Что такое реактивный двигатель физика

Доклад Реактивный двигатель 8 класс сообщение

Реактивный двигатель — это машина, которая превращает богатое энергией жидкое топливо в мощную силу толкания, называемую тягой. Тяга от одного или нескольких двигателей толкает самолет вперед, заставляя воздух проходить вдоль крыльев, в результате чего создается восходящая сила, называемая подъемом.

Все реактивные двигатели работают одинаково: втягивают воздух во входное отверстие, сжимают его, сжигают вместе с топливом и выводят выхлопные газы через турбину наружу. Поэтому все реактивные двигатели имеют пять ключевых компонентов: вход, компрессор, камеру сгорания и турбину. Но различные типы двигателей могут значительно отличаться друг от друга. Они могут иметь дополнительные компоненты, управляемые турбиной, входы у них могут работать по-разному, может быть более одной камеры сгорания, два или более компрессоров и несколько турбин.

Турбореактивный двигатель — это самый простой реактивный двигатель, основанный на газовой турбине. В нем базовая «ракетная» струя двигает плоскость вперед, стреляя горячей струей выхлопа назад. Выхлоп выходит из двигателя намного быстрее, чем холодный воздух входит в него, что и создает тягу.

Турбореактивные двигатели — это базовые реактивные двигатели общего назначения, которые постоянно производят одинаковое количество энергии, поэтому они подходят для небольших малоскоростных реактивных самолетов, которые не должны делать ничего особенно примечательного, например, внезапно ускоряться или перевозить огромные, тяжелые грузы.

Турбовальный двигатель сильно отличается от турбореактивного двигателя, поскольку выхлопной газ производит относительно небольшую тягу. Турбина в турбовальном двигателе передает большую часть мощности на вращение проходящего через нее приводного вала и один или несколько редукторов, которые вращают роторы. Турбовальные двигатели используются на вертолетах, в поездах, танках и лодках.

Современный самолет с пропеллером обычно использует турбовинтовой двигатель. Он похож на турбовальный двигатель в вертолете, но вместо того, чтобы приводить в действие верхний ротор, турбина внутри него вращает пропеллер, установленный спереди, который толкает плоскость вперед. В отличие от турбовального, турбовинтовой двигатель создает прямое движение от выхлопных газов, но большая часть тяги исходит от пропеллера. Поскольку летательные аппараты, управляемые пропеллером, летают медленнее, они тратят меньше энергии на борьбу с сопротивлением воздуха, что делает их очень эффективными для использования в рабочих грузовых самолетах и других небольших легких самолетах.

Гигантские пассажирские самолеты имеют огромные вентиляторы, установленные спереди, которые действуют как сверхэффективные пропеллеры. Вентиляторы работают двумя способами:

  • Немного увеличивают движение воздуха, который течет через центр двигателя, создавая большую тягу с тем же топливом, что делает их более эффективными.
  • Передают часть воздуха на внешнюю оболочку двигателя, полностью обходя внутреннюю часть, вызывая обратный поток воздуха.

Другими словами, турбовентилятор производит тягу частично как турбореактивный двигатель и частично как турбовинтовой. Низкооборотные турбовентиляторы посылают практически весь воздух через сердечник, в то время как обходные направляют больше воздуха вокруг двигателя. Впечатляющая мощность и эффективность делают турбовинтовые двигатели самыми востребованными: от пассажирских самолетов до реактивных истребителей.

Доклад №2

Устройство и роль ракетных двигателей в жизни людей.

Люди начали осваивать космос очень не скоро: не на чем было выбраться за пределы атмосферы Земли. Дело обстояло в том, что не хватало тяги для данной операции. Только в 1961 году удалось впервые полететь в космос. Все благодаря тому, что наконец – то удалось создать такой двигатель, который был способен вынести ракету за пределы орбиты Земли. Но как устроен ракетный двигатель? Что использовали для получения такой огромной мощи? И применяются ли где – нибудь еще подобные двигатели?

Как работает ракетный двигатель?

Создателем ракетного двигателя был А. Циолковский. Один из важных фактов про работу ракетного двигателя – это то, что его действие зависит от закона сохранения импульса. Для тех, кто не знает данный закон, я напомню: сумма импульсов до взаимодействия тел равна сумме импульсов после взаимодействия тел. Кстати говоря, ракетные двигатели работоспособны даже там, где отсутствует воздух. Главный компонент для отличной работы двигателей – это твердое топливо, которое вскоре начинает прогорать. Когда оно сгорит полностью, тогда образуется достаточная масса горючего газа. Весь этот газ образуется в мощную струю, благодаря которой ракета движется в направлении, противоположном направлению газового потока.

