Что такое можность двигателя

Что важнее — мощность или крутящий момент

Как известно, под мощностью подразумевается энергия, вырабатываемая мотором. Чтобы понять разницу между крутящим моментом и мощностью, можно привести такой пример: если автомобиль уперся передними колесами в препятствие и не в состоянии тронуться с места, фактическая мощность без движения сведется к нулю. При этом крутящий момент продолжает развиваться, пытаясь толкнуть авто вперед, пока мотор окончательно не выдохнется и не заглохнет.

Когда мы, закручивая гайку, давим на гаечный ключ, усилие, которое на него воздействует, является крутящим моментом. В данном случае эта величина равна силе воздействия на рычаг, умноженной на длину ключа (по-научному — длину плеча силы). Первое измеряется в ньютонах, а второе — в метрах.

Например, крутящий момент в 1 Ньютон-метр (Н. м) — это сила, с которой 0,1 кг давят на конец рычага длиной 1 м. В двигателе внутреннего сгорания роль рычага исполняет кривошип коленчатого вала. Через него и создается крутящий момент, который, образно выражаясь, толкает машину вперед. Именно эта сила превращает тепловую энергию в механическую.

Как известно, мощность измеряется ваттах или в лошадиных силах, а в технических характеристиках рядом с ее максимальным значением всегда указываются обороты, при которых она достигается.

Время, пока двигатель набирает максимальную мощность, напрямую зависит от величины крутящего момента. Можно сказать, что за эти мгновения все имеющиеся лошадки собираются в один организованный и управляемый табун. Чем выше крутящий момент, тем быстрее ускоряется автомобиль и тем больше у него тяга.

Крутящий момент также зависит от количества оборотов коленчатого вала двигателя в минуту. У различных силовых агрегатов пик максимального крутящего момента достигается при разных оборотах. У одних это происходит в диапазоне 1800—3000 об/мин, в других — при 3000—4500 об/мин. Чем ниже эти числа, тем раньше достигается пик крутящего момента, что также влияет на разгон.

Самые мощные седаны в России до 1 000 000 рублей

Стоит ли тратить деньги на металлическую защиту картера мотора

Как правило, мотор выдает пик тяги не в одной точке, а в определенном диапазоне, который называется «полкой куртящего момента». Это можно оценить при движение в гору на автомобиле с механической коробкой — при широком диапазоне нет нужды переходить на пониженную передачу, так как крутящего момента хватает, чтобы «толкать» машину в пределах одной ступени. Также и при скоростных маневрах мотор сохраняет динамаику в широком диапазоне оборотов.

Тракторы, тягачи и большегрузы по определению должны быть тяговитыми, поэтому, как правило, все они выпускаются с дизельными моторами, которые считаются лидерами по величине крутящего момента. Его пик в таких агрегатах приходится уже на 1500–2000 об/мин.

Как правило, в бензиновых двигателях максимальное значение крутящего момента достигается позже, чем у его дизельных собратьев — в районе 4000–4500. Зато бензиновые моторы можно раскручивать до 7000–8000 об/мин, что позволяет им развивать довольно большую мощность, в то время как у дизельных рабочий диапазон ограничен. По этой причине любители спортивной езды предпочитают выбирать автомобили с высокооборотными бензиновыми движками.

В любом случае, при выборе подходящего мотора все его характеристики нужно учитывать и оценивать в комплексе.

Изменение конструкции двигателя, заключение о снижении мощности двигателя

Данный вид переоборудования относится к вопросам понижения налоговой ставки при расчете мощности двигателя. Большая часть запросов (приблизительно 90 из 100) такого типа:

«У меня американский автомобиль и там 183 кВт, но вот лошадиных сил почему-то 253, хотя у соседа такой же автомобиль только европейской сборки и при таких же кВт лошадей только 249. Что за … и как бы мне сделать 249 л.с.» или «У меня 280 л.с. как бы мне сделать 249л.с.».

