Что такое холловские и ионные плазменные двигатели для космических аппаратов

Ионный двигатель

Ионный двигатель

Ионный двигатель NSTAR американской АМС Deep Space 1
Тип электрический ракетный двигатель
Топливо ионизированный инертный газ
Использование
Время эксплуатации более 3 лет [1]
Применение управление ориентацией и положением на орбите искусственных спутников Земли; главный тяговый двигатель небольших автоматических космических станций [1]
Массогабаритные
характеристики
Рабочие характеристики
Тяга 20—250 мН [1]
Потребляемая мощность 1—7 кВт
КПД 0,6-0,8 (60-80%)
Скорость истечения 20—50 км/с
Медиафайлы на Викискладе

Ионный двигатель — тип электрического ракетного двигателя, принцип работы которого основан на создании реактивной тяги на базе ионизированного газа, разогнанного до высоких скоростей в электрическом поле [1] . Достоинством этого типа двигателей является малый расход топлива и продолжительное время функционирования (максимальный срок непрерывной работы самых современных образцов ионных двигателей составляет более трёх лет) [1] . Недостатком ионного двигателя является ничтожная по сравнению с химическими двигателями тяга [1] . По сравнению с двигателями с ускорением в магнитном слое ионный двигатель обладает большим энергопотреблением при равном уровне тяги. Ионные двигатели используют повышенные напряжения, обладают более сложной схемой и конструкцией, что усложняет решение задачи обеспечения высокой надёжности и электрической прочности двигателя. [2]

Сфера применения: управление ориентацией и положением на орбите искусственных спутников Земли (некоторые спутники оснащены десятками маломощных ионных двигателей) и использование в качестве главного тягового двигателя небольших автоматических космических станций [1] .

Ионному двигателю в настоящее время принадлежит рекорд негравитационного ускорения космического аппарата в космосе — Deep Space 1 смог увеличить скорость аппарата массой около 370 кг на 4,3 км/с, израсходовав 74 кг ксенона [1] . Этот рекорд был побит космическим аппаратом Dawn: впервые — 5 июня 2010 года [3] , а к сентябрю 2016 года набрана скорость уже в 39 900 км/ч [4] (11,1 км/с).

Ионный двигатель характеризуется малой тягой и высоким удельным импульсом. Ресурс работы оценивается в диапазоне 10 тысяч — 100 тысяч часов. В настоящее время разрабатывается новое поколение ионных двигателей, рассчитанных на расход 450 килограммов ксенона, чего хватит на 22 тысячи часов работы при максимальном форсаже. Причинами отказа могут стать износ ионной оптики, катодной диафрагмы и держателя для плазмы, истощение рабочего материала в каждой катодной вставке и откол материала в разрядной камере. Согласно проведённым тестам при удельном импульсе больше 2000 s первым произойдёт структурный отказ ионной оптики при использовании 750 килограммов топлива, что в 1,7 раза превышает квалификационные требования. При удельном импульсе меньше 2000 s прототип может удвоить расход потребляемого топлива [5] .

Содержание

  • 1 Принцип действия
  • 2 История
  • 3 Культура
  • 4 Миссии
    • 4.1 Действующие миссии
    • 4.2 Завершённые миссии
    • 4.3 Планируемые миссии
    • 4.4 Нереализованные миссии
    • 4.5 Проект Джефри Лэндиса
  • 5 См. также
  • 6 Примечания
  • 7 Литература
  • 8 Ссылки

Принцип действия [ править | править код ]

Принцип работы двигателя заключается в ионизации газа и его разгоне электростатическим полем. При этом, благодаря высокому отношению заряда к массе, становится возможным разогнать ионы до очень высоких скоростей (вплоть до 210 км/с [6] , по сравнению с 3—4,5 км/с у химических ракетных двигателей). Таким образом, в ионном двигателе можно достичь очень большого удельного импульса. Это позволяет значительно уменьшить расход реактивной массы ионизированного газа по сравнению с расходом реактивной массы в химических ракетах, но требует больших затрат энергии. Технические характеристики ионного двигателя: потребляемая мощность 1—7 кВт, скорость истечения ионов 20—50 км/с, тяга 20—250 мН, КПД 60—80 %, время непрерывной работы более трёх лет. В существующих реализациях ионного двигателя в качестве источника энергии, необходимой для ионизации топлива, используются солнечные батареи. [1]

Рабочим телом, как правило, является ионизированный инертный газ (аргон, ксенон и т. п.), но иногда и ртуть. В ионизатор подаётся топливо, которое само по себе нейтрально, но при бомбардировании высокоэнергетическими электронами ионизируется. Таким образом, в камере образуется смесь из положительных ионов и отрицательных электронов. Для «отфильтровывания» электронов в камеру выводится трубка с катодными сетками, которая притягивает к себе электроны. Положительные ионы притягиваются к системе извлечения, состоящей из двух или трёх сеток. Между сетками поддерживается большая разница электростатических потенциалов (+1090 Вольт на внутренней против -225 Вольт на внешней). В результате попадания ионов между сетками, они разгоняются и выбрасываются в пространство, ускоряя корабль, согласно третьему закону Ньютона. Электроны, пойманные в катодную трубку, выбрасываются из двигателя под небольшим углом к соплу и потоку ионов. Это делается, во-первых, для того, чтобы корпус корабля оставался нейтрально заряженным, а во-вторых, чтобы ионы, «нейтрализованные» таким образом, не притягивались обратно к кораблю [1] .