Роль ракетных двигателей в жизни людей.

К сожалению, у такого рода двигателей только одна задача, о которой уже было говорено ранее. Их цель – отправить ракету в космос, ведь у других двигателей не хватает мощи для этого. Больше ракетные двигатели нигде применения не находят.

Разновидности ракетных двигателей.

Да, они бывают нескольких видов. Главное их отличие – это источник энергии, он же – топливо для двигателей. Итак, вот эти самые виды:

Самый многочисленный, если подумать. Здесь топливом является реакция определенного горючего и окислителя. Затем всю «смесь» нагревают до высокой температуры, что ведет к расширению топлива, которое следом разгоняют в сопле Лаваля. В итоге, то, что получилось, выталкивает ракету. Стоит отметить, что уже в 2013 году данный вид двигателя улучшили до максимума, а значит, у ракет с химическим двигателем есть свой предел.

Нетрудно догадаться, что в данном случае будет топливом. Импульс электрических двигателей способен достичь отметки 210 километров в час.

Схож с прошлым типом двигателей, только здесь ракета будет ускоряться, когда топливо находится в плазменном состоянии. На данный момент существует только один такой двигатель.

Реактивный двигатель

Популярные темы сообщений

  • Флейта (музыкальный инструмент)

Флейта — древний духовой инструмент, издающий прекрасную гармоничную мелодию, которая способна удивить любого. Первое время флейту изготавливали дерева, но в дальнейшем на смену дереву придет серебро. В XIX же веке, довольно,

Как и других животных человек решил одомашнить кролика. Домашних кроликов чаще всего держат не ради их меха или мяса, они становятся верными друзьями по жизни. Сам по себе кролик — это небольшого размера пушистый зверек, происходящий от зайца.

Подольск имеет очень глубокую и интересную историю своего появления. Как и в любом другом городе, так и в Подольске существует много разнообразных легенд, на тему появления названия города. Легенда данного города гласит нам,

Естествознание. 11 класс

Конспект урока

Естествознание, 11 класс

Урок 6. Реактивное движение. Космические полеты

Перечень вопросов, рассматриваемых в теме:

  • На каких принципах основано реактивное движение?
  • Каковы достоинства и недостатки реактивных двигателей, которые необходимо учитывать для оценки эффективности их применения?

Глоссарий по теме:

Двигатели, работающие на основе химических реакций, называют химическими реактивными двигателями.

Плазменные реактивные двигатели – двигатели, работающие на основе разгона заряженных частиц электромагнитным полем. Газ в рабочей камере ионизируется (его атомы теряют электроны), превращаясь в плазму.

Активный участок полёта (активный участок траектории) — участок полёта летательного аппарата, на котором работает маршевый двигатель аппарата, как правило — ракетный.

Многоступенчатая ракета — летательный аппарат, состоящий из двух или более механически соединённых ракет, называемых ступенями, разделяющихся в полёте. Многоступенчатая ракета позволяет достигнуть скорости большей, чем каждая из её ступеней в отдельности.

Читать еще:  Акпп повышает обороты двигателя

Движение, при котором тело изменяет свою скорость, отбрасывая свою часть, называют реактивным.

Закон сохранения импульса — векторная сумма импульсов двух тел до взаимодействия равна векторной сумме их импульсов после взаимодействия

Формула Циолковского определяет скорость, которую развивает летательный аппарат под воздействием тяги ракетного двигателя, неизменной по направлению, при отсутствии всех других сил. Эта скорость называется характеристической:

где:

• V — конечная скорость летательного аппарата, которая для случая маневра в космосе при орбитальных манёврах и межпланетных перелетах часто обозначается ΔV, также именуется характеристической скоростью.

• I — удельный импульс ракетного двигателя (отношение тяги двигателя к секундному расходу массы топлива);

M1 — начальная масса летательного аппарата (полезная нагрузка + конструкция аппарата + топливо);

M2 — конечная масса летательного аппарата (полезная нагрузка + конструкция аппарата).

Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц):

Обязательная литература:

  1. Громов С. В., Родина Н. А.. Физика – М. : Просвещение, 2001.
  2. Дерябин В. М. Законы сохранения в физике. – М.: Просвещение, 1982.
  3. Уманский С.П. Космические орбиты. М., Просвещение, 1996.