По поводу «американцев», это все из-за переводных коэффициентов и ошибки тут нет. Раз автомобиль сделан для американского рынка, то мощность у него соответствующая для американского рынка, у европейского аналога, кстати, блок управления двигателем другой, поэтому формально и мощность другая.

Технически можно сделать из одного другое с изменением мощности. В самом простом случае надо заменить блок управления двигателя, в самом сложном от базового двигателя останется только блок, а вот все навесное будет совсем другое (это связано с тем, что производители выпускают двигатели одной модели, но разных модификаций с разными техническими характеристиками для удешевления производства).

Короче если есть аналог двигателя конструктивно от вашего не сильно отличающийся (блок одинаковый) и при если этом не будет ухудшена «экология» (снижен экологический класс»), то скорее всего такое переоборудование будет допустимо.

Однако надо понимать, что делать надо не «на бумаге», а на самом деле, т.е. менять электронный блок управления двигателем, элементы системы выхлопа (катализаторы, нейтрализаторы), иногда и головку блока с поршневой и т.д., а это все денег стоит и не малых. А лаборатория при выдаче протокола все это проверит и если что-то не сделано, то протокола вы не получите (на моей памяти за прошлый год при нескольких сотнях обращений, сделали все только человека три-четыре).

Также можно понизить мощность путем замены двигателя в сборе на менее мощный. Здесь главное, чтобы не понижался экологический класс транспортного средства.

Порядок оформления

Оформление состоит из нескольких этапов:

Этап 1

Обращение заинтересованного лица (собственника или представителя собственника по доверенности) в аккредитованную испытательную лабораторию за предварительной технической экспертизой.

Читать еще:  Ваз 2110 плохо заводиться при холодном двигателе

Необходимые документы:

  1. Простая заявка с описанием планируемого переоборудования (скачать форму заявки);
  2. Копия паспорта транспортного средства (ПТС) и свидетельства о регистрации транспортного средства (СОР);
  3. Любые дополнительные материалы (при наличии) Например: договор купли-продажи, если компонент уже приобретен в собственность, сертификаты и т.д

Результат: Заключение предварительной технической экспертизы.

Стоимость и срок оказания услуги

Срок оформления: 1-3 дня в зависимости от сложности переоборудования.
Стоимость: от 6000 до 7000 рублей

Нормативно-правовые акты

Основным регулирующим документом в сфере безопасности дорожного движения относительно требований безопасности конструкции автомобиля сейчас является Технический регламент «О безопасности колесных транспортных средств» (ТР ТС 018/2011).

Мощности бывают разные…

С появлением на рынке садовой бензиномоторной техники еще одного серьезного игрока — HITACHI — значительно увеличилось количество моделей, из которых рядовому потребителю приходится выбирать инструмeнт для индивидуального пользования. Специалисты компании попытались сравнить существующие предложения различных производителей, чтобы сформировать определенные рекомендации для покупателей, и сразу же попали в затруднительную ситуацию, которая послужила поводом для написания этой статьи. Итак, обо всем по порядку.

Выбирая для себя бензомоторный инструмент, каждый определяет некоторые параметры, которым должна соответствовать будущая покупка. Одним из основных, практически у всех без исключения покупателей, становится мощность инструмента. Ведь от ее величины зависит тот спектр работ, который можно будет осуществлять данным инструментом.

Естественно, выполняя сравнительный анализ бензомоторного инструмента, мы сопоставляли технику различных брендов по этому критерию. Общеизвестен факт, что двигатели внутреннего сгорания с одинаковым объемом имеют приблизительно одинаковую мощность. Согласно же нашей аналитической таблице, двигатели японских производителей (на различных бензиномоторных инструментах — бензопилах и мотокосах) имели меньшую мощность при том же объеме цилиндра по сравнению с инструментами европейского/американского производства. При этом разница в декларируемых мощностях составляла 15–20 %!

