Что такое перегрузочная способность двигателя и как ее определить

Большая Энциклопедия Нефти и Газа

Перегрузочная способность — синхронный двигатель

Перегрузочная способность синхронных двигателей ограничивается величиной максимального крутящего момента, удерживающего двигатель в синхронизме; асинхронных двигателей — величиной опрокидывающего момента; двигателей постоянного тока — величиной тока, допустимого по условиям коммутации. [1]

Перегрузочная способность синхронного двигателя зависит от тока возбуждения. В данном случае при недовозбуждении она равна 2 ( l / sin30 2) и при трехкратной перегрузке двигатель остановится. Но при перевозбуждении запас по моменту возрастает до 3 5 ( l / sin. [2]

Повышение перегрузочной способности синхронного двигателя при снижении напряжения сети достигается путем увеличения тока возбуждения возбудителя. Автоматическое изменение тока возбуждения производится посредством реле напряжения РФ, катушка которого подключается к питающей сети двигателя через трансформатор напряжения, и промежуточного реле РПФ. При нормальном напряжении сети контакт РФ в цепи катушки РПФ открыт. Если напряжение снизится, то контакт РФ закроется, катушка РПФ получит питание, и реле шунтирует своим контактом реостат в цепи обмотки возбуждения возбудителя. [3]

Повышение перегрузочной способности синхронного двигателя при снижении напряжения сети достигается путем увеличения тока возбуждения возбудителя. Автоматическое изменение тока возбуждения производится посредством реле напряжения РФ, катушка которого подключается к питающей сети двигателя через трансформатор напряжения, и промежуточного реле РПФ. При нормальном напряжении сети контакт РФ в цепи промежуточного реле РЯФ открыт. Если напряжение снизится, контакт РФ закроется, катушка РЯФ получит питание и реле шунтирует своим контактом реостат в цепи возбуждения возбудителя. [4]

Какая величина характеризует перегрузочную способность синхронных двигателей . [5]

Применение форсировки возбуждения позволяет кратковременно увеличить перегрузочную способность синхронного двигателя и получить дополнительную реактивную мощность. Увеличение тока ротора при форсировке повышает устойчивость синхронного двигателя при понижении напряжения, а увеличение отдаваемой им реактивной мощности благоприятно сказывается на режиме работы потребителей в данном узле нагрузки. [6]

Отношение максимального электромагнитного момента к номинальному называется перегрузочной способностью синхронного двигателя . [8]

Из выражения максимального момента следует, что последний и, следовательно, перегрузочная способность синхронного двигателя пропорциональны первой степени напряжения в отличие от асинхронного двигателя, у которого она пропорциональна квадрату напряжения. Из этого следует, что синхронные двигатели менее чувствительны к изменению напряжения, чем асинхронные. [9]

Рассмотрение рис. 3 — 35, а позволяет заключить, что реактивный момент увеличивает крутизну рабочего участка угловой характеристики и несколько повышает перегрузочную способность двигателя. Перегрузочная способность синхронного двигателя менее чувствительна к понижению напряжения сети, чем у асинхронного двигателя, что относится к числу его важных достоинств. [11]

Момент, который развивает синхронный двигатель при заданных значениях токов в роторе и статоре, как это следует из (5.6), тем больше, чем больше взаимная индуктивность LM между обмотками статора и ротора. В серийных синхронных машинах, чтобы ослабить влияние реакции якоря ( статора), которая уменьшает перегрузочную способность синхронного двигателя , выбирают сравнительно большие величины воздушного зазора, а это снижает величину LM. Если же синхронный двигатель предназначается для электропривода с частотнотоковым или другим векторным способом формирования момента, то повышенные значения LM в двигателе оказываются полезными. Поэтому синхронные двигатели для частотнорегулируемых электроприводов могут конструироваться не с повышенной, а с нормальной с точки зрения механической надежности машины величиной воздушного зазора, что приводит к более продуктивному использованию активных материалов в электрической машине. [12]

Важной особенностью синхронных двигателей является то, что они менее чувствительны к колебаниям напряжения сети, чем асинхронные двигатели. Их максимальный момент пропорционален напряжению сети, в то время как критический момент асинхронного двигателя пропорционален квадрату напряжения. Кроме того, перегрузочная способность синхронного двигателя может быть автоматически увеличена за счет повышения тока возбуждения, например, при резком кратковременном повышении нагрузки на валу двигателя. [13]

При нормальном уровне напряжения сети реле KVвключено, а реле KF не включено, поэтому резистор Лд введен в цепь ОВВ, и по ней протекает номинальный ( или близкий к нему) ток. КУ отключается и замыкает свой контакт в цепи катушки реле KF. Ток возбуждения возбудителя, его напряжение и ток возбуждения синхронных двигателей / вм возрастают, а тем самым увеличивается его ЭДС. Это приводит к увеличению максимального момента и перегрузочной способности синхронных двигателей и тем самым обеспечивает его синхронную работу с сетью при увеличении нагрузки на валу. [15]

Специальные регулируемые асинхронные двигатели

Специальные регулируемые асинхронные двигатели создаются в результате адаптации общепромышленных асинхронных двигателей к их условиям эксплуатации в управляемых электроприводах, имеющие в итоге более высокие энергетические и массогабаритностоимостные показатели по сравнению с неадаптированными.

