Что такое элементарный двигатель

Синхронный гистерезисный двигатель

  • Преимущества и недостатки

Конструкция гистерезисного электродвигателя

Синхронный гистерезисный электродвигатель, как и любой вращающийся электродвигатель, состоит из ротора и статора. Статор — неподвижная часть, ротор — вращающаяся часть.

Статор гистерезисного двигателя имеет обычную трех- или двухфазную обмотку, которая создает вращающееся магнитное поле, а ротор представляет собой массивный цилиндр без обмотки, изготовленный из магнитотвердого материала с широкой петлей гистерезиса (например, сплав викаллой). При этом в целях экономии дорогостоящего магнитотвердого материала ротор делают сборным.

Принцип работы синхронного гистерезисного двигателя

Принцип работы синхронного гистерезисного двигателя основан на действии гистерезисного момента. Для наглядности на рисунке ниже показаны только два элементарных магнитика ns 1 и 2. Сила взаимодействия между этими магнитиками и полем статора NS направлена по оси последнего (рисунок слева). Если поворачивать поле NS, например, против часовой стрелке, то в том же направлении поворачиваются и элементарные магнитики. Однако вследствие магнитного гистерезиса магнитики ns не сразу повернутся на тот же угол, что и поле NS. Между осями NS и ns появится некоторый угол рассогласования γ . Помимо радиальных сил появляются тангенциальные (рисунок справа), которые и создадут гистерезисный момент Мг. Угол γ определяется формой петли гистерезиса материала, из которого изготовлен ротор.

Гистерезисный момент Мг не зависит от частоты вращения ротора. Радикальный способ увеличения вращающего момента гистерезисного двигателя — применение магнитотвердых материалов с прямоугольной петлей гистерезиса. Частота вращения такого двигателя синхронна с частотой вращения поля, КПД высокий — до 80% [2].

Явление магнитного запаздывания заключается в том, что частицы ферромагнитного материала ротора, представляющие собой элементарные магниты, стремятся ориентироваться в соответствии с направлением внешнего магнитного поля. Если внешнее магнитное поле изменит свое направление, то элементарные частицы также меняют ориентацию. Однако повороту элементарных частиц в магнитотвердом материале препятствуют силы молекулярного трения. Этим и объясняется появление угла сдвига γ , значение которого зависит от магнитных свойств материала ротора [3].

Имея массивную конструкцию ротора, гистерезисные двигатели при пуске развивают также асинхронный вращающий момент. Однако этот момент значительно меньше гистерезисного момента, вследствие чего пуск, а также втягивание в синхронизм и работа происходят за счет гистерезисного момента вращения.

Разница между двигателями с постоянными магнитами и гистерезисными состоит в том, что у первых ротор подвергается специальному предварительному намагничиванию, а у вторых намагничивается полем статора двигателя. Гистерезисные двигатели имеют лучшие показатели, чем реактивные, и строятся мощностью до 300. 400 Вт.

Преимущества и недостатки

Достоинствами гистерезисных двигателей являются простота устройства, надежность в эксплуатации, отсутствие пусковых приспособлений, плавность втягивания в синхронизм, практически неизменный ток при пуске и работе. К недостаткам можно отнести относительно высокую стоимость материала ротора, хотя, как правило, ротор изготовляют из обычной стали и на него насаживают лишь полый цилиндр небольшой толщины из магнитотвердого материала.

Принцип действия и устройство электродвигателя постоянного тока

Содержание

  1. Краткая история создания
  2. Принцип действия электродвигателя постоянного тока
  3. Устройство электродвигателя постоянного тока
  4. Особенности и характеристики электродвигателя постоянного тока

Сейчас невозможно представить нашу жизнь без электродвигателей. Они приводят в действие станки, бытовую технику и инструменты, поезда, трамваи и троллейбусы, компьютеры, игрушки и разные подвижные механизмы, устанавливаются на производственных станках, если частоту вращения рабочего вала требуется регулировать в широком диапазоне. Агрегаты для преобразования электрической энергии в механическую представлены множеством видов и моделей (синхронные, асинхронные, коллекторные и т.д.). Из этой статьи вы узнаете, что такое электродвигатель постоянного тока, его устройство и принцип действия.