Дело в том, что для мощностей двигателей внутреннего сгорания есть не только разные единицы измерения (кВт или л. с.), но и разные способы измерения, дающие разные результаты. Стандартный способ измерения мощности, принятый в Европе, использует киловатты. Но даже если значения мощности указаны в одной и той же величине, то способы измерения этой мощности и, соответственно, полученные результаты могут отличаться. Причиной тому — различные методики.

В США и Японии используются свои стандарты определения мощности двигателя, которые уже давно практически полностью унифицированы с другими. Однако в Америке и Японии существуют два различных вида показателей: netto и brutto.

Измерение мощности двигателя нетто (netto, net) предусматривает стендовое испытание двигателя, оборудованного всеми вспомогательными, необходимыми для эксплуатации изделия агрегатами: насосом, глушителем, вентилятором и пр. , т. е. измерение «на выходе» из редуктора или сцепления. Так измеряют мощность и именно ее указывают в каталоге японцы. Измерение мощности двигателя брутто (brutto, gross) подразумевает стендовое испытание двигателя, не оборудованного всеми дополнительными, необходимыми для эксплуатации изделия агрегатами, т. е. измерение «на валу» двигателя. Такой показатель мощности может давать значение выше мощности нетто на 10–20 % и более.

Этим в свое время широко пользовались североамериканские производители автомобилей, завышая рейтинги мощности двигателей. Так измеряют мощность в Европе (Германия, Швеция, Италия и т. д.) — они тоже правы, они честно пишут о мощности двигателя… В принципе, приблизительно так же поступают производители электроинструмента: они показывают потребляемую мощность электродвигателя, и совсем немногие показывают мощность «выходящую», собственно эффективную мощность самой машины.

Сравнение же машин по объему двигателя тоже имеет нюансы. Мощность двигателя и крутящий момент двигателя связаны с его размерами (объёмом цилиндра), и зависят от потерь энергии, степени сжатия топливо воздушной смеси, содержания кислорода в воздухе и частоты вращения коленчатого вала. Это справедливо как для двухтактных, так и для четырёхтактных двигателей. Частота вращения коленчатого вала в конечном счёте ограничена прочностью материалов и свойствами смазки.

Все элементы двигателя (клапаны, поршни и коленчатые валы) постоянно испытывают большие динамические нагрузки:

Конструкторы японской компании HITACHI увеличили мощность своих двигателей, поднимая число оборотов двигателя. Качество исполнения комплектующих двигателя (кольца, клапаны, кованые, а не штампованные шатуны) позволили добиться прекрасных результатов. Культура производства, современные технологические линии и грамотный инженерный состав — все это вместе позволило реализовать решения, позволившие добиться высоких технических характеристик.

Ведущие производители четырехтактных двигателей (Briggs Stratton, Honda, Kawasaki, Kohler) уже несколько лет назад полностью отказались от декларирования в технической документации мощности двигателя, указывая только его объем. Также поступили и японские производители бензиномоторного инструмента с двухтактными двигателями. Но учитывая тот факт, что в России, Украине и некоторых других странах большинство пользователей «по старинке» все же оперируют понятием мощности двигателя, компания HITACHI KOKI приняла решение о том, чтобы временно оставить в сопроводительной документации значения мощности, при этом указывая ее тип (мощность нетто/мощность брутто).

Окончательное решение при выборе инструмента и его необходимых эксплуатационных характеристиках, как всегда, за вами, дорогой пользователь. Помните только, что понятия «мощность», «лошадиная сила» — неоднозначны. Об их зависимости от вида и качества топлива, режимов работы — в наших следующих публикациях.

История развития мощностных измерений

В любом случае, это означало, что уже была необходима единица измерения мощности. Первое определение метрической единицы л.с. (лошадиной силы) восходит своими корнями также к Джеймсу Уатту.

Спустя 200 лет, новая единица мощности была названа именем изобретателя: Ватт и сейчас является унифицированной единицей измерения мощности. Старая добрая метрическая лошадиная сила была отменена с введением системы СИ (Система Интернациональная) и, в соответствии с официальными правилами, допускалась к применению только в качестве дополнительной единицы измерения.