Работа асинхронного двигателя в регулируемом электроприводе (ЭП) характеризуется существенными особенностями, которые и определяют предъявляемые к ним специфические технические требования. Эти особенности связаны с изменяющимися в заданных пределах, а часто и по заданным законам, значениями частот вращения двигателя, величин и частот питающего двигатель напряжения или тока, наличием и необходимостью учёта временных высших гармонических составляющих. В силу этого специфическими являются математические модели (ММ) электромагнитных, электромеханических, энергетических, тепловентиляционных процессов в установившихся и переходных режимах работы двигателей, расчетов добавочных магнитных потерь, механических и виброакустических показателей, которые построены на усовершенствованных расчетных методиках.

Использование серийных асинхронных двигателей (АД) в электроприводах с полупроводниковыми преобразователями (ПП) не оптимально по массогабаритным, энергетическим и другим показателям. По некоторым оценкам использование обычных серийных АД в частотном приводе снижает КПД и требует завышения их установленной мощности на 15-20 % при работе в установившихся режимах и до 40-45 % при работе в динамических режимах. Из-за высших гармоник напряжения и тока на выходе преобразователя частоты на 5-6 % возрастают потери в двигателе.

Необходимо проектирование специальных регулируемых асинхронных двигателей (РАД) с улучшенными регулировочными, динамическими и виброакустическими свойствами. Применение РАД, спроектированных с учётом специфики их работы в условиях регулируемого ЭП, вместо общепромышленных АД дает возможность значительно снизить массу, габариты и стоимость электроприводов, улучшить их функциональные показатели. Если оптимально спроектировать двигатель для частотного регулирования, можно получить на 25 % большую мощность, чем у общепромышленных АД того же габарита, либо уменьшить объем при той же мощности.

Содержание

  • 1 Технические предпосылки
  • 2 Принципы и методология проектирования
  • 3 Особенности и требования
  • 4 Адаптация
  • 5 Ссылки

Технические предпосылки [ править | править код ]

Техническими предпосылками, обеспечивающими преимущества адаптированных регулируемых двигателей над серийными машинами, являются:

  • Исключение требований к пусковым характеристикам (не ставится задача обеспечения кратностей пускового и максимального моментов), в связи с чем может быть применена соответствующая форма паза ротора (отказ от глубоких пазов), обеспечивающая минимальное активное сопротивление обмотки ротора и меньшую индуктивность рассеяния;
  • требуемую частоту вращения производственного механизма, определяемую частотой питания двигателя, числом полюсов обмотки статора АД и передаточным числом редуктора, можно обеспечить при различных сочетаниях этих трех величин;
  • возможность некоторого снижения перегрузочной способности АД, поскольку система привода отслеживает параметры напряжения или тока питания двигателя;
  • использование эффективных систем само- и, при необходимости, принудительного охлаждения;
  • возможность выбора оптимального соотношения нестандартных значений напряжения и частоты проектируемого двигателя, отличного от базового и согласованного с номинальными значениями преобразователя, что позволяет снизить массу и габариты;
  • усиление электроизоляции витков обмотки статора с целью защиты от импульсных перенапряжений;
  • использование соответствующих подшипников с учётом, как высоких скоростей вращения, так и появления паразитных токов от высокочастотной коммутации.

Принципы и методология проектирования [ править | править код ]

Основные принципы и методология проектирования РАД должны базироваться на системном подходе и определяться с учётом существенной специфики их работы в составе ЭП как в установившихся, так и в динамических режимах. Системный подход предусматривает рассмотрение РАД во взаимодействии с другими элементами ЭП: силовой преобразовательной частью, системой управления и регулирования, исполнительным органом рабочей машины. Эффективность системного подхода при проектировании РАД основывается на учёте особенностей отдельных составляющих ЭП, характера отношений и связей между этими составляющими. Благодаря этому значительно повышаются адекватность ММ и соответственно качество проектного синтеза РАД. Использование системного подхода позволяет реализовывать комплексный анализ проектируемого РАД, на основе которого рассматриваются все наиболее важные для проектного синтеза аспекты устройства и функционирования РАД.

Системный подход дает возможность осуществить:

  • комплексный учёт всей необходимой совокупности проектных факторов в их взаимосвязи и взаимовлиянии;
  • разработку и применение адекватных ММ, учитывающих изменение параметров во всем диапазоне регулирования, и другие особенности работы РАД в регулируемом ЭП;
  • обоснование и применение рациональной декомпозиции проектной ММ и модели объекта проектирования, процессов проектного синтеза и оптимизации;
  • реализацию эффективных методов оптимизации;
  • системную организацию технологии процесса проектного синтеза РАД.

Исходя из системного подхода, определяются специфические проектные критерии и ограничения, используемые при проектировании РАД.