Теоретический материал для самостоятельного изучения

Некоторые средства передвижения, созданные человеком, основаны на законах и принципах реактивного движения. Но многие средства передвижения на Земле основаны на других принципах. И только в XX веке при выходе человека в космос реактивный двигатель оказался единственно возможным (и по настоящее время) для целенаправленного перемещения в безвоздушном пространстве. Покорить космические просторы без реактивного двигателя пока не представляется возможным.

Идея использования реактивного движения в космосе была впервые выдвинута К.Э. Циолковским задолго до реального выхода человека за пределы воздушного пространства.

Причина движения тел-взаимодействие между ними. Чтобы осуществлять целенаправленные движения живые организмы и созданные человеком устройства должны взаимодействовать с какими-то другими телами, помимо гравитационного взаимодействия с Землей. Движущиеся по поверхности Земли тела, организмы и механизмы осуществляют движения, взаимодействуя с поверхностью Земли (вспомните роль силы трения при движении транспорта). Организмы и механизмы, движущиеся в воде, взаимодействуют с водой. Наконец, летающие организмы и механизмы взаимодействуют с воздухом. Если же тело оказывается за пределами земной атмосферы, то ни одно из перечисленных движений оказывается невозможным, поскольку на тело действует лишь сила тяжести.

При реактивном движении тело массы M взаимодействует с другим телом массы m, отталкивая его от себя. В результате закона сохранения импульса тело массы M приобретает дополнительный импульс в направлении, противоположном движению тела массы m. Если до столкновения скорость тел была равна нулю (можно всегда выбрать такую систему отсчета), то, как следует из закона сохранения импульса, тело массы M приобретет скорость , где υ — скорость, с которой отброшено тело массы m. Реактивный двигатель, действующий на космический корабль с некоторой силой, должен непрерывно отбрасывать вещество. Как видно из приведенной формулы реактивная сила будет тем больше, чем с большей скоростью отбрасывается вещество и чем больше вещества в единицу времени отбрасывается. Из закона сохранения импульса получим следующее выражение для реактивной силы: F=Qυ, где через Q обозначена масса вещества, которое отбрасывается двигателем в единицу времени.

Рис.1 модель ракетоносителя

Можно и самим сделать простейшую модель ракеты – для этого достаточно взять обыкновенный воздушный шарик.

Рис.2 опыт с шариком

Поставим опыт: надуйте шарик и, не завязывая его, отпустите. Воздух будет выходить из шарика, и он полетит в сторону, противоположную направлению струи воздуха. Движение шарика объясняется законом сохранения импульса. В начальный момент шарик с содержащимся в нем воздухом покоился относительно земли. Согласно закону сохранения импульса суммарный импульс шарика и вышедшего из него воздуха должен оставаться равным нулю. Поэтому выходящий из шарика воздух и шарик должны двигаться в противоположных направлениях.

Известно, что первые реактивные двигатели были пороховыми и использовались в качестве метательных военных снарядов. В результате сжигания пороха образовывались быстро расширяющиеся газы, которые выбрасывались из ракеты в определенном направлении. (В настоящее время есть похожие пиротехнические игрушки, скорее всего, вы имели с ними дело). Подобные пороховые реактивные двигатели используются в военной технике и в настоящее время. В других реактивных двигателях, которые в частности применяются на самолетах, в качестве горючего используются жидкости (в простейшем случае – керосин). Такие двигатели называются жидкостными реактивными двигателями.

Все перечисленные двигатели используют в качестве одной из компонент химической реакции воздух, находящийся в атмосфере. Принципиальное отличие космического реактивного двигателя состоит в том, что для химической реакции должно использоваться только вещество, находящееся в баках самого двигателя. Поэтому конструкция двигателя включает два бака – один с горючим веществом (например, с водородом), а другой с окислителем (например, с кислородом) для осуществления реакции окисления (горения) (см. Рис. 1).

Такие двигатели, работающие на основе химических реакций, называют химическими реактивными двигателями.