Недостаток двигателя в его нынешних реализациях — очень слабая тяга (порядка 50—100 миллиньютонов). Таким образом, нет возможности использовать ионный двигатель для старта с планеты, но, с другой стороны, в условиях невесомости, при достаточно долгой работе двигателя, есть возможность разогнать космический аппарат до скоростей, недоступных сейчас никаким другим из существующих видов двигателей.

История [ править | править код ]

Ионный двигатель является первым хорошо отработанным на практике типом электрического ракетного двигателя. Концепция ионного двигателя была выдвинута в 1917 году Робертом Годдардом [7] , а в 1954 году Эрнст Штулингер ru en детально описал эту технологию, сопроводив её необходимыми вычислениями [8] .

В 1955 году Алексей Иванович Морозов написал, а в 1957 году опубликовал в ЖЭТФ статью «Об ускорении плазмы магнитным полем» [9] [10] . Это дало толчок к исследованиям, и уже в 1964 году на советском аппарате «Зонд-2» первым таким устройством, выведенным в космос, стал плазменно-эрозионный двигатель конструкции А. М. Андрианова. Он работал в качестве двигателя ориентации с питанием от солнечных батарей [11] .

Первый американский функционирующий ионный электростатический двигатель (создан в США в НАСА John H. Glenn Research Center at Lewis Field) был построен под руководством Гарольда Кауфмана ru en в 1959 году. В 1964 году прошла первая успешная демонстрация ионного двигателя в суборбитальном полёте (SERT-1) [1] . Двигатель успешно работал в течение запланированной 31 минуты. В 1970 году прошло испытание, призванное продемонстрировать эффективность долговременной работы ртутных ионных электростатических двигателей в космосе (SERT II) [12] . Малая тяга и низкий КПД надолго отвадили американских конструкторов от применения электрических и ионных двигателей.

Тем временем в Советском Союзе продолжалась разработка и улучшались характеристики. Были разработаны и применялись различные типы ионных двигателей на различных типах космических аппаратов. Двигатели СПД-25 тягой 25 миллиньютон, СПД-100 [13] , и другие серийно устанавливались на советские спутники с 1982 года [14] .

В качестве основного (маршевого) двигателя ионный двигатель был впервые применён на космическом аппарате Deep Space 1 (первый запуск двигателя — 10 ноября 1998 г.). Следующими аппаратами стали европейский лунный зонд Смарт-1, запущенный 28 сентября 2003 года [15] , и японский аппарат Хаябуса, запущенный к астероиду Итокава в мае 2003 года [1] .

Следующим аппаратом НАСА, обладающим маршевыми ионными двигателями, стала (после ряда замораживаний и возобновления работ) АМС Dawn, которая стартовала 27 сентября 2007 года. Dawn предназначен для изучения Весты и Цереры и несёт три двигателя NSTAR, успешно испытанных на Deep Space 1 [1] .

Европейское Космическое Агентство установило ионный двигатель на борту спутника GOCE, запущенного 17 марта 2009 года на сверхнизкую околоземную орбиту высотой около 260 км. Ионный двигатель создаёт в постоянном режиме импульс, компенсирующий атмосферное трение и другие негравитационные воздействия на спутник [1] .

Культура [ править | править код ]

Впервые ионный двигатель появился в фантастике в 1910 году — в романе Дональда В. Хорнера «Аэроплан к солнцу: приключения авиатора и его друзей» [16] [17] . Ионный двигатель широко представлен в фантастической литературе, компьютерных играх и кинематографе (так, в «Звёздных войнах» экономичный ионный двигатель развивает скорость до трети световой и используется для перемещения в обычном пространстве на небольшие по космическим меркам расстояния — например, в пределах планетарной системы [18] ), но для практической космонавтики стал доступен только во второй половине XX века. Реальный ионный двигатель по своим техническим характеристикам (и в первую очередь по силе тяги) значительно уступает своим литературным прообразам (так, Эдгард Чуэйри образно сравнивает ионный двигатель с автомобилем, которому нужно двое суток для разгона с 0 до 100 км/ч) [1] .

