Что такое реактивный двигатель кратко

Принцип работы двигателя реактивного самолета: как работает, устройство, виды двигателей

Исторические факты

Идею использования реактивной тяги, которая позволила бы преодолеть силу притяжения Земли, выдвинул в 1903 году феномен российской науки – Циолковский. Он опубликовал целое исследование на данную тему, но оно не было воспринято серьезно. Константин Эдуардович, пережив смену политического строя, потратил годы трудов, чтобы доказать всем свою правоту.

Сегодня очень много слухов о том, что первым в данном вопросе был революционер Кибальчич. Но завещание этого человека к моменту публикации трудов Циолковского было погребено вместе с Кибальчичем. Кроме того, это был не полноценный труд, а лишь эскизы и наброски – революционер не смог подвести надежную базу под теоретические выкладки в своих работах.

Как действует реактивная сила?

Чтобы понять принцип работы реактивного двигателя, нужно понимать, как действует эта сила.

Итак, представим выстрел из любого огнестрельного оружия. Это наглядный пример действия реактивной силы. Струя раскаленного газа, который образовался в процессе сгорания заряда в патроне, отталкивает оружие назад. Чем мощнее заряд, тем сильнее будет отдача.

А теперь представим процесс зажигания горючей смеси: он проходит постепенно и непрерывно. Именно так выглядит принцип работы прямоточного реактивного двигателя. Подобным образом работает ракета с твердотопливным реактивным двигателем – это наиболее простая из его вариаций. С ней знакомы даже начинающие ракетомоделисты.

В качестве горючего для реактивных двигателей вначале применяли дымный порох. Реактивные двигатели, принцип работы которых был уже более совершенен, требовали топлива с основой из нитроцеллюлозы, которая растворялась в нитроглицерине. В больших агрегатах, запускающих ракеты, выводящие шаттлы на орбиту, сегодня используют специальную смесь полимерного горючего с перхлоратом аммония в качестве окислителя.

Преимущества и недостатки реактивного двигателя

Одним из существенных преимуществ ракеты является то, что в отличие от всех других транспортных средств она может двигаться, не взаимодействуя ни с какими другими телами, кроме продуктов сгорания топлива, содержащиеся в ней самой. В то время как обычные самолеты и даже самолеты с воздушно-реактивными двигателями могут летать только в пределах земной атмосферы, реактивный двигатель баллистической ракеты может работать и в без воздушном пространстве. Другое преимущество — возможность маневрирования корабля в космическом пространстве и торможения его, благодаря изменению направления выброса струи газа. О недостатках. Если даже предположить мгновенное выброс газов из сопла ракеты и вычислять ее установившуюся скорость , то для достижения скорости ракеты, например, в 4 раза большей от скорости газа, который вырывается, топливная масса должна быть в 4 раза больше от массы оболочки, есть оболочка должна составлять пятую часть всей массы ракеты. Не следует при этом забывать, что «полезной» части ракеты является именно ее оболочка. Расчет скорости ракеты показывает, что для того, чтобы скорость оболочки была в 4 раза больше от скорости газа, масса топлива на старте должно быть не в 4, а в несколько десятков раз больше массы оболочки. Если при этом дополнительно учесть, что во время запуска с Земли на ракету действуют и сила сопротивления воздуха, через которое она должна лететь, и сила тяжести, то можно сделать вывод, что отношение должно быть еще больше. Другим недостатком реактивных двигателей является относительно малая скорость выброса газов из сопла ракеты, и, таким образом, относительно малая скорость оболочки. Ракеты, созданные сегодня на компьютерах c установленной windows, не позволяют достичь скорости даже 50 км / с. И если бы могли, то с такой скоростью поездки до ближайших звезд продолжались бы миллионы лет. Все это делает даже намек на использование ракет с реактивными двигателями для межзвездных перелетов, а тем более пилотируемых перелетов, бессмысленным занятием. Для таких перелетов требуется принципиально иной тип двигателя, изобретение которого — дело далекого будущего. То есть, реактивные двигатели, такие, какие они есть на текущий момент, можно использовать для перелетов в пределах одной планеты и в пределах одной планетной системы. Когда будет найден двигатель для межзвездных перелетов, на космических кораблях будущего (а особенно на разведывательных лодочках) будут установлены реактивные двигатели — для перелетов на близкие расстояния и маневрирования.

