродвигателя и привести к срабатыванию привода. Пики напряжения выше 50 % от номинального напряжения свидетельствуют о наличии неисправности.
  • Проверьте скорость нарастания импульсов переключения, отображенную в показаниях для привода. Время или скорость нарастания импульсов указывается в виде значений dV/dt (скорость изменения напряжения со временем), которые необходимо сравнить с указанной изоляцией электродвигателя.
  • Проверьте частоту переключения для фазы постоянного тока. Проверьте наличие потенциальных неисправностей электронного переключателя или заземления — об этих неисправностях может свидетельствовать сигнал, плавающий вверх и вниз.
  • Измерьте асимметрию напряжения, желательно при полной нагрузке. Асимметрия не должна превышать 2 %. Асимметрия напряжения приводит к асимметрии тока, которая может привести к избыточному нагреву обмотки электродвигателя. Одной из причин возникновения асимметрии может быть неисправность цепей привода. Неисправность одной из фаз называется «обрывом фазы», в результате которого электродвигатель может нагреваться, не запускаться после остановки, кроме того, это может привести к значительному снижению эффективности, а также повреждению электродвигателя и подключенной нагрузки.
  • Измерьте асимметрию токов: она не должна превышать 10 % для трехфазных электродвигателей. Большая асимметрия при низком напряжении может указывать на наличие короткого замыкания на обмотках электродвигателя или короткого замыкания фаз на землю. Большая асимметрия может также привести к срабатыванию привода, высоким температурам электродвигателя и обгоранию обмоток

4. Вход электродвигателя

Напряжение, подаваемое на входные клеммы электродвигателя, является ключевым показателем, кроме того, огромное значение имеет выбор кабеля, соединяющего привод с электродвигателем. Неправильный выбор кабелей может привести к повреждению привода и электродвигателя из-за чрезмерного отраженного пикового напряжения. Эти проверки в значительной мере аналогичны проверкам на выходе привода, описанным выше.

Проверки

  • Убедитесь, что ток на клеммах находится в пределах номинала электродвигателя. Превышение тока может стать причиной нагревания электродвигателя и снизить срок службы изоляции статора, что может привести к преждевременному отказу электродвигателя.
  • Модуляция напряжения помогает определить высокие пики напряжения на землю, которые могут повредить изоляцию электродвигателя.
  • Асимметрия тока, которая может значительно повлиять на срок службы электродвигателя и может быть признаком наличия неисправности преобразователя. Это может привести к прерыванию напряжения и стать причиной срабатывания системы защиты от перегрузки.
  • Асимметрия тока может указывать на асимметрию напряжения или на неисправности выпрямителя привода.
Читать еще:  Шкода рапид скорость обороты двигателя

5. Напряжение на концах вала электродвигателя

Импульсы напряжения от электропривода могут замыкаться от статора электродвигателя к ротору, что приводит к появлению напряжения на валу ротора. Когда напряжение на валу ротора превышает изоляционную способность смазки подшипника, могут возникнуть токи искрового разряда (искрение), что приведет к образованию питтинговой коррозии и канавок на обойме подшипника электродвигателя, из-за чего электродвигатель может преждевременно выйти из строя.

Проверка

  • Измерьте напряжение между «массой» электродвигателя и валом привода. Например, модель MDA-550 для этой цели оснащена датчиком с щеткой из углеродного волокна. Эта проверка позволяет легко обнаружить наличие разрушительных токов искрового разряда, в то время как показания амплитуды импульса и счетчик событий позволяют принять необходимые меры до возникновения неисправности.

Хотите узнать больше?

Заполните короткую форму запроса на демонстрацию, и мы свяжемся с вами для организации персональной демонстрации от инженера компании Fluke. На вашем рабочем объекте будет проведена практическая демонстрация прибора, основное внимание на которой будет уделено необходимым вам измерениям. Вы увидите, насколько просто пользоваться нашими приборами, а также получите инструкции и рекомендации по эксплуатации прибора и его принадлежностей. Поэтому при покупке вы будете абсолютно уверены в том, что наш прибор полностью соответствует вашим требованиям и вы сможете максимально эффективно его использовать!

Продукция ABB (АББ)

АББ — лидер в области технологий для электроэнергетики и автоматизации. Технологии, созданные Группой, позволяют промышленным предприятиям и энергетическим компаниям повышать свою производительность, снижая негативное воздействие на окружающую среду. АББ поставляет на Российский рынок всю низковольтную электротехнику — от предохранителей до комплектных распределительных устройств, от стандартных электродвигателей до регулируемых приводов.

Современное оборудование производится на заводах АББ в Германии, Швеции, Финляндии, Франции, Италии, Испании и других странах Европы по самым передовым технологиям.

Номенклатура поставляемой электротехнической продукции содержит десятки тысяч наименований и постоянно расширяется и обновляется. АББ — одна из крупнейших в мире технологических компаний, офисы и производство АББ находятся более чем в 100 странах мира.

Приводная техника

Компания АББ является мировым лидером в области производства электроприводов, отвечающих современным потребностям в области автоматизации.