Краткая история создания

Разные ученые пытались создать экономичный и мощный двигатель еще с первой половины 19 века. Основой послужило открытие М.Фарадея, сделанное в 1821 г. Он обнаружил, что помещенный в магнитное поле проводник вращается. Отталкиваясь от этого, в 1833 г изобретатель Томас Дэвенпорт смог сконструировать двигатель постоянного тока, а позже, в 1834 г, ученый Б.С.Якоби придумал прообраз современной модели двигателя с вращающимся валом. Устройство, более похожее на современные агрегаты, появилось в 1886 г, и до сегодняшнего дня электродвигатель продолжает совершенствоваться.

Принцип действия электродвигателя постоянного тока

На мысль о создании двигателя ученых натолкнуто следующее открытие. Помещенная в магнитное поле проволочная рамка с пропущенным по ней током начинает вращаться, создавая механическую энергию. Принцип действия электродвигателя постоянного тока основывается на взаимодействии магнитных полей рамки и самого магнита. Но одна рамка после определенного количества вращений замирает в положении, параллельном внешнему магнитному полю. Для продолжения движения необходимо добавить вторую рамку и в определенный момент переключить направление тока.

Вместо рамок в двигателе используется набор проводников, на которые подается ток, и якорь. При запуске вокруг него возбуждается магнитное поле, взаимодействующее с полем обмотки. Это заставляет якорь повернуться на определенный угол. Подача тока на следующие проводники приводит к следующему повороту якоря, и далее процесс продолжается.

Читать еще:  Whp двигателя что это

Магнитное поле создается либо с помощью постоянного магнита (в маломощных агрегатах), либо с помощью индуктора/обмотки возбуждения (в более мощных устройствах).

Попеременную зарядку проводников якоря обеспечивают щетки, сделанные из графита или сплава графита и меди. Они служат контактами, замыкающими электрическую сеть на выводы пар проводников. Изолированные друг от друга выводы представляют собой кольцо из нескольких ламелей, которое находится на оси вала якоря и называется коллекторным узлом. Благодаря поочередному замыканию ламелей щетками двигатель вращается равномерно. Степень равномерности работы двигателя зависит от количества проводников (чем больше, тем равномернее).

Устройство электродвигателя постоянного тока

Теперь, когда вы знаете, как работает электродвигатель постоянного тока, пора ознакомиться с его конструкцией.

Как и у других моделей, основу двигателя составляют статор (индуктор) – неподвижная часть, и якорь вкупе с щеточноколлекторным узлом – подвижная часть. Обе части разделены воздушным зазором.

В состав статора входят станина, являющаяся элементом магнитной цепи, а также главные и добавочные полюса. Обмотки возбуждения, необходимые для создания магнитного поля, находятся на главных полюсах. Специальная обмотка, улучшающая условия коммутации, расположена на добавочных полюсах.

Якорь представляет собой узел, состоящий из магнитной системы (она собрана из нескольких листов), набора обмоток (проводников), уложенных в пазы, и коллектора, который подводит постоянный ток к рабочей обмотке.

Коллектор имеет вид цилиндра, собранного из изолированных медных пластин. Он насажен на вал двигателя и имеет выступы, к которым подходят концы секций обмотки якоря. Щетки снимают ток с коллектора, входя с ним в скользящий контакт. Удержание щеток в нужном положении и обеспечение их нажатия на коллектор с определенной силой осуществляется щеткодержателями.

Многие модели двигателей оснащены вентилятором, задача которого – охлаждение агрегата и увеличение продолжительности рабочего периода.

Особенности и характеристики электродвигателя постоянного тока

Эксплуатационные характеристики электродвигателя постоянного тока позволяют широко использовать это устройство в самых разных сферах – от бытовых приборов до транспорта. К его преимуществам можно отнести:

  • Экологичность. При работе не выделяются вредные вещества и отходы.
  • Надежность. Благодаря довольно простой конструкции он редко ломается и служит долго.
  • Универсальность. Он может использоваться в качестве как двигателя, так и генератора.
  • Простота управления.
  • Возможность регулирования частоты и скорости вращения вала – достаточно подключить агрегат в цепь переменного сопротивления.
  • Легкость запуска.
  • Небольшие размеры.
  • Возможность менять направление вращения вала. В двигателе с последовательным возбуждением нужно изменить направление тока в обмотке возбуждения, во всех остальных типах – в якоре.

Как и любое устройство, электродвигатели постоянного тока имеют и «слабые стороны»:

  • Их себестоимость, следовательно, и цена достаточно высока.
  • Для подключения к сети необходим выпрямитель тока.
  • Самая уязвимая и быстроизнашивающаяся деталь – щетки – требует периодической замены.
  • При сильной перегрузке может случиться возгорание. Если соблюдать правила эксплуатации, такая возможность исключена.