Принцип действия РД

Теперь стоит разобраться с принципом работы реактивного двигателя. Для этого можно рассмотреть классику – жидкостные двигатели, которые практически не изменились со времен Циолковского. В этих агрегатах применяется топливо и окислитель.

В качестве последнего используется жидкий кислород либо же азотная кислота. В качестве горючего применяют керосин. Современные жидкостные двигатели криогенного типа потребляют жидкий водород. Он при окислении кислородом увеличивает удельный импульс (на целых 30 процентов). Идея о том, что можно использовать водород, также родилась в голове Циолковского. Однако на тот момент по причине чрезвычайной взрывоопасности пришлось искать другое горючее.

Принцип работы состоит в следующем. Компоненты поступают в камеру сгорания из двух отдельных баков. После смешивания они превращаются в массу, которая при сгорании выделяет огромное количество тепла и десятки тысяч атмосфер давления. Окислитель подается в камеру сгорания. Топливная смесь по мере прохождения между сдвоенными стенками камеры и сопла охлаждает эти элементы. Далее горючее, подогретое стенками, попадет через огромное количество форсунок в зону воспламенения. Струя, которая формируется при помощи сопла, вырывается наружу. За счет этого и обеспечивается толкающий момент.

Кратко принцип работы реактивного двигателя можно сравнить с паяльной лампой. Однако последняя устроена значительно проще. В схеме ее работы нет различных вспомогательных систем двигателя. А это компрессоры, нужные для создания давления впрыска, турбины, клапана, а также прочие элементы, без которых реактивный двигатель просто невозможен.

Несмотря на то что жидкостные двигатели потребляют очень много горючего (расход топлива составляет примерно 1000 грамм на 200 килограммов груза), их до сих пор используют в качестве маршевых агрегатов для ракеты-носителей и маневровых для орбитальных станций, а также других аппаратов космического назначения.

Устройство

Устроен типичный реактивный двигатель следующим образом. Основные его узлы — это:

Естествознание. 11 класс

Реактивное движение

Реактивное движение. Космические полёты

Необходимо запомнить

Причина движения тел – взаимодействие между ними. Если же тело оказывается за пределами земной атмосферы, то на него действует лишь сила тяжести. Движение тела происходит при этом по строго определенным траекториям, по которым движутся, в частности, спутники Земли. Изменить движение, оттолкнувшись от какого-либо внешнего тела невозможно, но можно выбросить что-то из корабля, оттолкнувшись от выброшенного вещества. Поэтому реактивный двигатель, действующий на космический корабль с некоторой силой, должен непрерывно отбрасывать вещество для движения. Двигатели, работающие на основе химических реакций, называют химическими реактивными двигателями.

Для уменьшения механической нагрузки ракеты с такими двигателями делают многоступенчатыми. Используются и маломощные плазменные реактивные двигатели. В таких двигателях отбрасываемое вещество получает скорость в результате разгона заряженных частиц электромагнитным полем. Подобные двигатели являются более экономичными и легко управляемыми.

Читать еще:  Датчик давления двигателя d4ea

Реактивное движение подчиняется физическим законам и закономерностям.

Каждый вид реактивного двигателя обладает своими достоинствами и недостатками.

Реактивный двигатель, несмотря на его низкую эффективность, является в настоящее время единственным двигателем, позволяющим осуществить целенаправленное перемещение в космическом пространстве.

Изучение перспектив космических исследований показывает, что уже в ближайшие десятилетия станут реальными космические путешествия человека на другие планеты.

Игра «Как Вы думаете?»

Законы реактивного движения

Закон сохранения импульса – векторная сумма импульсов двух тел до взаимодействия равна векторной сумме их импульсов после взаимодействия

$m _1 v _1 + m _2 v _2 = m _1 + m _2 $

Формула определяет скорость, которую развивает под воздействием тяги , неизменной по направлению, при отсутствии всех других сил.

Эта скорость называется характеристической: $V = I cdot ln beginM_<1>\M_<2>end $

$V$ — конечная скорость , которая для случая маневра в космосе при и часто обозначается ΔV, также именуется характеристической скоростью.