Ракеты используют для запуска искусственных спутников Земли, обслуживания орбитальных станций, межпланетных полетов. В головной части ракеты расположена кабина космонавтов. В начале полета на эту часть приходится всего несколько процентов от общей массы ракеты. Основную же массу ракеты в начале полета составляет запас топлива. В современных ракетах скорость вылетающего газа (относительно ракеты) составляет несколько километров в секунду (в несколько раз больше скорости пули). Как следует из закона сохранения импульса, для того чтобы даже при такой огромной скорости вылетающего газа ракета приобрела первую космическую скорость (около 8 км/с), необходимо, чтобы масса топлива в несколько раз превышала массу полезного груза.

Увеличение массы топлива неизбежно влечет увеличение массы топливных баков, в которых хранится топливо, и связанных с ними устройств. Эта масса оказывается ненужной в конце разгона ракеты и уменьшает массу полезного груза, выводимую в космос. Идея отбрасывать лишнюю массу топливных баков по мере сгорания топлива привела к созданию многоступенчатых ракет.

Первая и вторая ступени ракеты представляют собой емкости с топливом, камерами сгорания и соплами. Когда топливо, содержащееся в первой ступени, сгорает, она отделяется от ракеты, в результате чего масса ракеты значительно уменьшается. Затем тоже происходит со второй ступенью, после чего включаются двигатели третьей ступени, завершающие разгон ракеты до расчетной скорости.

Помимо таких мощных двигателей для маневрирования используются маломощные плазменные реактивные двигатели. В таких двигателях отбрасываемое вещество получает скорость не в результате химической реакции, а в результате разгона заряженных частиц электромагнитным полем. Подобные двигатели являются более экономичными и легко управляемыми.

Достоинством реактивного двигателя является то, что, как уже говорилось, это единственный двигатель способный эффективно работать в космосе. К недостаткам реактивного двигателя следует отнести его низкую экономичность, по сравнению с другими двигателями. Качественно это можно объяснить на основе энергетических соображений. В разгоняющемся космическом корабле химическая энергия переходит в кинетическую энергию корабля («полезная энергия») и кинетическую энергию отбрасываемых двигателем газов («бесполезная энергия»). При разгоне до космических скоростей эта «бесполезная энергия» оказывается существенно больше «полезной энергии».

Количественно низкая эффективность реактивного двигателя может быть понята на основе формулы Циолковского. Из нее, в частности, следует, что, если скорость истечения газов в ракете достигает даже 4 км/с, то для вывода космического корабля на орбиту Земли (достижения первой космической скорости – около 8 км/с) необходимо иметь массу горючего, более чем в 6 раз превосходящую массу самого космического корабля.

Читать еще:  Характеристик двигателя змз 406

К. Э. Циолковскому принадлежит знаменитое изречение: «Земля – колыбель разума, но нельзя вечно жить в колыбели». Мечту Циолковского о космических полетах первыми осуществили наши соотечественники под руководством Сергея Павловича Королева.

Первый искусственный спутник Земли был запущен в СССР 4 октября 1957 года. Первым космонавтом Земли стал Юрий Алексеевич Гагарин. Его космический полет состоялся 12 апреля 1961 года. Со времени первых космических полетов ракеты были значительно усовершенствованы, и сегодня на околоземные орбиты с их помощью выводятся большие космические станции, на которых постоянно работают космонавты.

Ракеты выводят на орбиты сотни спутников связи, которые обеспечивают передачи тысяч телевизионных программ и миллионов телефонных разговоров, благодаря чему вся планета окутана сегодня «паутиной» надежных систем связи.

  • Реактивное движение подчиняется физическим законам и закономерностям.
  • Каждый вид реактивного двигателя обладает своими достоинствами и недостатками.
  • Реактивный двигатель, несмотря на его низкую эффективность, является в настоящее время единственным двигателем, позволяющим осуществить целенаправленное перемещение в космическом пространстве.
  • Изучение перспектив космических исследований показывает, что уже в ближайшие десятилетия станут реальными космические путешествия человека на другие планеты

Примеры и разбор решения заданий тренировочного модуля:

Задание 1. Вставьте пропущенные слова в текст: «И только в _____ веке при выходе человека в космос _____________ двигатель оказался единственно возможным (в настоящее время) для целенаправленного перемещения в безвоздушном пространстве».

Варианты ответов: электромагнитные, XX, реактивный; XIX; паровой; роторно-поршневой.

Правильный вариант: И только в XX веке при выходе человека в космос реактивный двигатель оказался единственно возможным (в настоящее время) для целенаправленного перемещения в безвоздушном пространстве.

Подсказка: вспомните, какой тип двигателя может вывести корабль в космическое пространство.