Но, как видите, достоинства явно перевешивают, поэтому на данный момент электродвигатель является одним из наиболее экономичных и эффективных устройств. Зная устройство и принцип работы электродвигателя постоянного тока, вы сможете самостоятельно собрать и разобрать его для техосмотра, чистки или устранения неисправностей.

Новый подход к выполнению проверок электродвигателей с Fluke 438-II соответствует реальным условиям работы

Fluke предлагает модернизированный и экономичный способ выполнения проверок с использованием анализатора качества электроэнергии и параметров электродвигателя Fluke 438-II, обеспечивающий проверки КПД электродвигателя без дорогостоящих простоев и необходимости установки внешних механических датчиков

Электродвигатели являются важнейшим элементом многих промышленных процессов, они потребляют до 70 % от общего количества энергии на промышленном предприятии и до 46 % от общего количества производимого электричества в мире. Учитывая то, насколько большую роль электродвигатели играют в промышленных процессах, стоимость простоев, связанных с их неисправностью, может измеряться десятками тысяч долларов в час. Обеспечение эффективной и надежной работы электродвигателей — это одна из наиболее важных задач, которую ежедневно решают технические специалисты и инженеры по обслуживанию.

Эффективное использование электричества — это не просто «полезно». Во многих ситуациях от энергоэффективности зависит, прибыльной или убыточной является компания. Поскольку электродвигатели потребляют на промышленных объектах такое значительное количество энергии, эффективность их использования стала основным фактором, от которого зависит экономия и поддержание рентабельности. Кроме того, желание обеспечить экономию посредством увеличения эффективности и снизить зависимость от природных ресурсов стимулирует многие компании применять такие промышленные стандарты, как ISO 50001. Стандарт ISO 50001 устанавливает основные положения и требования для организации, внедрения и поддержания системы управления энергопотреблением, призванной обеспечить постоянную экономию.

Традиционные методы проверки электродвигателей

Традиционный метод измерения производительности и КПД электродвигателей хорошо проработан, но его внедрение может быть связано с большими расходами, а реализация в рамках технологических процессов трудноосуществима. Для проверки производительности электродвигателя часто требуется полное отключение системы, что может привести к дорогостоящему простою. Чтобы измерить КПД электродвигателя, необходимо определить входную электрическую и выходную механическую мощности в широком динамическом диапазоне рабочих параметров. При измерении производительности электродвигателя традиционным методом техническим специалистам вначале необходимо установить электродвигатель на испытательный стенд. Испытательный стенд представляет собой проверяемый электродвигатель, закрепленный на генераторе или на динамометре. Затем вал тестируемого электродвигателя соединяется с нагрузкой. На валу закреплен датчик скорости (тахометр), а также комплект датчиков крутящего момента, на основании показаний которых выполняется расчет механической мощности. Система предоставляет различные параметры, в том числе скорость, крутящий момент и механическую мощность. Некоторые системы также позволяют измерить электрическую мощность и затем рассчитать КПД.

Читать еще:  Что такое сигнализатор неисправности систем двигателя на хонда срв

η (КПД) = Механическая мощность / Электрическая мощность

Во время проверки изменяются параметры нагрузки, что позволяет определять КПД для различных режимов работы.

Система испытательного стенда может показаться достаточно простой, однако с ее использованием связано несколько характерных недостатков:

  1. Электродвигатель необходимо демонтировать с места установки.
  2. Значения нагрузки электродвигателя не являются по-настоящему репрезентативными, поскольку не характеризуют параметры электродвигателя при эксплуатации.
  3. Во время проведения проверки необходимо приостановить работу, что создает простой, либо взамен тестируемого необходимо временно установить другой электродвигатель.
  4. Датчики крутящего момента отличаются высокой стоимостью и ограниченным рабочим диапазоном, поэтому для проверки различных электродвигателей может потребоваться несколько датчиков.
  5. Испытательный стенд для тестирования широкого диапазона электродвигателей имеет высокую стоимость. Такие испытательные стенды обычно используются специалистами по ремонту электродвигателей или исследовательскими организациями.
  6. Не учитываются «реальные» рабочие условия.