Миссии [ править | править код ]

Действующие миссии [ править | править код ]

  • Starlink — проект компании Илона МаскаSpaceX по выведению спутников на околоземную орбиту для создания глобальной сети интернет. Технология используется для маневрирования спутников и избежания их столкновения с космическим мусором [источник не указан 832 дня] .
  • Artemis[15]
  • Хаябуса-2
  • BepiColombo. Запущен 20 октября 2018 года. ЕКА использует ионный двигатель в этой меркурианской миссии, наряду с гравитационными манёврами и химическим двигателем для перехода на орбиту вокруг Меркурия в качестве искусственного спутника [15] . На аппарате работают самые мощные на сегодняшний день 4 ионных двигателя суммарной тягой 290 мН[19] .
  • Тяньхэ — базовый модуль Китайской космической станции, запущенный 29 апреля 2021, имеет 4 ионных двигателя для коррекции орбиты [20] .
Читать еще:  Бмв троит двигатель n52

Завершённые миссии [ править | править код ]

  • SERT (англ. Space Electric Rocket Test, рус. Тест Космического Электрического Двигателя — программа NASA, в которой на спутниках впервые был использован ионный двигатель)
  • Deep Space 1
  • Hayabusa (вернулся на Землю 13 июня 2010 года)
  • Smart 1 (завершил миссию 3 сентября 2006 года, после чего был сведён с орбиты)
  • GOCE (после исчерпания запасов рабочего тела сошёл с орбиты)
  • LISA Pathfinder (ЕКА) использовал ионные двигатели в качестве вспомогательных для точного контроля высоты; деактивирован 30 июня 2017.
  • Dawn. 1 ноября 2018 года аппарат исчерпал все запасы топлива для маневрирования и ориентации, его миссия, длившаяся 11 лет, была официально завершена.

Планируемые миссии [ править | править код ]

  • Международная космическая станция. По состоянию на март 2011 года планировалась доставка на МКС электромагнитного двигателя (VASIMR) Ad Astra VF-200 с мощностью в 200 кВт VASIMR. VF-200 представляет собой версию VX-200[21] . Поскольку доступная электрическая мощность на МКС меньше 200 кВт, проект ISS VASIMR включал в себя систему батарей, которая накапливала энергию для 15 минут работы двигателя.
  • Solar Orbiter.

Нереализованные миссии [ править | править код ]

NASA ввело проект «Прометей», для которого разрабатывался мощный ионный двигатель, питающийся электричеством от бортового ядерного реактора. Предполагалось, что такие двигатели в количестве восьми штук могли бы разогнать аппарат до 90 км/с. Первый аппарат этого проекта Jupiter Icy Moons Explorer планировалось отправить к Юпитеру в 2017 году, однако разработка этого аппарата была приостановлена в 2005 году из-за технических сложностей. В 2005 году программа была закрыта [22] . В настоящее время идёт поиск более простого проекта АМС для первого испытания по программе «Прометей» [23] .

Проект Джефри Лэндиса [ править | править код ]

Geoffrey A. Landis ru en предложил проект межзвёздного зонда с ионным двигателем, получающим энергию через лазер от базовой станции, что даёт некоторое преимущество по сравнению с чисто космическим парусом. В настоящее время данный проект неосуществим из-за технических ограничений — например, он потребует силы тяги от ионных двигателей в 1570 Н при нынешних 20—250 мН [24] (по другим данным рекорд тяги у современных ионных двигателей 5,4 Н [25] ).

Изготовление плазменных двигателей в России

Гигантские звездолеты с призрачно светящимися двигателями стали одним из постоянных атрибутов космической фантастики. В то же время плазменные двигатели уже полвека успешно используются в настоящей космонавтике, и российские разработчики являются одними из мировых лидеров. Мне удалось посетить калининградское предприятие «ОКБ Факел» и увидеть, как создаются стационарные плазменные двигатели.

Стационарный плазменный двигатель (СПД) — это одна из разновидностей электроракетного двигателя, где электрическая энергия используется для ионизации газа и придания полученной плазме высокой скорости истечения из «сопла».

У такого двигателя нет топлива в привычном понимании, т.е. горючего и окислителя, необходимого для химической реакции с выделением тепла. СПД подходит практически любой газ, но лучше использовать химически неактивные и с высокой атомной массой, вроде аргона или ксенона. Плазменные двигатели обеспечивают очень высокую скорость выбрасываемой струи газа, например, для ксенона это около 30 км/с. Для сравнения, скорость выброса газа у одного из самых эффективных химических ракетных двигателей — кислород-водородного — около 4,5 км/с. Преимуществом химических двигателей является способность выбрасывать сразу много газа, что дает большую тягу. СПД же требует мощного источника электрической энергии, и даже с ним способен выбрасывать лишь незначительную массу газа за момент времени, то есть имеет очень малую тягу и требует много времени на разгон и торможение. Плазменные двигатели применяются только в космосе: оснащенные ими космические аппараты имеют относительно малый запас рабочего тела и большой размах солнечных батарей.

О возможностях использования электроракетных двигателей задумывались еще в начале XX века, но к первым испытаниям в космосе перешли только в 60-е годы. В 1972 году в системе ориентации советского спутника «Метеор» использовались два электроракетных двигателя: ионный и стационарный плазменный. СПД показал себя лучше, и советские специалисты сконцентрировались на этой разновидности. В создании экспериментальных образцов принимали участие специалисты «ОКБ Факел», и с того времени предприятие стало специализироваться на производстве двигателей такого типа, развивать и совершенствовать технологию.

В начале XXI века калининградский СПД-100 прошел успешные испытания на лунном спутнике Европейского космического агентства Smart-1.