Читать еще:  Что такое двигатель сонс

Победный марш парового двигателя задал направление развития прогресса: железные дороги и локомотивы с паровыми двигателями были еще одной вехой на пути к индустриальному обществу. За 80 лет до появления первого автомобиля, в конце 80-х годов 19 века первый паровой локомотив уже двигался по железной дороге, и это направление промышленности развивалось чрезвычайно быстро. Локомотивы были быстрые, тяжелые и, конечно же, дорогие. Для контроля и, по возможности, для снижения грандио зных операционных расходов при эксплуатации этих монстров необходимо было измерять их эффективность. Для этих целей сначала использовали специальные измерительные тележки, которые цеплялись к локомотивам.

Гидромеханические измерительные устройства и пружи ны пе редавали силу с валов этих «лабораторий» на автоматические приборы измерений внутри тележек. Совместно с другими измерительными системами это позволяло измерить постоянное тяговое усилие, работу, мощность, скорость движения и другие параметры с разрешением до 0,1 с. Эти измерительные тележки заложили важный фундамент для финансово – успешного производства и развития железнодорожной сети по всему миру.

Во избежание нарушений плотного графика железнодорожного движения длительными тестовыми заездами локомотивов с измерительными тележками, а также для того, чтобы сделать измерения независимыми от погодных условий, были созданы стацио нарные измерительные системы. Это были гигантские залы с внушительными роликовыми динамометрами, установленные на них локомотивы можно было испытывать под различными нагрузками с любой длительностью. В тот же момент получили развитие, в соответствии с возможностями современных технологий измерений, системы оценки выхлопных газов и измерения расхода топлива, что также было обусловлено необходимостью оптимизировать эффективность паровых локомотивов в целом. В этих динамометрах все еще использовали большие, относительно простые водяные тормоза под каждым приводным колесом для обеспечения различных нагрузок. Такие гидравлические динамометры были доступны для коммерческого применения, начиная с 1881 года после их изобретения Вильямом Фродом ( William Froude ).

Лошадиная сила и Ватт

Старые метрическая лошадиная сила ( PS ) и механическая лошадиная сила ( hp ) были до какой-то степени маркетинговым ходом Джеймса Уатта. Он хотел сравнить производительность его парового двигателя и ломовой лошади. Он вывел, что лошадь может вращать мельничное колесо радиусом 12 футов со скоростью 144 раза в час или 2,4 оборота в минуту. Уатт также вывел, что сила тяги лошади равняется 180 фунтам.

мощность = работа/время = сила * дистанцию / время

он приблизительно получил

33000 ft * lbf / m (фут-фунт силы в минуту)

Другие современные определения лошадиной силы также приводили к этой величине при помощи похожих выкладок. До сегодняшнего дня во всем мире сосуществует великое множество единиц измерения показателя мощности. Чтобы их можно было сравнивать, должна была появиться базовая и стандартизированная единица измерения, а так же унифицированная процедура измерения.

С появлением СИ (Международной системы единиц) было вычислено значение метрической лошадиной силы (л.с. — PS ), равной 735,49875 Вт (или кг*м 2 / с 3 ). Отсюда получаем значение кВт равным 1,35962162 л.с.

DIN (Германский институт стандартизации) и ISO (Международная организация по стандартизации) в стандартах DIN 70020 и ISO 1585 утвердили, что эффективная мощность измеряется «при нормальных условиях для всех обычных двигателей внутреннего сгорания с установленными на них впускной и выпускной системами». Помпы, топливные насосы и распределители, а также вентиляторы охлаждения и (ненагруженные) генераторы должны приводиться двигателем.

И даже эти стандарты и нормы, как все другие соответствующие стандарты и правила (с 2000 года определены стандарты EU и EEC ), подвергались изменениям и дополнениям. Новые достижения в автоиндустрии постоянно требуют обновления процесса измерения мощности современного двигателя. Большинство вспомогательных механизмов автомобиля уже не имеют прямого привода от двигателя, электроусилители рулевого управления, водяные помпы и другие устройства нагружают генераторы и источники питания автомобилей неодинаково.