$I$ — ракетного двигателя (отношение тяги двигателя к секундному расходу массы топлива);

$M1$ — начальная масса летательного аппарата (полезная нагрузка + конструкция аппарата + топливо);

$M2$ — конечная масса летательного аппарата (полезная нагрузка + конструкция аппарата).

Формулировка второго закона Ньютона с использованием понятия :

В инерциальных системах отсчёта производная импульса материальной точки по времени равна действующей на неё силе: $frac>> = vec>$

где — $vec> = m vec>$ импульс (количество движения) точки, $vec>$ — её скорость, а $t$ — время .

Реактивный двигатель: принцип действия (кратко). Принцип работы реактивного двигателя самолета

Под реактивным понимают движение, при котором от тела с определенной скоростью отделяется одна из его частей. Возникающая в результате такого процесса сила действует сама по себе. Другими словами, у нее отсутствует даже малейший контакт с внешними телами.

Реактивное движение в природе

Во время летнего отдыха на юге практически каждый из нас, купаясь в море, встречался с медузами. Но мало кто задумывался о том, что эти животные перемещаются так же, как реактивный двигатель. Принцип работы в природе подобного агрегата можно наблюдать при перемещении некоторых видов морских планктонов и личинок стрекоз. Причем КПД этих беспозвоночных зачастую выше, чем у технических средств.

Кто еще может наглядно продемонстрировать, какой имеет реактивный двигатель принцип работы? Кальмар, осьминог и каракатица. Подобное движение совершают и многие другие морские моллюски. Возьмем, например, каракатицу. Она вбирает воду в свою жаберную полость и энергично выбрасывает ее через воронку, которую направляет назад или вбок. При этом моллюск способен совершать движения в нужную сторону.

Принцип работы реактивного двигателя можно наблюдать и при перемещении сальца. Это морское животное принимает воду в широкую полость. После этого мышцы его тела сокращаются, выталкивая жидкость через отверстие, находящееся сзади. Реакция получаемой при этом струи позволяет сальце совершать движение вперед.

Морские ракеты

Но самого большего совершенства в реактивной навигации достигли все-таки кальмары. Даже сама форма ракеты, кажется, скопирована именно с этого морского обитателя. При перемещении с низкой скоростью кальмар периодически изгибает свой ромбовидный плавник. А вот для быстрого броска ему приходится использовать собственный «реактивный двигатель». Принцип работы всех его мышц и тела при этом стоит рассмотреть подробнее.

У кальмаров есть своеобразная мантия. Это мышечная ткань, которая окружает его тело со всех сторон. Во время движения животное засасывает в эту мантию большой объем воды, резко выбрасывая струю через специальное узкое сопло. Такие действия позволяют кальмарам двигаться толчками назад со скоростью до семидесяти километров в час. Во время перемещения животное собирает в пучок все свои десять щупалец, что придает телу обтекаемую форму. В сопле имеется специальный клапан. Животное поворачивает его при помощи сокращения мышц. Это позволяет морскому обитателю менять направление движения. Роль руля во время перемещений кальмара играют и его щупальца. Их он направляет влево или вправо, вниз или вверх, легко уклоняясь от столкновений с различными препятствиями.

Существует вид кальмаров (стенотевтис), которому принадлежит звание лучшего пилота среди моллюсков. Опишите принцип работы реактивного двигателя — и вы поймете, почему, преследуя рыб, это животное порой выскакивает из воды, попадая даже на палубы судов, идущих по океану. Как же это происходит? Кальмар-пилот, находясь в водной стихии, развивает максимальную для него реактивную тягу. Это и позволяет ему пролететь над волнами на расстояние до пятидесяти метров.

Если рассматривать реактивный двигатель, принцип работы какого животного можно упомянуть еще? Это, на первый взгляд, мешковатые осьминоги. Пловцы из них не такие быстрые, как кальмары, но в случае опасности их скорости могут позавидовать даже лучшие спринтеры. Биологи, изучавшие миграции осьминогов, установили, что перемещаются они наподобие того, какой имеет реактивный двигатель принцип работы.

Животное с каждой струей воды, выброшенной из воронки, делает рывок на два или даже на два с половиной метра. При этом плывет осьминог своеобразно – задом наперед.

Другие примеры реактивного движения

Существуют свои ракеты и в мире растений. Принцип реактивного двигателя можно наблюдать тогда, когда даже при очень легком прикосновении «бешеный огурец» с высокой скоростью отскакивает от плодоножки, одновременно отторгая клейкую жидкость с семенами. При этом сам плод отлетает на значительное расстояние (до 12 м) в противоположном направлении.