Задание 2. Разгадайте ребус. Ракета, предназначенная для выведения полезной нагрузки в космическое пространство

Почему ракеты взлетают

Любовь Карась

Один из популярных детских вопросов «Почему ракеты летают?» для многих остается без ответа. Изучение космонавтики требует глубоких знаний по физике, ракетостроению, астрономии и в других отраслях. Т&Р объясняют, как происходит одно из самых завораживающих научных событий, и рассказывают, благодаря чему ракеты сохраняют скорость, не переворачиваются и преодолевают силу притяжения.

Как устроен реактивный двигатель

Русский революционер и изобретатель Николай Кибальчич создал первый в мире проект аппарата с реактивным двигателем. Однако ученый был казнен. В начале XX века эту идею стал развивать К.Э. Циолковский. Ученый разработал саму схему реактивного двигателя, который работал на жидком топливе.

Ракета способна обеспечивать собственное движение в пустоте за счет реактивной силы. То есть она самостоятельно толкает себя, подобно осьминогу или кальмару. Процесс воспламенения смеси в двигателе является непрерывным — это пример простого твердотопливного двигателя. Еще один тип ракетного двигателя — жидкостный . В нем используется жидкий кислород или азотная кислота, при окислении этого вещества увеличивается удельный импульс — показатель эффективности реактивного двигателя или ракетного топлива.

Несмотря на всю сложность конструкции современных космических кораблей, ракета — один из самых простых летательных аппаратов. В основе ее устройства лежит принцип, согласно которому всякое действие рождает противодействие. Ракета летит, выбрасывая определенное вещество из своей хвостовой части. Несмотря на всю эту простоту, ракеты разрабатывались и совершенствовались в течение более чем семисот лет.

Луис Блумфилд. «Как все работает. Законы физики в нашей жизни»

Луис Блумфилд в своей книге «Как все работает. Законы физики в нашей жизни» приводит в пример движение по скользкому льду. Единственный способ сдвинуться — получить какой-то толчок от самого себя . Необходимо бросить кроссовок, и вы начнете двигаться в противоположную сторону. Вы передали импульс брошенной обуви, и она обратно передала его вам. «Величина импульса кроссовка равна величине вашего противоположно направленного импульса. Естественно, ваша масса намного больше массы кроссовка, поэтому вы двигаетесь гораздо медленнее, чем он», — объясняет Блумфилд.

Движение ракеты предполагает действие двух равных и противоположно направленных сил

Аналогично этому работает реактивный двигатель. Топливо и окислитель попадают в рабочую камеру, смешиваются, сгорают в зоне горения, выделяя огромное количество тепла, которого достаточно для движения.

Траектория полета

Многие убеждены, что ракеты взлетают вертикально, однако это не так. Ракетное топливо может закончиться через 10 минут, а при вертикальном взлете этого времени просто не хватит для выхода на орбиту.

Современные ракеты взлетают вертикально на самом первом этапе, а далее меняют траекторию и двигаются под углом по отношению к Земле. Чем выше высота полета, тем заметнее угол. Ракета совершает гравитационный разворот — маневр, при котором направление тяги совпадает или противоположно направлению движения, изменяющемуся под действием силы тяжести. Этот маневр используется в момент выведения на орбиту или при посадке с нее.

Ускорение ракеты, взлетающей под углом к горизонту: g — ускорение свободного падения, ae — вклад двигателя в ускорение, a — итоговое ускорение ракеты

Как обеспечивается устойчивость ракеты

«Ракета сохраняет динамическую устойчивость, если суммарный момент приложенных к ней сил относительно центра масс равен нулю при ориентации носом вперед», — объясняет Луис Блумфилд. Иными словами, для того чтобы ракета постоянно двигалась носом вперед и не переворачивалась, двигатель должен создавать силу тяги, которая направлена к центру масс. Второе условие устойчивости — действие аэродинамических сил. Воздушный поток обволакивает ракету и помогает лететь, если сопротивление воздуха у хвостовой части больше, чем спереди. Для устойчивого полета модели ракеты необходимо, чтобы центр тяжести модели ракеты был впереди ее центра давления .