Проектные ММ на основе принципа декомпозиции могут быть составлены с использованием моделей отдельных компонентов ЭП, в том числе и модели объекта проектирования — РАД. Модель РАД должна учитывать полигармонический состав питающего напряжения переменных величины и частоты, изменение параметров двигателя в процессе регулирования и ряд других проектных особенностей. Полупроводниковые преобразователи, отличающиеся типами, силовыми схемами, видами регулирования, законами управления и т. д., представляются разными ММ. Нагрузки ЭП имеют различные законы изменений моментов сопротивлений от частоты вращения и различные уровни. Они могут быть непрерывного или циклического действия. Все это должно найти отражение в ММ нагрузок. Работа АД в системах с ПП обладает существенной спецификой, которая является причиной появления новых требований к параметрам и технико-экономическим показателям РАД, в результате чего задача разработки машин для указанных систем переросла в самостоятельную проблему, включающую и круг вопросов, связанных с определением оптимальных параметров двигателей. Для решения задач проектного синтеза и оптимизации таких двигателей не могут быть применены стандартные методы и программное обеспечение, разработанные для АД общепромышленного назначения.

Читать еще:  Чем заглянуть внутрь двигателя

Особенности и требования [ править | править код ]

При проектировании РАД учитываются следующие особенности и требования:

  • необходимость использования в системе расчетного проектирования комплексных ММ, включающих в себя модели всех взаимодействующих компонентов ЭП, а не только модели двигателя, как это делается при проектировании общепромышленных АД;
  • выполнение проектирования на определенный диапазон частот вращения, что требует проведения большого объема поисковых и поверочных расчетов;
  • формирование набора специфичных критериев оптимальности.

При проектировании РАД для приводов с ПП, как и при выборе серийных АД для этих приводов, могут использоваться также такие критерии как масса, габариты, стоимость двигателя или диапазонные критерии — энергетические показатели двигателя и приведенные затраты. Особые диапазонные критерии оптимальности обуславливают специфику их определения. В частности, энергетические показатели — КПД и коэффициент мощности, приведенные затраты должны рассматриваться в виде эквивалентных усредненных значений для всего диапазона регулирования. При необходимости в состав критериев включаются аналогичные критерии приводов в целом. В ряде случаев может применяться обобщенный критерий, представляющий собой скалярную свертку вышеуказанных критериев с различными коэффициентами их значимости. В установившихся режимах специфика работы РАД заключается, прежде всего, в том, что в каждой рабочей точке двигатель питается определенным по качественно-количественному составу полигармоническим напряжением, зависящим от типа, вида регулирования, закона управления преобразователя, и работает в общем случае с определенным нагрузочным моментом. В разных рабочих точках диапазона регулирования значения параметров схем замещения двигателя различны. Они определяются с учётом вытеснения токов в обмотках и насыщения магнитной цепи машины. Эти особенности положены в основу оптимизационно-поисковых расчетов.

Адаптация [ править | править код ]

Задача адаптации электромашинной части регулируемых ЭП к специфическим условиям работы решается как задача структурно-параметрической оптимизации РАД. Трудоемкость задачи проектирования обусловлена не только необходимостью формирования множества рациональных структур РАД, но и необходимостью решения задачи параметрической оптимизации для каждой сформированной структуры. По своей направленности задачи структурного синтеза можно разделить на внутренние (относящиеся к АД) и внешние (относящиеся к системе привода). Задачей параметрической оптимизации является определение такого набора значений управляемых переменных некоторой сформированной структуры электропривода и входящего в него РАД, при котором целевая функция имеет наилучшее значение. При этом выполняются все требования и ограничения, оговоренные в задании на проектирование. Множество структур РАД с оптимизированными параметрами является информационным базисом для выбора оптимального варианта РАД.

Системный подход предусматривает рассмотрение всех аспектов функционирования РАД. Поэтому при проектном синтезе РАД используется ряд подсистем, с помощью которых осуществляются поверочные расчеты. К их числу относятся расчеты механических и виброакустических показателей, неустановившихся режимов работы. Проектные ММ подсистем так же, как и модели оптимизационно-поисковых расчетов, являются комплексными, составленными из ММ входящих в привод элементов, и в них выполнен учёт рассмотренной выше специфики. При наличии в техническом задании на проектирование РАД активных ограничений, прямо не связанных с электромагнитными, электромеханическими, тепловыми процессами, задача условной оптимизации решается на основе сочетания методов уступок по критериям и релаксации ограничений.

Использование информационных технологий автоматизированного проектного синтеза, прикладного математического и программного обеспечения позволяет реализовать следующие варианты:

  • проектирование и производство серий РАД на основе тщательного анализа рынка потребления;
  • разработка РАД для использования в регулируемых ЭП конкретных электромеханических систем;
  • редизайн АД, использующегося в настоящее время в определенных регулируемых ЭП с целью их адаптации к специфическим условиям работы.

Выбор мощности электродвигателя

Для обеспечения надежной и экономичной работы системы электропривода необходимо произвести выбор электродвигателя правильно. Электрическая машина должна иметь мощность, которая строго соответствует ожидаемой нагрузке, а также режиму работы электропривода. Электропривод довольно сильно распространен в промышленности, имеет большое множество условий работы и требований рабочих машин, что делает выбор мощности электродвигателя не легкой задачей.