Приводы семейства CompAC (компонентные приводы) и стандартные приводы постоянного и переменного тока имеют компактную модульную конструкцию, что удобно при монтаже, настройке и эксплуатации оборудования. Для управления электродвигателями используются различные методы, такие как скалярное и векторное управление. При этом обеспечивается возможность применения приводов как в режиме регулирования скорости электродвигателя, так и в режиме регулирования момента. Многофункциональность приводов АББ позволяет использовать стандартные приводы для решения как простых, так и сложных задач автоматизации и управления технологическими процессами.

Приводы АББ успешно зарекомендовали себя в самых разных отраслях: в топливно-энергетическом комплексе, машиностроении, пищевой промышленности, обработке материалов, в текстильном и деревообрабатывающем производстве, а также в коммунальном хозяйстве.

Компонентный привод ACS50, 0,18 кВт. 2,2 кВт

Компонентный привод (преобразователь частоты) разработан специально для применения в технологических установках и линиях небольшой мощности, где критичными параметрами являются габаритные размеры и стоимость оборудования. Несмотря на небольшую мощность и компактные размеры, привод ACS50 содержит все необходимые параметры для управления и защиты электродвигателя.

Данная модель является оптимальным выбором для производителей упаковочного, этикеточного, дозирующего оборудования, которое требует плавного регулирования скорости технологического процесса, но в тоже время предъявляет высокие требования к габаритам и стоимости оборудования.

Компонентный привод ACS150, 0,37 кВт. 4 кВт

Компонентный привод (преобразователь частоты) ACS150 предназначен для управления низковольтными асинхронными электродвигателями переменного тока в простых применениях, не требующих точного поддержания момента, скорости или какой-либо внешней технологической переменной, но допускающих работу с различными типами нагрузки.

Встроенная панель управления с жидкокристаллическим дисплеем, кнопками и потенциометром, делает процесс настройки и эксплуатации привода очень простым. Интерфейс пользователя ACS150 в значительной степени унифицирован с интерфейсом других моделей приводов (ACS350 и ACS550), что позволяет уменьшить время, необходимое для настройки привода и освоения технологического оборудования, в котором он применяется. В конструкцию привода ACS150 интегрированы тормозной прерыватель (необходим для обеспечения динамического торможения электродвигателя) и ЭМС фильтр, позволяющий снизить уровень электромагнитных помех, генерируемых приводом.

Электроприводы для механизмов общего назначения ACS350, 0,37 кВт. 11 кВт

Приводы (преобразователи частоты) переменного тока серии ACS350 с бездатчиковым векторным управлением предназначены для управления низковольтными асинхронными электродвигателями, работающими с различными типами нагрузки на валу электродвигателя. Привод обладает широким спектром возможностей, что позволяет применять его в достаточно сложных задачах. ACS350 идеально подходит для применения в пищевой, текстильной, полиграфической, деревообрабатывающей промышленности.

Стандартный привод ACS550, 1,1. 355 кВт

Этот привод (преобразователь частоты) вобрал в себя все самые последние разработки компании АББ, что обеспечивает высокий технический уровень, отличные показатели надежности и удобство использования преобразователя. В приводе ACS550 используется принцип векторного управления, что позволяет получить высокий крутящий момент двигателя на низких частотах вращения и позволяет повысить качество технологического процесса.

Стандартный привод постоянного тока DCS400, 9…522 кВт

Приводы постоянного тока серии DCS400 предназначены для управления низковольтными электродвигателями постоянного тока с независимым возбуждением. Среди типичных областей применения можно назвать экструдеры, миксеры, конвейеры, волочильные машины, а также прессы.

Эти приводы идеальны в тех случаях, когда требуется простота монтажа, пусконаладки и эксплуатации, а также позволяют сэкономить время и исключить ошибки при наладке.

Малые габариты DCS400 предоставляют потребителям больше возможностей при проектировании своего оборудования. Компактность конструкции обеспечивается благодаря полностью встроенному блоку возбуждения. Блок возбуждения выполнен по схеме с IGBT-транзистором, и теперь нет необходимости в трансформаторе напряжения возбуждения, используемого обычно для согласования сетевого напряжения питания с напряжением обмотки возбуждения двигателя.

Наличие встроенной программы – мастера запуска, доступной с панели управления, и программного пакета для ПК облегчает процесс ввода привода в эксплуатацию, превращая его в простое следование выводимым на панель управления инструкциям. Кроме того, DCS 400 содержит ряд макросов приложений. Выбирая макрос из меню, пользователь может заранее определить настройки привода и соединения входов/выходов для конкретной задачи.

Электронные каталоги

  • ACS55 Компонентные приводы АББ
  • ACS150 Компонентные электроприводы AББ
  • ACS350 Электроприводы AББ для механизмов общего назначения
  • ACS550 Стандартные приводы АББ
  • ACH550 Приводы АББ в системах отопления, вентиляции и кондиционирования воздуха
  • ACS800 Промышленные приводы АББ (одиночные приводы)
  • ACS800 Промышленные приводы АББ (мультидрайв)
  • ACS5000 Привод переменного тока среднего напряжения для управления двигателями с напряжением до 6,9 кВ
  • ACM1 Электроприводы АББ для высокоточного машиностроения
  • Тиристорный преобразователь DCS 400
  • Цифровой тиристорный электропривод DCS 500
  • DCS800 Привод постоянного тока
  • System pro M compact Моторные приводы и устройства автоматического повторного включения для выключателей

Сервис приема отзывов, предложений и рекламаций

Ссылка на основную публикацию
Adblock
detector