После успешного полета к Луне европейские производители коммерческих геостационарных спутников стали закупать российские двигатели и создавать новые поколения спутников. Ранее на спутниках-ретрансляторах использовались химические двигатели на токсичном гидразине. Применение российских СПД открыло возможность создания т.н. «полностью электрических спутников», на которых уже не было химической тяги.

Калининградские СПД имеют довольно небольшой размер, но цикл их производства всё же требует немалых производственных площадей.

Разработчики «ОКБ Факел» активно сотрудничают с европейскими производителями и даже помогали французам сделать свой двигатель. Однако на предприятии строжайшие нормы безопасности. Фотосъемка на экскурсии была запрещена сотрудниками службы безопасности, а кадры использованные в репортаже, сняли позже сотрудники пресс-службы по моей просьбе.

На «ОКБ Факел» наглядно видна преемственность поколений.
Молодые работают рядом с опытными специалистами.

Кульманы давно заменены на САПР «Компас-3D» для разработки трехмерных моделей и выпуска конструкторской документации.

Цех механической обработки открывается современными станками ЧПУ.

— В некоторых случаях у нас токари пишут программы сами, — говорит генеральный конструктор предприятия Евгений Космодемьянский. И я понимаю, что пришло время выбросить свое удостоверение токаря второго разряда.

Однако в глубине зала работа идет на универсальных станках, где роль ручного труда сохраняет значение, и мои надежды на космическую карьеру возрождаются.

Необходимый этап создания космического двигателя — испытание. Для проверки СПД требуется смоделировать условия космоса, прежде всего вакуум.

Вакуумные камеры кажутся огромными для таких небольших двигателей. Они пригодны для испытания всей линейки двигателей, которые производят на «ОКБ Факел».

В советские времена здесь разрабатывали самый мощный двигатель в своем классе — СПД-290. Сейчас создается сравнимый по мощности СПД-230.

Своими глазами работу плазменного двигателя увидеть, к сожалению, не удалось, но фото нам предоставили.

Недавно «Роскосмос» показал классное видео с бортовых камер спутника Egyptsat-A, созданного в «РКК Энергия».

На этих кадрах, пожалуй, впервые миру показана работа плазменных двигателей СПД-70 в космосе.

Возможно, моя фраза про мировое лидерство «ОКБ Факел» может показаться излишне пафосной, но практика показывает правоту этих слов. Space System/Loral, Airbus — это одни из самых крупных производителей коммерческих спутников связи в мире, и они берут калининградские СПД. А совсем недавно заключен вероятно самый большой контракт в истории мирового спутникостроения — на несколько сотен модернизированных двигателей СПД-50М.

Когда проходила моя экскурсия сотрудники предприятия не признавались кто заказчик ссылаясь на соглашение о неразглашении. Позже информация попала в СМИ и теперь мы знаем, что это OneWeb. Проект низкоорбитального спутникового интернета предполагает запуск почти тысячи космических аппаратов в течение трех-четырех лет. И на каждом спутнике будет российский плазменный двигатель.

Новый заказ требует перестройки всего производства, ведь надо создавать практически по двигателю в день. Специалистов на работу набирают даже из других городов. Такой нагрузки не было никогда, поэтому под проект OneWeb провели модернизацию с новыми станками ЧПУ и оборудовали новое современное чистое помещение для сборки.

За каждым столом собирается по двигателю.

Готовые изделия запираются в специальном шкафу, где поддерживается определенный режим температуры и влажности.

Работа почти ювелирная и неподготовленным взглядом воспринимается непривычно. Обычно под сборкой космических двигателей понимается что-то более масштабное.

Зато в результате получаются вот такие красавцы.

Финальный этап экскурсии — музей предприятия. Здесь первым делом показывают историческую гордость, «лунный камин» — макет радиоизотопного теплогенератора, который был установлен на советских «Луноход-1» и «Луноход-2» и согревал электронику в холодные лунные ночи.

Разумеется, музейный образец не начинен полонием и не радиоактивен.

Еще одно направление производимых «ОКБ Факел» двигателей для космических аппаратов — термокаталитические. Они требуют химического топлива, но его разложение до газообразных компонентов происходит при помощи металлического катализатора, размещенного внутри двигателя. Для повышения интенсивности реакции катализатор нагревается подобно спирали электроплитки.

Термокаталитические двигатели имеют меньшую эффективность чем плазменные или даже химические двухкомпонентные, зато они позволяют создать более простую топливную систему. Обычно такие двигатели используются для ориентирования космических аппаратов и располагаются в блоках по несколько штук.

Особый интерес вызывает один музейный образец — стационарный плазменный двигатель, прошедший длительные испытания в вакуумной камере. Тысячи часов работы приводят к деградации поверхности двигателя под воздействием плазмы.

Такие испытания позволяют повышать ресурс двигателей. Сейчас СПД обеспечивают гарантированную работу в течение нескольких тысяч часов. И, по словам представителей «ОКБ Факел», этот ресурс многократно подтвержден заказчиками, и новые заказы лучше всего говорят о качестве.