Завышение мощности электрической машины не является выходом из ситуации. Это связано с тем, что помимо излишних экономических затрат на завышенную мощность вырастают и габариты электродвигателя, его масса, ухудшаются энергетические показатели системы (машина работает с пониженным КПД), а в случае асинхронных электродвигателей с низким коэффициентом мощности cosφ увеличивается потребление реактивной мощности, что в свою очередь создает дополнительные проблемы. Занижение мощности то же не выход, так как это приведет к повышению температуры изоляции обмоток, соответственно срок службы машины существенно снижается.

Даже если выбор электрической машины осуществлен правильно, то в процессе работы могут возникать кратковременные толчки нагрузки (резкое увеличение момента сопротивления), которые могут значительно превосходить номинальную мощность электромашины. Однако, каждый тип электрической машины имеет свои факторы электрического происхождения, которые даже при кратковременной перегрузке (если она превзойдет определенный предел) могут вызвать нарушение нормальной работы механизма. При выборе электродвигателя необходимо руководствоваться двумя основными факторами – мгновенной перегрузкой и нагревом.

Выбор мощности двигателя по нагрузке

Для этого необходимо определить номинальный момент из условия:

Где: Ммакс – требуемый механизмом максимальный перегрузочный момент;

λм – перегрузочный коэффициент по моменту;

Если за исходную величину принимают ток, то выражение примет вид:

Перегрузочная способность машин постоянного тока

Для машин постоянного тока также необходимо учитывать и условия коммутации на коллекторе. Результирующая ЭДС, индуктируемая в коммутируемых секциях – фактор, вызывающий искрение в ДПТ:

Где: ер – ЭДС реактивная — коммутируемой секции;

ек – ЭДС коммутирующая. Создается потоком добавочных полюсов;

ет – ЭДС трансформаторная — индуктируется меняющимся магнитным потоком главных полюсов;

Приближенно можно считать, что искрообразование на коллекторе будет одинаковым при различных скоростях работы электродвигателя, если будет соблюдаться условие nIя=const.

Для ДПТ крановых приводов и металлургических типа МП перегрузочная способность по моменту составляет:

Для длительного режима работы перегрузочная способность ДПТ должна быть не ниже чем 2,5. По току перегрузочную способность можно охарактеризовать:

Также необходимо учесть и то, что у двигателей последовательного и смешанного

возбуждения перегрузочная способность по моменту все же выше, чем по току. Это обусловлено усилением магнитного потока из – за последовательной обмотки возбуждения:

Перегрузочная способность асинхронных машин

Эта способность асинхронных электродвигателей ограничивается моментом критическим Мк. ГОСТ определяет на асинхронные металлургические и крановые трехфазные электроприводы λ>2,3. λ=1,7-2,2 для машин длительного режима работы.

Для асинхронных машин общепромышленной серии длительного режима работы λ:

  • Для электродвигателей с фазным ротором – не менее 1,8;
  • С короткозамкнутым – 1,65;

Также необходимо помнить и то, что моменты критические и пусковые асинхронной машины напрямую зависят от питающего напряжения. Поэтому необходимо учитывать возможную просадку напряжения в сети до 0,9Uном и в расчетах нужно брать 0,8 перегрузочной способности, приведенной выше.

Перегрузочная способность синхронных машин

У синхронных электромашин такая мгновенная способность примерно равна 2,5-3. За счет форсирования возбуждения можно повысить до 3,5 и даже до 4,0.

Для трехфазных коллекторных электроприводов эта величина сильно зависит от скорости вращения электродвигателя и условий его коммутации. В среднем ее принимают равной порядка λм = 1,5-2.

Изолирующие материалы

Они определяют как и технико-экономические характеристики машины, так и ее надежность работы. Так как нагревостойкость изоляционных материалов относительно невелика, то ее нагрев ограничивает мощность электропривода. Технико-экономические соображения требуют, чтоб при нормальной эксплуатации срок службы изоляции составлял не менее 15-20 лет. По теплостойкости изоляции ее разделяют на:

В связи с тем, что условия работы электрических машин довольно разнообразны в отношении окружающей среды ГОСТ предлагает номинальные данные машины относить к тому случаю, когда температура окружающей среды равна 40 С 0 . Соответственно устанавливаются предельно допустимые значения перегрева над температурой окружающей среды для различных типов изоляции. Максимально допустимую температуру изоляции ϑизол можно представить как сумму температур окружающей среды и допустимого перегрева:

Где: ϑ – температура окружающей среды;

τиз – максимальный перегрев изоляции;

Как показывает практика – даже незначительный перегрев электродвигателя приводит к резкому сокращению срока его службы:

Как мы можем увидеть из графика, что для класса А повышение рабочей температуры с 95 0 до 105 0 снижает срок службы электромашины с 15 до 8 лет, что примерно в два раза.

При экспериментальном определении температуры обмоток используют несколько методов – метод термометра (пирометра), метод сопротивлений – при его использовании нагрев определяют по изменению омического сопротивления обмоток, а также метод температурных детекторов (термопары и прочие).