Пионеры автомобильной промышленности уже могли заимствовать опыт железнодорожной индустрии для тестирования своих двигателей и транспортных средств. Однако такие масштабные испытания не всегда были доступны только зарождающейся автомобильной промышленности. Приходилось сталкиваться со множеством сложностей начального периода развития в попытках увеличить общественное признание данного вида транспорта.

Также следует отметить тот факт, что вплоть до 1928 года, в соответствии налоговым законодательством Германии, для клиента более важным, чем фактическая мощность транспортного средства, была, так называемая, «налоговая лошадиная сила». Величина налоговой лошадиной силы (н.л.с.) рассчитывалась не от фактической мощности двигателя, а с помощью простой математической формулы, основанной на размерах цилиндра (одну налоговую лошадиную силу «выдавал» четырехтактный двигатель с рабочим объемом 261,8 см 3 ).

В начале ХХ века налоговая лошадиная сила была достаточно близка к реальной лошадиной силе (л. с.) ; с развитием же двигателей внутреннего сгорания реальная лошадиная сила стала больше, чем н. л. с. в десять и более раз. Данная практика делала не актуальным вычисление реальной лошадиной силы, поэтому часто она исчислялась неточно или просто выдавалась производителем. Так, например, производитель заявлял следую щие характеристики Audi 18/70 PS 1925-го года (M-type выпускалась с 1924 по 1927, один из самых дорогих автомо билей того времени): автомобиль с 18 налоговыми лошадиными силами оснащен двигателем с объемом 4,5 литра и эффективной мощностью в 70 лошадиных сил. Действительно ли эти 70 лошадиных сил были достижимы данным автомобилем, оставалось скорее на совести маркетологов, нежели инженеров, хотя эффективную мощность даже в то время можно было измерить с достаточной точностью.

Читать еще:  Ваз 2114 горит чек двигатель работает нормально причины

Пока производство автомобилей еще не стало массовым, и процессы производства не отвечали более поздним индустриальным стандартам, каждый произведенный двигатель испытывался и измерялась его мощность. Такие измерения производились при помощи упомянутого ранее динамометра с водяным тормозом. Альтернативные средства были довольно устаревшими конструкциями со сравнительно примитивными датчиками сил ы, например, с простыми ленточными тормозами. Эта и последующие разработки, например тормоз де Прони ( de Prony ), имели в основе сухое трение, поэтому не подходили для автомобильной индустрии, по крайней мере для инженерного применения. Электрификация технологий на рубеже веков имела решающее значение для зарождающейся автомобильной индустрии. Двигатель внутреннего сгорания занял лидирующие позиции по сравнению с паровым и электрическим двигателями.

Немецкий инженер Рудольф Дизель стремился повысить эффективность двигателя внутреннего сгорания и в 1897 предложил двигатель с воспламенением от сжатия. На заводе «Людвиг Нобель» Эммануила Людвиговича Нобеля в Петербурге в 1898—1899 Густав Васильевич Тринклер усовершенствовал этот двигатель, использовав бескомпрессорное распыление топлива, что позволило применить в качестве топлива нефть. В результате бескомпрессорный двигатель внутреннего сгорания высокого сжатия с воспламенением стал наиболее экономичным стационарным тепловым двигателем. В 1899 на заводе «Людвиг Нобель» построили первый дизель в России и развернули массовое производство дизелей. Этот первый дизель имел мощность 20 л. с., один цилиндр диаметром 260 мм, ход поршня 410 мм и частоту вращения 180 об/мин. В Европе дизельный двигатель, усовершенствованный Густавом Васильевичем Тринклером, получил название «русский дизель» или «Тринклер-мотор».

Электродвигатели переменного, постоянного тока и электромагнитные индукционные тормоза начали использовать в динамометрических стендах для автомобильной индустрии для применения значительно позже, где-то в 1930-х годах.