Параметры электродвигателей

Электродвигатели могут предназначаться для различных областей применения и нагрузок, поэтому характеристики каждого электродвигателя отличаются. Классификация характеристик осуществляется в соответствии со стандартами NEMA (Национальной ассоциации производителей электрооборудования) или IEC (Международной электротехнической комиссии). От этих характеристик напрямую зависят работа и КПД электродвигателя. На каждом электродвигателе закреплена паспортная табличка, на которой указаны основные рабочие параметры и информация о КПД электродвигателя в соответствии с рекомендациями NEMA или IEC. Указанные на паспортной табличке данные можно сравнивать с реальными характеристиками режима эксплуатации. Например, сравнивая эти значения, можно узнать, что электродвигатель превышает ожидаемые характеристики по скорости или крутящему моменту, что может привести к сокращению срока службы электродвигателя или к преждевременному выходу из строя. Снижение эксплуатационных характеристик электродвигателя могут также вызвать асимметрия напряжения или тока, а также гармоники, связанные с плохим качеством электроэнергии. При существовании какого-либо из этих условий необходимо «понизить номинальные параметры» электродвигателя, то есть облегчить режим его работы, что может привести к нарушению технологических процессов при недостаточной механической мощности. Понижение номинальных параметров рассчитывается по стандарту NEMA в соответствии с данными, указанными для данного типа электродвигателя. Стандарты NEMA и IEC несколько отличаются друг от друга, но в целом они придерживаются одинаковых положений.

Фактические условия эксплуатации

Тестируемые на стенде электродвигатели обычно работают в наиболее комфортных условиях. Во время реальной работы эти комфортные условия, как правило, обеспечить не удается. Непостоянство рабочих условий приводит к снижению производительности электродвигателя. Например, на промышленном предприятии могут быть нагрузки, оказывающие непосредственное влияние на качество электроэнергии и вызывающие асимметрию в системе или способные привести к появлению гармоник. Каждое из этих условий может серьезно повлиять на производительность электродвигателя. Кроме того, нагрузка, приводимая в движение электродвигателем, может быть неоптимальной или может не соответствовать изначальному предназначению электродвигателя. Нагрузка может быть слишком большой для данного электродвигателя, или возможна перегрузка вследствие плохого управления технологическими процессами или чрезмерного трения, вызванного наличием какого-либо постороннего предмета, блокирующего работу насоса или рабочего колеса вентилятора. Обнаружение этих аномалий может быть затруднено и потребовать много времени, вследствие чего эффективный поиск неисправностей становится проблематичным.

Новый подход

Анализатор качества электроэнергии и параметров электродвигателя Fluke 438-II обеспечивает модернизированный и экономичный способ проверки КПД электродвигателя, при этом нет необходимости в установке внешних механических датчиков и отсутствуют дорогостоящие простои. Прибор Fluke 438-II, созданный на основе анализаторов качества электроэнергии Fluke серии 430-II, оснащен полным набором функций для измерения параметров качества электроэнергии, а также механических параметров при прямом пуске электродвигателей от сети. 438-II на основе данных паспортной таблички электродвигателя (NEMA или IEC) и измеренных параметров трехфазного электропитания рассчитывает в реальном времени параметры электродвигателя, включая скорость, крутящий момент, механическую мощность и КПД, при этом использование дополнительных датчиков крутящего момента и скорости не требуется. Кроме того, 438-II непосредственно вычисляет коэффициент снижения мощности электродвигателя в режиме работы. Для выполнения этих измерений технический специалист или инженер должен ввести в прибор Fluke 438-II следующие данные: номинальную мощность в кВт или л.с., номинальное напряжение и силу тока, номинальную частоту, номинальный cos φ или коэффициент мощности, номинальный сервис-фактор, а также тип электродвигателя в соответствии с классификацией NEMA или IEC.

Принцип работы

Fluke 438-II выполняет механические измерения параметров (частоты вращения электродвигателя, нагрузки, крутящего момента и КПД) с помощью уникальных алгоритмов анализа формы электрических сигналов. Эти алгоритмы основаны на сочетании физических и управляемых данными моделей асинхронного электродвигателя. При этом не требуется выполнение предварительных проверок, которые обычно необходимы для измерения параметров электродвигателя, например, сопротивления статора. Скорость электродвигателя можно рассчитать на основе зубцовых гармоник ротора, присутствующих в сигналах тока. Крутящий момент на валу электродвигателя можно описать с помощью значений напряжения, силы тока и скольжения асинхронного электродвигателя, используя хорошо известные, но сложные физические формулы. Электрическая мощность измеряется с помощью осциллограмм входного тока и напряжения. При получении расчетных значений крутящего момента и скорости механическая мощность (или нагрузка) вычисляется из произведения крутящего момента на скорость. КПД электродвигателя вычисляется путем деления рассчитанной механической мощности на измеренную электрическую мощность. Компания Fluke провела обширные испытания на тестируемых электродвигателях, приводящих в движение динамометры. Для определения погрешности измеренные значения фактической электрической мощности, крутящего момента на валу электродвигателя, а также скорости сравнивались с показаниями прибора 438-II.