Результат, полученный в ходе измерений, будет довольно сильно зависеть от метода, который был выбран. Применение термометров (пирометров) довольно просто, при использовании дают довольно точный результат, но не позволяют измерять внутреннюю температуру обмоток. При использовании метода сопротивления – получим усредненный результат перегрева и не более. Температурные детекторы дают наиболее точный результат измерений, но только в местах их закладки.

Читать еще:  Большой расход масла в двигателе причины и что с этим делать

Скважинные насосы ЭЦВ

от 23 100 руб.

Узел прохода УП3-139200 руб.


Eco Flowatсh — 2600 руб.
Mini Flowatch — 4250 руб.
экономичная модель


по цене 8250 руб.

Вопросы выбора частотного преобразователя

♦ Таблица подбора частотных преобразователей по мощности и по току в формате Excel ♦

Мощность преобразователя частоты

Одним из наиболее важных параметров электропривода является его мощность. По этой причине при выборе частотного преобразователя, в первую очередь, следует определится с его нагрузочной способностью. В соответствии с имеющейся номинальной мощностью двигателя выбирается преобразователь частоты, рассчитанный на такую же мощность. И такой выбор будет являться правильным при условии, что нагрузка на валу не будет динамично изменяться, ток не будет значительно превышать номинальное установленное значение, как для данного двигателя, так и преобразователя. Поэтому более корректным было бы производить выбор по максимальному значению тока потребляемого двигателем от частотного преобразователя с учетом перегрузочной способности последнего. Обычно способность к перегрузкам указывается в процентах от номинального тока совместно с максимально допустимым временем действия данной перегрузки до активации непосредственной защиты. Таким образом, для правильного выбора нужно знать характер перегрузок именно вашего механизма, в частности: каков уровень перегрузок, какова их длительность и как часто они появляются.

Питающее напряжение

Не менее важным является вопрос о питающем напряжении. Наиболее распространенный случай — это питание от трехфазной промышленной сети 380В, но возможны варианты, когда привод рассчитан на работу от однофазной сети 220-240В. Как правило, последний ограничивается рядом мощностей до 3,7кВт. Существуют варианты и высоковольтного привода, дающие возможность управлять более мощными двигателями, с мощностями измеряющимися уже в МВт, при относительно меньших значения тока. Каждый из вариантов применим для различного рода решений, и зависит как от возможностей электроснабжения, так и от ряда возможностей обусловленных применением соответствующего привода.

Диапазон регулирования

Если скорость не будет падать ниже 10% от номинальной, то подойдет практически любой частотный преобразователь двигателя, но если нужно снижать скорость и далее, обеспечивая при этом номинальный момент на валу, нужно убедиться в способности частотного преобразователя двигателя обеспечить работу на частотах, близких к нулю. Кроме того, с диапазоном регулирования частоты вращения связан еще один вопрос, который требует решения, — охлаждение двигателя. Обычно асинхронный двигатель (с самовентиляцией) охлаждается вентилятором, закрепленным на его валу, поэтому при снижении скорости эффективность охлаждения резко падает. Некоторые преобразователи частоты снабжены функцией контроля теплового режима с помощью обратной связи через датчик температуры установленного на самом двигателе. Существуют и другие варианты решения данного вопроса, но уже без использования частотного преобразователя.

Режим торможения

Торможение выбегом (инерционное торможение), аналогично отключению двигателя от питающей сети, при этом процесс может занять продолжительное время. Особенно если это высокоинерционные механизмы. С помощью частотного преобразователя можно осуществить останов или торможение двигателя с переходом на более низкую скорость работы за более короткий промежуток времени. Возможно несколько вариантов:

  • отдать в сеть электроэнергию (режим рекуперативного торможения);
  • выполнить остановку подачей на обмотки статора напряжения более низкой частоты или постоянного напряжения, тогда избыток запасенной кинетической энергии выделится в виде тепла через радиаторы преобразователя частоты и сам двигатель (режим торможения постоянным током);
  • выполнить остановку или торможение с использованием тормозного прерывателя и комплекта тормозных резисторов.

Целесообразность применения того или иного метода рассматривается в основном с точки зрения экономической выгоды. Так рекуперация в сеть более выгодна в плане экономии электроэнергии, привод с использованием тормозного сопротивления — более дешевое техническое решение, торможение двигателем вообще не требует дополнительных затрат, но в свою очередь возможно только при малых мощностях.

Способы управления электродвигателем

Некоторые механизмы должны управляться от задающего сигнала на условиях плавного изменения оборотов двигателя, а в некоторых случаях требуется работа на фиксированных скоростях. Причем, и в том и другом случае возможно управление, как с пульта управления преобразователя, так и с использованием клемм цепей управления преобразователя, кнопок, переключателей и потенциометров. При реализации последнего варианта необходимо убедиться в достаточном количестве требуемых входов. В случае использования внешнего управляющего устройства (контроллера, логического реле и т.д.), необходимо убедиться в согласовании по техническим параметрам. Обычно это токовые или вольтовый сигналы с диапазонами 0%u202620мА, 4%u202620мА и 0%u202610В соответственно. Если управление преобразователем происходит по сети, то необходимы наличие соответствующего интерфейса и поддержка соответствующего протокола передачи данных. Управление двигателем может проходить автоматически, для этого необходимо наличие ПИД-регулятора и возможность организовать обратную связь от датчика контролируемого параметра