Хотелось бы приурочить эту публикацию к Дню космонавтики, чтобы не на словах, а на примере «ОКБ Факел» показать, что у нас есть космос, надо просто уметь его готовить.

Читать еще:  Шум при запуске двигателя на холодную шкода йети

Выражаю признательность пресс-службе и сотрудникам «ОКБ Факел» и компании «Аскон» за большую помощь в подготовке материала.

Плазменный ракетный двигатель. Что заказал «Росатом»?

«Росатом» заказал испытания новейших моделей космических двигателей нового поколения. Их проведение запланирована на текущий год. Речь идет о лабораторных моделях так называемых ионного и холловского двигателей.

Новые двигатели должны обеспечить тягой автоматические, а также пилотируемые межпланетные космические корабли. В техническом задании отмечается, что для реализации данной задачи требуются силовые установки большой мощности. Испытания лабораторных моделей новых, так называемых ионного и холловского двигателей для космоса, как планируется, должны пройти в нынешнем году.

Как отмечается в техзаданиях, многие страны исследуют вопросы создания автоматических и пилотируемых межпланетных кораблей с использованием электрических ракетных двигательных установок (ЭРДУ) большой мощности (свыше 100 кВт). Сейчас появились практические разработки по ядерным реакторам космического базирования мегаваттного класса, которые могут обеспечить энергией такие двигатели.

Плазменный двигатель — разновидность электрического ракетного двигателя (ЭРД), расходуемое вещество которого получает ускорение в состоянии плазмы (ионизированного газа). В отличие от жидкостных двигателей, такие системы не предназначены для вывода грузов на орбиту, поскольку могут работать только в вакууме и сейчас используются, например, для удержания спутников на так называемой точке стояния. Кроме того, за счет уменьшения запасов рабочего тела при сравнительно высокой скорости его истечения, они рассматриваются как возможный способ совершения быстрых космических перелетов.

Ионный и холловский двигатели дают возможность разогнать космический аппарат в невесомости до скоростей, недоступных химическим двигателям. Двигатель на эффекте Холла — разновидность электростатического ракетного двигателя, в котором используется эффект Холла. При равных размерах с другим типом электростатического ракетного двигателя — ионным, холловский двигатель обладает большей тягой.

Ионный двигатель работает, используя в качестве рабочего тела, как правило, ионизированный инертный газ (аргон, ксенон), иногда и ртуть. Газ подается в ионизирующую камеру двигателя, где нейтральные молекулы становятся положительно заряженными ионами, которые ускоряются в электростатическом поле. Если в ионном двигателе ускоряются только положительные ионы, то в холловском двигателе задействовано все рабочее тело (то есть еще и отрицательные электроны). Поэтому холловский двигатель дает более высокую плотность тяги и, соответственно, большее ускорение.

Как отмечается в техзаданиях, у ионных и холловских двигателей сейчас наивысший уровень технической готовности и подтвержденные ресурсные характеристики в десятки тысяч часов (как при наземной отработке, так и при летной эксплуатации), однако у них есть недостатки. Основной из них ограничение по мощности единичного двигателя, снятие которого требует принципиально иных подходов к организации рабочих процессов в двигателях и соответствующих научных исследований. Отмечается, что на данный момент известны результаты испытаний ионного двигателя мощностью 35 кВт со скоростью истечения 70 км/с и КПД 75%.

Согласно техническим заданиям, до конца нынешнего года предстоит разработать, изготовить и провести испытания лабораторных моделей ионного двигателя мощностью до 20 кВт и холловского двигателя мощностью до 15 кВт. Цель работ — проверка основных технических решений с целью обеспечения создания прототипов плазменных ракетных двигателей с повышенными параметрами тяги и удельного импульса.

Государственный научный центр «Троицкий институт инновационных и термоядерных исследований» входит в научный дивизион «Росатома». Выполняет исследования в области управляемого термоядерного синтеза, физики плазмы, лазерной физики и техники. Уникальная экспериментально-стендовая база ТРИНИТИ позволяет получать результаты, имеющие важное научное и прикладное значение.

Ионный, холловский и магнитоплазмодинамический — три типа плазменных двигателей, уже нашедших практическое применение. За последние десятилетия исследователями предложено много перспективных вариантов. Разрабатываются двигатели, работающие в импульсном и в непрерывном режиме. В одних плазма создается с помощью электрического разряда между электродами, в других — индуктивным способом с помощью катушки или антенны. Различаются и механизмы ускорения плазмы: с использованием силы Лоренца, путем введения плазмы в создаваемые магнитным способом токовые слои, или с помощью бегущей электромагнитной волны. В одном из типов даже предполагается выбрасывать плазму через невидимые «ракетные сопла», создаваемые с помощью магнитных полей.

Во всех случаях плазменные ракетные двигатели набирают скорость медленнее обычных. Тем не менее благодаря парадоксу «чем медленнее, тем быстрее» они позволяют достичь далеких целей в более короткий срок, так как в итоге разгоняют космический аппарат до скорости значительно большей, чем двигатели на химическом топливе при той же массе топлива. Это позволяет избежать траты времени на отклонения к телам, обеспечивающим эффект гравитационной рогатки.