Действие трех скоростей

Нет однозначного ответа на вопрос, с какой скоростью летит ракета. Все зависит от ее типа, загрузки и так далее. Однако все летальные аппараты стараются достигнуть космической скорости — первой (7,9 км/с), второй (11,2 км/с) и, соответственно, третьей (46,9 км/с). Первая позволяет «не упасть» и выйти на орбиту, вторая — выйти из орбиты Земли, третья — преодолеть притяжение. Чем дальше объект, с которого стартует ракета, находится от звезды, тем меньше третья космическая скорость . Например, американский космический зонд «Вояджер-1» движется со скоростью 17 км/с.

Существует и четвертая космическая скорость . Она необходима для того, чтобы объект мог преодолеть притяжение Галактики и выйти в межгалактическое пространство. Например, около Солнца четвертая космическая составляет 550 км/с .

Реактивный двигатель Подготовила : Полищук Арина 8 класс. — презентация

Презентация была опубликована 6 лет назад пользователемСветлана Михалева

Похожие презентации

Презентация на тему: » Реактивный двигатель Подготовила : Полищук Арина 8 класс.» — Транскрипт:

1 Реактивный двигатель Подготовила : Полищук Арина 8 класс

2 Реактивный двигатель, был изобретен Гансом фон Охайном выдающимся немецким инженером — конструктором и Фрэнком Уиттлом. Первый патент на работающий газотурбинный двигатель был получен в 1930 году Фрэнк Уиттлом. Однако первую рабочую модель собрал именно Охайн. 2 августа 1939 года в небо поднялся первый реактивный самолет He 178 ( Хейнкель 178), снаряженный двигателем HeS 3, разработанный Охайном.

Читать еще:  Фазовые регуляторы оборотов двигателя

3 O Устройство реактивного двигателя достаточно просто и крайне сложно. Просто по принципу действия : забортный воздух ( в ракетных двигателях жидкий кислород ) засасывается в турбину, там смешивается с топливом и сгорая, в конце турбины образует т. н. рабочее тело ( реактивная струя ), которое и двигает машину.

4 Так все просто, но на деле это целая область науки, ибо в таких двигателях рабочая температура достигает тысяч градусов по Цельсию. Одна из самых главных проблем турбореактивного двигателестроения создание не плавящихся деталей, из плавящихся металлов. Но для того, что бы понять проблемы конструкторов и изобретателей нужно сначала более детально изучить принципиальное устройство двигателя.

5 В начале турбины всегда стоит вентилятор, который засасывает воздух из внешней среды в турбины. Вентилятор обладает большой площадью и огромным количеством лопастей специальной формы, сделанных из титана. Основных задач две первичный забор воздуха и охлаждение всего двигателя в целом, путем прокачивания воздуха между внешней оболочкой двигателя и внутренними деталями. Это охлаждает камеры смешивания и сгорания и не дает им разрушится. Сразу за вентилятором стоит мощный компрессор, который нагнетает воздух под большим давлением в камеру сгорания.

6 Камера сгорания выполняет еще и роль карбюратора, смешивая топливо с воздухом. После образования топливо воздушной смеси она поджигается. В процессе возгорания происходит значительный разогрев смеси и окружающих деталей, а также объемное расширение. Фактически реактивный двигатель использует для движения управляемый взрыв.

7 Камера сгорания реактивного двигателя одна из самых горячих его частей её необходимо постоянно интенсивное охлаждение. Но и этого недостаточно. Температура в ней достигает 2700 градусов, поэтому её часто делают из керамики. После камеры сгорания горящая топливо — воздушная смесь направляется непосредственно в турбину.

8 Турбина состоит из сотен лопаток, на которые давит реактивный поток, приводя турбину во вращение. Турбина в свою очередь вращает вал, на котором сидят вентилятор и компрессор. Таким образом система замыкается и требует лишь подвода топлива и воздуха для своего функционирования. После турбины поток направляется в сопло. Сопло реактивного двигателя последняя, но далеко не по значению часть реактивного двигателя. Оно формирует непосредственно реактивную струю. В сопло направляется холодный воздух, нагнетаемый вентилятором для охлаждения внутренних деталей двигателя. Этот поток ограничивает манжету сопла от сверх горячего реактивного потока и ее дает ей расплавится.

9 O В связи с тем, в каком транспорте используется реактивный двигатель, их существует несколько видов, например, классический реактивный двигатель используется на истребителях в разных модификациях. Турбовинтовой двигатель отличается тем, что в данном типе двигателя мощность турбины через понижающий редуктор направляется в направлении классического винта. Такие двигатели позволяют большим самолетам осуществлять полеты на приемлемых скоростях, не расходуя при этом большого количества топлива.