Индикация параметров

Как правило, любой преобразователь частоты имеет панель с дисплеем и необходимыми органами управления для проведения пуско-наладки и управления частотным преобразователем. Этот же дисплей в процессе функционирования преобразователя возможно использовать для отображения каких-либо параметров. Дисплеи могут отличаться количеством строчек, а значит, информативностью, типом самого дисплея (семисегментный индикаторный либо жидкокристаллический). В случае невозможности во время работы наблюдать параметры на дисплее самого преобразователя, используя аналоговые и дискретные (релейные, транзисторные) выходы, можно вывести необходимую информацию на пульт дистанционного управления. Помимо индикации параметров (состояния «работа», «авария», «режим торможения», значение тока нагрузки, обороты двигателя, частота и напряжение питающей сети и др.) некоторые преобразователи имеют возможность формировать сигналы управления посредством тех же аналоговых и дискретных выходов, тем самым реализовывать более сложные системы управления.

Защитные функции

Кроме функций управления на преобразователь частоты обычно возлагаются функции защиты. Как правило, основным набором являются:

  • ограничение тока при пуске, при продолжительной работе, при остановке и коротком замыкании;
  • защита от перенапряжения и пониженного напряжения;
  • контроль температуры двигателя;
  • защита от перегрева радиатора;
  • защита выходных IGBT.

Монтаж и установка преобразователя

Немаловажным этапом является выбор предполагаемого места установки преобразователя, а отсюда условий его эксплуатации:

  • ограничение тока при пуске, при продолжительной работе, при остановке и коротком замыкании
  • диапазон рабочих температур
  • влажность
  • высотность
  • вибрации
  • степень защиты (IP)

Компактность в некоторых случаях является решающим фактором на этапе выбора. Каковы габариты устанавливаемого привода и способ установки? Возможно ли радиаторы силовой части преобразователя вынести на тыльную часть, обеспечив при меньших габаритах шкафа достаточную вентиляцию? Информация об условиях окружающей среды является неотъемлемой частью технических характеристик, при выборе частотного преобразователя, и не соблюдение их при установке может привести к выходу из строя частотного преобразователя. В процессе установки возникает множество вопросов, но это одни из первых с которыми приходится столкнуться.

Функциональные возможности преобразователя

Современные преобразователи частоты имеют множество функциональных возможностей. Перечислим часто встречающиеся по мере их важности.

Работа при нестабильном питании.

Это актуальный параметр особенно при использовании в России. Отсюда вопрос: «каков допустимый диапазон питающего напряжения?». Хорошим диапазоном напряжения питающей сети для современных преобразователей является 380-460 В с отклонением ±10%. Следует уточнить каковы действия преобразователя при просадке или полном отключении питания на короткое или очень короткое время? Возможно ли сохранение работоспособности с пропорциональным изменением скорости, момента двигателя, автоматический перезапуск после восстановления питания, подхват скорости работающего двигателя при повторном пуске после пропадания питания и т.д. Если имеющиеся функциональные возможности обеспечивают допустимый режим работы механизма с сохранением его работоспособного состояния, то можно считать, что вопрос о нестабильном питании для вас снят, в противном случае стоит либо решить вопрос с электроснабжением, либо задуматься о выборе другого преобразователя.

Исключение работы на резонансных частотах.

Некоторые механизмы имеют собственные резонансные частоты при работе на которых наблюдаются недопустимые вибрации, что может привести к поломке оборудования. В таких случаях функция исключения недопустимых частот в преобразователе позволит обезопасить механизм от его преждевременного выхода из строя.

Сетевой обмен.

Обычно требуется либо включить привод в систему автоматического управления, либо предусмотреть перспективу такого использования преобразователя в будущем. Для этого необходимо разобраться со стандартом и протоколом связи. В настоящее время существует большое их разнообразие, позволяющее сделать работу в режиме САУ наиболее оптимальной. Отличаться они могут удаленностью, количеством связываемых объектов и помехозащищенностью. Наиболее распространенный вариант %u2013 это интерфейс RS-485 и протокол передачи данных Modbus, но для согласования работы в составе системы автоматического управления этот вопрос следует более подробно уточнить у поставщика либо у производителя.

Автоматическая настройка.

На сегодняшний день выбор преобразователей велик, но еще встречаются простейшие модели в которых не производится настройка под параметры двигателя, а точнее его обмотки. В более поздних моделях требуется вводить ряд дополнительных справочных данных двигателя. Частотные преобразователи имеют возможность провести так называемый идентификационный пуск (режим автонастройки), при котором еще до пуска, либо уже у вращающегося двигателя параметры обмоток определяются автоматически. Если на выбираемом приводе предполагается реализовать прецизионную систему управления, то этот вопрос является особенно актуальным.

Принцип управления.