Плазменные двигатели нового поколения успешно начали штатную работу в космосе

В октябре успешно начали штатную работу на орбите в составе космического аппарата разработки ОАО «Информационные спутниковые системы» имени академика М.Ф. Решетнёва» блоки коррекции на основе плазменных двигателей холловского типа нового поколения, которые были разработаны, испытаны и изготовлены специалистами ГНЦ ФГУП «Центр Келдыша» .

Созданием плазменных двигателей руководил профессор Олег Анатольевич Горшков во время его работы в ГНЦ ФГУП «Центр Келдыша», являясь руководителем подразделения-разработчика и главным конструктором изделия (в течение 9,5 лет с момента начала проекта и до изготовления летных комплектов двигателей, что совпало с его переходом на постоянную работу в МФТИ).

Поздравляем коллектив разработчиков с успешным завершением многолетней ОКР —началом работы новых плазменных двигателей в космосе. Желаем дальнейших успехов в создании перспективных образцов космической техники.Плазменные двигатели холловского типа относятся к классу электромагнитных двигателей с внешним магнитным полем, в которых замкнутый дрейф электронов играет ключевую роль. В основе действия холловского двигателя лежит создание сильного электрического поля в плазме. Впервые идея о формировании заметного перепада потенциала в плазме была высказана советским физиком А.В. Жариновым в ходе исследований распределения потенциала по радиусу в цилиндрической магнитной ловушке с магнитными «пробками» при магнетронном способе создания плазмы, содержащей быстрые ионы. Позднее на базе этой идеи были разработаны две схемы холловских двигателей — двигатель с анодным слоем (предложен А.В. Жариновым) и стационарный плазменный двигатель (предложен А.И. Морозовым).

Принято считать, что размер зоны ускорения в осевом направлении в стационарном плазменном двигателе больше, чем в двигателе с анодным слоем. Тем не менее, эти двигатели близки по принципу действия и достигаемым параметрам. С более подробным описанием результатов современных исследований проблем создания холловских двигателей можно ознакомиться в монографии «Холловские и ионные плазменные двигатели для космических аппаратов» (О.А. Горшков, В.А, Муравлёв, А.А. Шагайда, под ред. академика РАН А.С. Коротеева. М.: Машиностроение, 2008).

Россия занимала и занимает лидирующие позиции в области разработки холловских двигателей. В нашей стране накоплен уникальный опыт их практического применения (1971 год — первые летные испытания; 1982 год — начало штатного использования в космосе). Основная область использования таких двигателей — поддержание орбиты геостационарных спутников связи в направлениях «север-юг» и «запад-восток».

С 2004 года российские холловские двигатели начали применяться на борту зарубежных космических аппаратов ведущих фирм США и Европы. В настоящее время 3 из 5 мировых лидеров по производству спутников (EADS Astrium (EU), Thales Alenia Space (EU) и Space Systems/Loral (USA)) используют холловские двигатели, сделанные в России.Таким образом, плазменные двигатели холловского типа — пример советской/российской технологии мирового уровня, активно использующейся не только в России, но и за рубежом.

К Марсу на атомном ядре

Владимир Владимирович, как вы прокомментируете испытания?

Владимир Кошлаков: Прошли успешно. Создан хороший задел, чтобы двигаться дальше.

Какие возможности открывает ядерный двигатель? Он нужен для полетов к Марсу?

Владимир Кошлаков: Не только. Сегодня космические аппараты летают либо на двигателях, работающих на химическом топливе, либо на маломощных электроракетных двигателях, питаемых от солнечных батарей. Но с помощью таких систем к тому же Марсу лететь очень долго. Для пилотируемых полетов это плохо: человек не должен находиться в космическом пространстве больше, чем год-два. А ядерные энергодвигательные системы позволят долететь достаточно быстро. И, что самое главное, вернуться назад. Эти системы особенно перспективны для межорбитальных, межпланетных перелетов, освоения дальних планет.

Говорят, на ядерном движке до Марса можно долететь едва ли не пулей — за полтора месяца?

Владимир Кошлаков: Это преувеличение. Несколько дней до Луны — да, а до Марса полет займет 7-8 месяцев.

Ваш прогноз: когда это все-таки может осуществиться?

Владимир Кошлаков: Технически это осуществимо в ближайшее время, однако полет на Марс не самоцель. Создаваемые энергодвигательные системы могут быть основой для целого ряда миссий в космосе, которые сейчас кажутся фантастическими.

А когда начнутся летные испытания? Была информация, что чуть ли не в конце этого года?

Владимир Кошлаков: До этого еще далеко. Мы ведем проект с 2009 года. Он уникальный, уникальные технологии. Требовалось решить огромное количество научно-технических и технологических задач, которые не решил еще никто в мире. Это создание высокотемпературных систем сброса тепла в космическом пространстве, систем преобразования энергии, электроплазменных двигателей больших мощностей, высокотемпературных элементов и материалов.