Читать еще:  Ваз 21093i какой двигатель

Заключение

Традиционные методы измерения параметров и КПД электродвигателей тщательно проработаны, но не всегда широко используются. В значительной степени это объясняется тем, что для выполнения проверок требуется отключение электродвигателей, а иногда и целых систем, приводящее к большой стоимости простоя производства. Прибор Fluke 438-II предоставляет чрезвычайно полезную информацию, которая ранее была труднодоступной и дорогостоящей. Кроме того, наличие на приборе Fluke 438-II передовых функций по анализу качества электроэнергии позволяет измерять качество электроэнергии в реальном режиме работы системы. Измерение важных параметров для определения КПД электродвигателя стало проще, поскольку не требуется использование отдельных внешних датчиков крутящего момента и скорости, благодаря чему можно анализировать производительность самых распространенных промышленных процессов с электроприводом, не прерывая их выполнения. Это позволяет техническим специалистам сократить время простоя, а также отслеживать изменения параметров электродвигателя во времени и получить более полную картину общего состояния системы и ее характеристик. Отслеживание графиков параметров позволяет увидеть изменения, которые могут быть признаком надвигающегося отказа электродвигателя, и заменить его до выхода из строя.

Двигатель с перманентными магнитами РМ

Синхронный двигатель с постоянными магнитами (PM) – инновационный двигатель с точки зрения технологии электродвигателей, в котором сочетается высочайшая точность управления обычной скорости синхронного двигателя с простой конструкцией и надежностью асинхронного двигателя в беличьей клетке.
Механически двигатель PM похож на традиционный асинхронный двигатель с индукцией, тем не менее, с точки зрения производительности может демонстрировать более высокие результаты. Двигатели РМ серии “6S4 – 7S4”состоят из двух роторов с постоянными магнитами, генерирующими постоянное магнитное поле ротор проворачивается на той же скорости магнитного поле, генерируемого обмоткой статоре независимо от крутящего момент, требуемого валом, однако в целом асинхронный двигатель демонстрирует скольжение пропорциональное развиваемому крутящему моменту. Следовательно, отсутствуюют утечки, связанные с
намагничиванием ротора
, что передается в меньшем использовании электроэнергии для производства механической энергии и меньшего нагрева самого двигателя.
Следовательно, синхронизм улучшает динамические характеристики, обеспечивая постоянный момент при обширном диапазоне, высокую производительность в том числе и при низкой частоте (уровень эффективности намного выше, чем у асинхронных двигателей) и без необходимости использования принудительной вентиляции; постоянный момент при различных скоростях вращение ведет к упрощению кинематической цепи, со всеми преимуществами, вытекающими их их эксплуатации.
Постоянные магнитные двигателииспользуются в различных секторах. Особенно это выгодно там, где вес, размеры каркаса и расходы на техобслуживание. В последовательности они хорошо подходят для установки в насосных системах, вентиляции ОВКВ и трансмиссии компрессоры и лифты, а также во многих типах промышленного оборудования, например, для текстильной промышленности, металлургической и бумажно-целлюлозной.
Наиболее существенные конструктивные преимещства, следующие:
• Высокая эффективность
Высокая производительность при всем диапазоне скоростей, особенно на низких оборотах, когда эффективность выше, чем у асинхронных двигателей.
• Снижение потерь ротора
Постоянный крутящий моментпри всем диапазоне скоростей
• Высокая удельная мощность
• Точное управление скоростью даже без энкодера
Снижение перегрева, что ведет к увеличению срока службы изоляции, подшипников и других компонентов двигателя
Уменьшенные габаритные размеры и вес двигателя
• Быстрая окупаемость
Двигатели с постоянным магнитом РМ могут работать только при помощи инвертора.
Компания Elvem может поставлять собственным клиентам комплексные системы: двигатели РМ со встроенным или отдельным инвертором.

ELVEM S.R.L

Via delle Industrie, 42

36050 Cartigliano – Vicenza – Italy

Тел: +39 0424 513972/ +39 0424 35410

Факс: +39 0424 35405

ПОДПИСАТЬСЯ НА НОВОСТНУЮ РАССЫЛКУ
Сертификаты

Privacy Overview

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.

Ссылка на основную публикацию
Adblock
detector