В наиболее распространенном частотно-регулируемом приводе на основе асинхронных двигателей с короткозамкнутым ротором применяются скалярное и векторное управление. Скалярное управление строится на принципе постоянства отношения выходного напряжения преобразователя к его выходной частоте. То есть при изменении частоты амплитуда напряжения изменяется таким образом, что отношение максимального момента двигателя к текущему моменту нагрузки остается неизменным. Это отношение называется перегрузочная способность двигателя. Важным достоинством скалярного метода является возможность одновременного управления группой электродвигателей. Скалярное управление применимо для большинства практических случаев использования частотного электропривода с диапазоном регулирования частоты вращения до 1:40. Векторное управление, в свою очередь, позволяет существенно повысить точность поддержания выходной частоты, точность регулирования по скорости, а также точность поддержания момента. Так же отличительной особенностью векторного регулирования является возможность управлять моментом на валу электродвигателя при его работе на частотах близких к нулю.

Читать еще:  Двигатель 406 инжектор не тянет большой расход топлива

Возможность использования нескольких наборов параметров.

Последнее поколение преобразователей имеет функциональную возможность выбирать различные комбинации настроек для нескольких режимов работы одного и того же двигателя или для нескольких двигателей, имеющих различные технические параметры. Количество функций описанных выше — малая часть из их огромного множества, исчисляемого уже сотнями в преобразователях последнего поколения. Выбирать необходимые нужно исходя из тех требований, которые диктуют предполагаемые области их применения. Вряд ли этап подбора частотного преобразователя ограничивается решением выше указанных вопросов, но это те из них с которыми приходится столкнуться на первоначальном этапе. Выбор частотного преобразователя, как высокотехнологичного оборудования, сам по себе не прост и в конечном итоге сводится к экономической целесообразности приобретения и использования. Отсюда, не стоит слишком завышать требования и тем самым переплачивать за неиспользуемые опции, и в тоже время отказываться от необходимых, в надежде сделать механизм, привод и систему в целом работоспособными.

Критерии выбора электродвигателя

Электродвигатель — это устройство, способное преобразовывать энергию тока в кинетическую энергию. Такие приборы, обладают большим количеством преимуществ:

  • высокий показатель КПД, более 90%, благодаря чему двигатель можно использовать во многих сферах деятельности;
  • в процессе применения нет трения трансмиссии.

Изделие абсолютно безопасно для окружающей среды, так как в процессе работы не происходит выброс вредных элементов. Также к достоинствам можно отнести тот факт, что электродвигатель обладает высокой ремонтопригодностью. Благодаря этому вы сможете восстановить работу оборудования, не затрачивая большой объём денежных средств.

Главным фактором при выборе товара является определение сферы его применения. Оборудование находит применение в следующих областях:

  • насосных установках;
  • компрессорах;
  • на различных промышленных предприятиях;
  • в устройствах для кондиционирования.

Виды двигателя

На сегодняшний день на рынке электродвигателей доступно несколько основных видов устройств:

1. Привод постоянного тока.

Является одним из самых распространенных типов. Данная система применяется в металлургической промышленности и транспорте, однако модели постепенно вытесняются асинхронными устройствами.

Дело в том, что у такого аппарата существуют недостатки – возможность применения, только в том случае, если имеется определенная мощность тока, не изменяющаяся во время работы. Для обеспечения таких условий функционирования, требуется совершать дополнительные финансовые вложения.

Но есть и преимущества — этот вид системы гарантирует бесперебойную работу даже при чрезмерных нагрузках.

2. Приводы переменного тока.

Это изделия, которые можно разделить на два типа: синхронные и асинхронные. Каждый из этих видов имеет индивидуальные особенности и характеристики, которым также стоит уделить внимание:

  • Синхронные устройства в основном используются в устройствах, которые имеют стабильную рабочую скорость (генераторы, насосы). Данный вид системы обладает высоким КПД. Используя синхронные электродвигатели можно минимизировать потребление электроэнергии. Мощность системы может достигать показателя в 10 000 кВт, похвастаться которым смогут не многие.
  • Асинхронные двигатели – уникальные устройства. Их особенность заключается в высоких показателях вращения магнитного поля, особенно при сравнении с другими аппаратами. Работает оборудование при помощи переменного тока, который образуется благодаря индукции, возникающей во время передвижения проводниковой среды в магнитном поле. Для того чтобы это происходило, специалисты используют обмотку, которая обтекается токами.

3. Вентильные устройства.

Этот вид включает в себя аппараты, в которых для регулировки режима использования, следует применять специальные вентили. Такие агрегаты обладают целым рядом достоинств:

  • безопасность использования;
  • легкость эксплуатации;
  • отсутствие необходимости в дополнительном уходе;
  • высокий уровень исполнения;
  • возможность регулировать скорость вращения по своему усмотрению.

На что следует обращать внимание при выборе устройства?

Если вам требуется произвести выбор электродвигателя для производства, либо для применения в другой сфере, следует обратить внимание на такие факторы:

  • способ питания;
  • вид электрического тока;
  • режим эксплуатации;
  • воздействие внешней среды на оборудование.

Современная модель электродвигателя, должна функционировать от сети с частотой от 50 до 60 Гц, чтобы обеспечить её использование в любой точке мира. Двигатель должен демонстрировать высокий показатель КПД и отвечать всем международным нормам.

Мощность системы

  • «Рм» – мощность, которая будет потребляться устройством;
  • «ηп» – коэффициент передачи полезного действия.