На сегодняшний момент сделано многое. Самое принципиальное: мы показали когда ставишь такие высокие планки, то результаты обязательно будут. И, поверьте, они превысят современный уровень развития науки и техники.

Читать еще:  Ассинхронные двигатели что это

Испытания проходят на базе Центра?

Владимир Кошлаков: Да. У нас создана стендовая база, аналогов которой нет в России. Она позволяет проводить отработку всех ключевых элементов энергодвигательных систем и космических аппаратов в целом.

Что называется, на пальцах можете объяснить, из чего состоит ядерный двигатель?

Владимир Кошлаков: Прежде всего из источника энергии — это ядерный реактор, который нагревает рабочее тело. Нагретое рабочее тело поступает на турбину, на одном валу с которой находится электрогенератор. Вращая турбину, мы генерируем электрический ток, который необходим для обеспечения работы космического аппарата в целом и электроплазменных двигателей в частности. Тяга электроплазменного двигателя — это движущая сила космического аппарата как транспортной системы.

А что за уникальный теплоноситель используется?

Владимир Кошлаков: Гелий-ксеноновая смесь. Его основное преимущество — химическая нейтральность по отношению к материалам. Ведь аппарат должен длительное время работать при запредельно высоких и низких температурах. Плюс ряд других теплофизических характеристик, которые позволяют создавать оптимально эффективный контур, снизить массу и габариты реактора, теплообменных агрегатов.

Какими еще перспективными ракетными двигателями занимаются конструкторы?

Владимир Кошлаков: У нас ведутся научно-исследовательские, поисковые работы по созданию перспективных ракетных двигателей всех типов. Не только жидкостных, но и электроплазменных, гиперзвуковых и других. Например, много говорят о кислородно-метановом двигателе или просто метановом. Эти работы также зарождались в нашем институте. Проведен большой комплекс экспериментальных исследований различных физических процессов. И на сегодняшний момент Россия близка к созданию метанового двигателя.

А зачем он нужен?

Владимир Кошлаков: Метановый двигатель перспективен с нескольких точек зрения. Прежде всего в отличие от керосина он содержит в себе меньше связанных углеродсодержащих веществ. То есть практически не выделяет сажи. Если мы говорим про многоразовые системы, то это очень важно: двигатель не нужно перед каждым циклом включения очищать, промывать.

Еще одно преимущество — температура криогенного метана и криогенного кислорода примерно одинакова. Поэтому можем упрощать конструкцию ракет, создавая совмещенные баки, когда между двумя компонентами всего одна стенка. В кислород-керосинной ракете две стенки, поскольку температура керосина примерно плюс 20 градусов Цельсия, а жидкого кислорода — минус 170. Поэтому ее конструкция и тяжелее, и сложнее. Кроме того, метан — достаточно дешевое топливо. Тоже большой плюс.

На каких ракетах будет устанавливаться этот ракетный двигатель?

Владимир Кошлаков: На новых, перспективных ракетах, проработки которых еще только ведутся.

А на ракете «Союз-5», которая должна быть создана к 2022 году? На «сверхтяже», первый запуск которой планируется в 2028 году?

Владимир Кошлаков: Нет. На ракете «Союз-5» и «сверхтяже», в котором будут использованы элементы и технологии «Союза-5», планируется устанавливать двигатели, которые уже есть либо имеют значительный задел по основным элементам.

Когда реально может появиться метановый двигатель?

Владимир Кошлаков: Опытно-конструкторские работы должны завершиться в течение пяти лет. Они сейчас ведутся в воронежском КБ химавтоматики.

А что за первый в мире электроракетный двигатель с замкнутым дрейфом электронов, известный также как холловский двигатель, на 800 вольт разработан в «Центре Келдыша»?

Владимир Кошлаков: Электроплазменными двигателями мы занимаемся давно. Не только разрабатываем, но и производим. Они летают и на отечественных, и на зарубежных космических аппаратах. Так вот исследования показали: повышение напряжения в электроракетном двигателе с традиционных 300 вольт до 500 и 800 позволяет существенно улучшить его энергетические характеристики. И мы сейчас проводим работы по созданию двигателей, работающих при больших напряжениях. Фактически электроракетные двигатели холловского типа с таким напряжением приближаются к ионным.

Насколько я знаю, интерес к плазменным двигателям огромный во всем мире?

Владимир Кошлаков: Они наилучшим образом отвечают современным задачам в космосе.

Интересно, а у каких из альтернативных ракетных топлив наиболее «светлое» будущее?

Владимир Кошлаков: Альтернативы электрическим двигателям для космических аппаратов, наверное, все-таки нет. Сегодня, кроме ксенона, рассматриваются различные топлива. Конечно, аргон — как наиболее простой и дешевый. Криптон, который по своим характеристикам лучше ксенона, но тоже не дешевый. Ведутся проработки по использованию в качестве ракетного топлива йода. Здесь преимущество в том, что йод можно хранить в твердом состоянии. Это компактнее — меньше масса. Но эти работы также находятся в стадии научно-исследовательских работ для создания задела. Проектов много. Повторюсь, на острие — ядерная тематика. Это самое перспективное направление. И мы здесь не на последних ролях.