10 O Турбовентиляторный реактивный двигатель считается одним из самых экономичных авиационных реактивных двигателей, главное отличие состоит в том, что на входе устанавливается вентилятор большего диаметра, который подает воздух не только в турбину, но и создает достаточно мощный поток вне самого двигателя, в связи с этим мощность реактивного двигателя является очень высокой, именно поэтому двигатель данного типа используется на лайнерах и больших самолетах.

11 O Еще одним реактивным двигателем самолета является воздушно — реактивный, который способен осуществлять работу без подвижных деталей. Отличительной чертой такого двигателя является то, что воздух попадает в камеру сгорания естественным образом, за счет торможения потока об обтекатель входного отверстия, после чего все происходит по стандартной схеме – воздух смешивается с топливом для реактивных двигателей и в конечном этапе выходит в виде реактивной струи из сопла. Такие двигатели на данный момент практически не используются, а ранее использовались на поездах, самолетах, БЛА и в боевых ракетах, а также его могут использовать на велосипедах и скутерах. Реактивным двигателям – необходимый атрибут современной цивилизации. С их помощью вырабатывается 80% электроэнергии.

12 O В тоже время повсеместное использование реактивных двигателей связано с отрицательным воздействием на окружающую среду. Сжигание топлива сопровождается выделением в атмосферу углекислого газа, способного поглощать тепловое инфракрасное ( ИК ) излучение поверхности Земли. Рост концентрации углекислого газа в атмосфере, увеличивая поглощение ИК – излучения, приводит к повышению её температуры ( парниковый эффект ). Ежегодно температура атмосферы Земли повышается на 0,05 º С. Этот эффект может создать угрозу таяния ледников и катастрофического повышения уровня Мирового океана. Продукты сгорания топлива существенно загрязняют окружающую среду. Углеводород, вступая в реакцию с озоном, находящимся в атмосфере, образуют химические соединения, неблагоприятно воздействующие на жизнедеятельность растений, животных и человека. Потребление кислорода при горении топлива уменьшает его содержание в атмосфере.

13 O Для охраны окружающей среды широко использует очистные сооружения, препятствующие выбросу в атмосферу вредных веществ, резко ограничивают использование соединений тяжелых металлов, добавляемых в топливо, разрабатывают. Двигатели, использующие водород в качестве горючего ( выхлопные газы состоят из безвредных паров воды ), создают электромобили и автомобили, использующим солнечную энергию. Это может показаться парадок ­ сом, но концепция силовой установки, способной поднять машину в воздух и двигать ее вперед с помощью реактив ­ ной силы горячего газа, много старше собственно самолета. Первооткрыва ­ телем идеи реактивного движения надо считать Герона, жившего за 150 лет до нашей эры. Он построил метал ­ лический шар с двумя выступающими трубками, выхлопные отверстия кото ­ рых были направлены в противопо ­ ложные стороны. После наполнения водой шар подогревался. Через неко ­ торое время вода закипала, и шар на ­ чинал вращаться под реактивным дей ­ ствием струи пара, выходящего через трубки. Самый первый проект, кото ­ рый можно считать про — прототипом газовой турбины, датируется 1791 г.

14 O. Его автором был Джон Барбер. В 1863 г. во Франции появился проект аппа ­ рата, названного своим автором, Жа ­ ном Делувриером (Delouvrier; в неко ­ торых источниках — Charles de Louvrie), членом Академии наук в Париже, « аэронефом » (aeronave). Передвигать ­ ся он должен был с помощью реактив ­ ного « мотора », а активным агентом служил водяной пар. Следующий изобретатель реактивной турбины проис ­ ходил из Швеции — Патрик де Лаваль. На его идеи впоследствии опирались французы, братья Арменго (Armengaud), которые около 1900 г. построили в Париже подобную турби ­ ну. Первым конструктором, который смог контролировать процесс сгора ­ ния в камере своей турбины, а следо ­ вательно — и ее тягу, был немец — Ганс Хольцварт

15 Его устройство имело не ­ сколько клапанов, позволяющих регу ­ лировать давление внутри камеры сго ­ рания. Практически все современные самолеты являются реактивными, из этого возникает вопрос, а почему популярность данного устройства настолько высока. Для начала следует изучить историю возникновения реактивного двигателя, и каким образом он стал впервые применяться.

Ссылка на основную публикацию
Adblock
detector