Рекомендуем при использовании этой формулы устанавливать мощность аппарата немного выше расчетного показателя. Если вам потребуется посчитать номинальный уровень постоянного тока устройства, используйте такую формулу:

Чтобы определить ток трехфазного оборудования, используйте следующий способ:

  • «РН» — номинальное значение мощности;
  • «UH» –номинальный уровень напряжения;
  • «cosφH» — показатель мощности.

Номинальный размер мощности также можно найти в техническом документе оборудования.

Обратите внимание! Выбирая устройство, запас показателя мощности обязательно должен быть, но не большим. В том случае, если это правило будет нарушено, может значительно снизиться показатель КПД. В некоторых ситуациях, это может повлечь за собой еще и снижение показателя мощности.

Вам необходимо рассчитать пусковой ток? Примените такую формулу:

  • «IH» – номинальное значение тока;
  • «Кп» – кратность тока.

Пусковой ток рассчитывается для каждого двигателя в цепи. Количественное значение величины облегчит подбор типа автоматического выключателя, чтобы защитить всю цепь.

Режимы работы устройств

Режим работы способен определить нагрузку на прибор. В определенных ситуациях она может оставаться абсолютно неизменной, в других же может меняться. Показатель нагрузки также нужно учитывать во время выбора системы. В соответствии с нормами и стандартами, существуют определенные режимы использования агрегата:

  • Продолжительный режим (S1). Нагрузка остается постоянной в течение всего времени, пока температура электродвигателя не достигнет необходимого значения.
  • Кратковременный режим (S2). Температура при эксплуатации не достигает установившегося значения. После отключения двигателя, он охлаждается до температуры окружающей среды. Для режима необходимо проверять перегрузочную способность электропривода;
  • Периодически-кратковременный режим (S3). В периоды включения и отключения температура двигателя не успевает достигнуть заданного значения или охладиться до температуры окружающей среды. При расчете мощности двигателя обязательно учитывается продолжительность пауз и потерь в переходные периоды. При выборе электродвигателя важным параметром является допустимое количество включений за единицу времени;
  • Периодически кратковременный режим с частыми пусками (S4) и режим с электрическим торможением (S5). Данные режимы следует рассчитывать по таким же значениям, как и в предыдущем случае с S3;
  • Периодически-непрерывный режим с кратковременной нагрузкой (S6). В данном случае работа двигателя происходит под нагрузкой, которая чередуется с холостой эксплуатацией;
  • Периодически-непрерывный режим с электроторможением (S7);
  • Периодически-непрерывный режим с одновременным изменением нагрузки и частоты вращения (S8);
  • Непериодический режим с изменением нагрузки и частоты вращения (S9).

Большинство моделей электроприводов, которые предназначены для длительной эксплуатации, адаптированы под изменяющийся уровень нагрузки.

Климатические исполнения

Следует учитывать не только технические показатели и возможности электродвигателя, но и условия окружающей среды, в которой оборудованию придется регулярно работать. Современные модели создаются для применения в различных условиях, поэтому приобретайте оборудование, подходящее под ваши требования.

Маркировка товаров по ГОСТ:

  • У — модели можно использовать в умеренном климате;
  • ХЛ — электродвигатели адаптированы к низким температурам;
  • ТС – подходят для работы в сухом, тропическом климате;
  • ТВ – модели для тропического (влажного) климата;
  • Т – универсал для тропического климата;
  • О — товар для эксплуатации на суше;
  • М – оборудование для эксплуатации в морском климате;
  • В – подходят для использования в любых условиях суши и моря.

Кроме буквенных обозначений, следует обращать внимание на цифры, которые обычно указываются на моделях электродвигателей и в технической документации. Эти показатели сообщают о местности размещения.

  • 1 — устройство можно устанавливать на открытой площадке;
  • 2 — проводить монтаж в помещениях, где есть свободный доступ воздуха;
  • 3 – подходит для эксплуатации в закрытом помещении;
  • 4 — эксплуатация в производственных помещениях, оборудованных системой отопления и вентиляции;
  • 5 – модели для проведения работ зонах высокой влажности и скоплением конденсата.

Также необходимо обращать внимание на степень защищенности устройства от пыли и влаги. Данная информация регнламентируется стандартами с введенной степенью IP-защиты. Первая характеристическая цифра указывает на степень защиты, обеспечиваемой оболочкой от попадания твёрдых предпетов и пыли. Вторая классифицирующая цифра указывает степень защиты оборудования от вредного воздействия воды. В стандартном исполнении наши электродвигатели поставляются в исполнении IP55, и под заказ возможны исполнения электродвигателей со степенью защиты IP65 и IP66.

Подробнее ознакомиться с расшифровкой значений можно в обзорной статье по ссылке — promair.by/interesno-znat/rashifrovka-zachity.

На нашем сайте, представлен обширный каталог электродвигателей от производителя. Если в процессе выбора модели возникнут какие-либо вопросы, свяжитесь с нами по телефонам: +375 (17) 513-99-91, +375 (17) 513-99-92. Наши специалисты предоставят детальную консультацию и помогут подобрать подходящий продукт.

Ссылка на основную публикацию
Adblock
detector