И даже после Второй мировой войны такие динамометры были доступны и использовались исключительно для исследований и разработок промышленного масштаба. Параллельно, еще до войны в Америке, в среде автомобильного спорта и механиков–энтузиастов начали зарождаться традиции измерений мощности автомобилей. Относительно дешевые гидравлические тормоза, используемые в этих гаражах, стали широко распространенными в Америке.

Широкое распространение автомобилей порождает первые уличные состязания “на скорость”. Любители гонок начинают перестраивать свои автомобили. Чаще всего это были массовые модели Ford в кузове родстер, из-за его меньшего веса, отсюда появился термин hot rod, сокращение от hot rodster. C 1949 года ведет свою историю Национальная Ассоциация гонок серийных автомобилей (NASCAR — National Association of Stock Car Auto Racing). Именно тогда Билл Франс-старший решил объединить проводившиеся на юго-востоке США полулюбительские гонки на серийных машинах в один чемпионат. Ни одна автоспортивная организация не взялась санкционировать это соревнование, и Франс основал санкционирующую организацию сам. Все это стало предпосылкой, чтобы североамериканские производители автомобилей обратили на характеристики мощности автомобилей свое пристальное внимание.

Для обычных же автосервисов было довольно таки мало интереса инвестировать в такое диагностическое оборудование. Важные действия в этом направлении начались только в 1970-х годах, когда в США были определены первые экологические стандарты, описанные в Федеральных законах о качестве воздуха и о качестве вод.

Данное регулирование произвело настоящий бум спроса на функциональные динамометры для диагностики транспортных средств, особенно когда во многих странах законами стало предписано проводить экологические измерения под нагрузкой. Долгое время в Европе технологии измерений мощности и экологических показателей оставались прерогативой автопроизводителей и профессионального автоспорта. Но и здесь, параллельно с введением экологических стандартов в Америке, развивающееся законодательство стало требовать применения простых роликовых динамометров. В последующие годы экологические стандарты во всем мире становились все жестче. Угроза загрязнения воздуха, нефтяной кризис и возрастающее внимание к экологии в развитых странах сильно повлияли на развитие автомобильной промышленности.

Не важно, изобретались ли полноприводные технологии, электронные системы управления или каталитические нейтрализаторы отработанных газов, процедуры измерений мощности и экологических показателей должны были идти в ногу с техническим прогрессом в автомобилестроении.

В Германии в 1985 году была введена предписанная законом специальная ежегодная проверка токсичности отработанных газов (ASU — Abgas-Sonder-Untersuchung), которая действовала вплоть до 1993 года. И хотя он распространялся только на бензиновые двигатели, но диагностическим оборудованием сразу же были оборудованы автосервисы по всей стране. Это произошло, потому что те, кто не мог провести диагностику согласно узаконенным нормам, сразу же вытеснялись с рынка конкурентами. С декабря 1993 года закон о ежегодной проверке отработанных газов, известный теперь как « AU », так же стал распространяться и на дизельные двигатели. Принцип действия опациметра (или дымомера — оптического прибора для измерения дымности выхлопных газов дизельных двигателей) не изменился до сегодняшнего дня. Дизельные же двигатели претерпели большие изменения, как это повлияло на измерения, будет освещено в последующих статьях.

Относительно недавно (с 1 декабря 2008 года) для всех автомобилей, зарегистрированных после 1 января 2006 года начала действовать так называемая Директива 4 ( Leitfaden 4 / Guideline 4 ). В настоящий момент полным ходом идет бурная дискуссия вокруг этой Директивы и заявлений автомобильной индустрии о замене традиционных технологий экологического контроля «из выхлопной трубы» на контроль отвечающих за экологию компонентов посредством OBD . Тем не менее, этот динамический интернациональный процесс уже неопровержимо определил: развитие современных технологий измерения мощности и экологических показателей не завершено и будет продолжаться еще долгое время.

Ссылка на основную публикацию