Кто главные наши конкуренты: Blue Origin, SpaceX.

Владимир Кошлаков: Пожалуй, только США. Если говорить про жидкостные ракетные двигатели, то, конечно, большой задел в США, Китае. Хотя те же США покупают эти двигатели у нас. РД-180 разработки «НПО Энергомаш», на мой взгляд, лучшие в мире: линейка этих двигателей покрывает весь рынок таких двигателей по своим характеристикам и цене. Но мир на месте не стоит. Новые материалы, технологии и конструкторские решения появляются и за рубежом. Конкуренция растет. Поэтому у нас ведутся проработки по созданию дешевых коммерческих носителей, которые бы по своей стоимости и надежности не уступали западным. Это одна из основных задач, поставленных перед нами руководством «Роскосмоса».

Новые российские двигатели изначально разрабатываются как многоразовые?

Владимир Кошлаков: Многоразовость ставится во главу угла. Однако требуется рациональный подход. Двигатели должны быть ремонтопригодными, иметь большое количество включений без вмешательства человека. Фактически, создав двигатель, мы могли бы «прокатать» его столько, сколько надо, на экспериментальном стенде. Подтвердить его надежность. И все. Двигатель консервируют: больше доступа человека к нему не должно быть. Это одно из требований, которое мы рассматриваем при создании новых двигателей.

Сколько включений самое оптимальное?

Владимир Кошлаков: Вопрос открытый. На днях у нас прошла конференция по актуальным проблемам ракетного двигателестроения. Выступал генеральный директор S7 Space г-н Сопов. Он сказал: мне нужны двигатели, которые могли бы включаться 100 раз. При этом межполетный интервал — каждые десять включений. То есть десять раз отработал — специалисты посмотрели, провели регламент, пошли дальше. А время между двумя включениями не должно быть больше 48 часов. То есть ракета улетела, вернулась — и через 48 часов ее можно заново пускать с тем же двигателем. Вот те планки, которые ставит перед нами рынок.

Они достижимы?

Владимир Кошлаков: Они реализуемы. Надо работать.

Знаю, что у вас в институте функционирует Центр по применению нанотехнологий в энергетике и электроснабжении космических систем. Что делается для повышения надежности космической техники?

Владимир Кошлаков: У наших ученых есть возможность достаточно глубоко заглянуть в физические процессы, которые протекают в двигателях. Приведу пример: при нанесении покрытия на огневую стенку камеры сгорания произошло отслоение покрытия. Запас работоспособности двигателя при этом, естественно, снижается. Оказалось, был секундный перебой с электроэнергией, и процесс образования защитной пленки прекратился. Электричество включилось, но внутри покрытия образовалась граница раздела. Она-то и стала причиной отслоения. Исследование объектов размерами с нанометр, определение структурного и фазового состояния материала, анализ межкристаллитных процессов — далеко не полный перечень возможностей оборудования.

Лазерное зажигание — еще одно из направлений повышения надежности. Кроме того, мы активно развиваем программно-методическое обеспечение, которое могло бы смоделировать работу двигателя и найти узкие места еще до постановки в ракету.

Насколько снижает вес мотора применение композитов?

Владимир Кошлаков: Очень серьезно. Чтобы было понятно: плотность углеродных материалов — 1,2-1,4 грамма на кубический сантиметр. Плотность алюминия — 2,7, а стали — 7,8. Считайте. Меньше плотность — соответственно, меньше вес. Дело еще в том, что при высоких температурах прочностные характеристики металлов снижаются, поэтому мы вынуждены дополнительно утолщать стенки, что тоже ведет к повышению веса. А у углеродных материалов с повышением прочности физико-механические характеристики только становятся лучше.

Много говорят об аддитивных технологиях. Скажите, где их применение актуально?

Владимир Кошлаков: Практически в любых изделиях. Например, изготовление форсуночной головки двигателя с помощью аддитивных технологий позволяет сделать целиком одну деталь. А традиционные методы включают более 200 элементов! И все надо отдельно изготовить, спаять, сварить, собрать. Что тоже ограничивает пределы работоспособности двигателя.

Правда, к аддитивным технологиям надо относиться аккуратно. Об этом говорят исследования: мы заглянули внутрь как самих изделий, так и каждой «порошинки». Иногда «порошинки» между собой не свариваются, не сплавляются — надо подбирать правильный режим работы, будь то лазерный пучок или электронный луч в этих станках. Но вообще аддитивные технологии очень перспективны: способствуют цифровизации производства, ускоряют процесс, устраняют человеческий фактор.

Сколько времени уходит на создание «звездного мотора»?

Владимир Кошлаков: В среднем на создание опытного образца — 5-7 лет.

У американских частников дело быстрее идет?

Владимир Кошлаков: Если вы имеете в виду Илона Маска, то он создал свою ракету на базе старых, давно разработанных и использованных двигателей. Он поступил как коммерсант: взял готовое отработанное решение и успешно его применил. При этом хотел бы отметить, что без поддержки государства не обошлось.

Ссылка на основную публикацию
Adblock
detector