Принцип работы реактивного двигателя можно наблюдать также, находясь в лодке. Если из нее в воду в определенном направлении бросать тяжелые камни, то начнется движение в противоположную сторону. Такой же имеет и ракетный реактивный двигатель принцип работы. Только там вместо камней используются газы. Они создают реактивную силу, обеспечивающую движение и в воздухе, и в разряженном пространстве.

Фантастические путешествия

О полетах в космос человечество мечтало давно. Об этом свидетельствуют произведения писателей-фантастов, которые для достижения этой цели предлагали самые разнообразные средства. Например, герой рассказа французского писателя Эркюля Савиньена Сирано де Бержерака достиг Луны на железной повозке, над которой постоянно подбрасывался сильный магнит. До этой же планеты добрался и знаменитый Мюнхгаузен. Совершить путешествие ему помог гигантский стебель боба.

Реактивное движение использовалось в Китае еще в первом тысячелетии до нашей эры. Своеобразными ракетами для забавы при этом служили бамбуковые трубки, которые начинялись порохом. Кстати, проект первого на нашей планете автомобиля, созданный Ньютоном, был также с реактивным двигателем.

История создания РД

Только в 19-м в. мечта человечества о космосе стала приобретать конкретные черты. Ведь именно в этом столетии русским революционером Н. И. Кибальчичем был создан первый в мире проект летательного аппарата с реактивным двигателем. Все бумаги были составлены народовольцем в тюрьме, куда он попал после покушения на Александра. Но, к сожалению, 03.04.1881 г. Кибальчич был казнен, и его идея не нашла практического воплощения.

В начале 20-го в. мысль об использовании ракет для полетов в космос выдвинул русский ученый К. Э. Циолковский. Впервые его работа, содержащая описание движения тела переменной массы в виде математического уравнения, была опубликована в 1903 г. В дальнейшем ученый разработал саму схему реактивного двигателя, приводящегося в движение при помощи жидкого топлива.

Читать еще:  Bmw e87 характеристики двигатель

Также Циолковским была изобретена многоступенчатая ракета и высказана идея о создании на околоземной орбите настоящих космических городов. Циолковский убедительно доказал, что единственным средством для космических полетов является ракета. То есть аппарат, оборудованный реактивным двигателем, заправляемый горючим и окислителем. Только такая ракета способна преодолеть силу тяжести и совершать полеты за пределами атмосферы Земли.

Освоение космоса

Статья Циолковского, опубликованная в периодическом издании «Научное обозрение», утвердила за ученым репутацию мечтателя. Его доводов никто не принял всерьез.

Идею Циолковского реализовали советские ученые. Возглавляемые Сергеем Павловичем Королевым, они осуществили запуск первого искусственного спутника Земли. 4 октября 1957 г. этот аппарат доставила на орбиту ракета с реактивным двигателем. Работа РД была основана на преобразовании химической энергии, которая передается топливом газовой струе, превращаясь в энергию кинетическую. При этом ракета совершает движение в обратном направлении.

Реактивный двигатель, принцип работы которого используется уже много лет, находит свое применение не только в космонавтике, но и в авиации. Но более всего его используют для запуска ракет. Ведь только РД способен перемещать аппарат в пространстве, в котором отсутствует любая среда.

Жидкостный реактивный двигатель

Тот, кто стрелял из огнестрельного оружия или просто наблюдал этот процесс со стороны, знает, что существует сила, которая непременно оттолкнет ствол назад. Причем при большем количестве заряда отдача непременно увеличивается. Так же работает и реактивный двигатель. Принцип работы его схож с тем, как происходит отталкивание ствола назад под действием струи раскаленных газов.

Что касается ракеты, то в ней процесс, во время которого происходит воспламенение смеси, является постепенным и непрерывным. Это самый простой, твердотопливный двигатель. Он хорошо знаком всем ракетомоделистам.

В жидкостном реактивном двигателе (ЖРД) для создания рабочего тела или толкающей струи применяется смесь, состоящая из топлива и окислителя. Последним, как правило, выступает азотная кислота или жидкий кислород. Топливом в ЖРД служит керосин.

Принцип работы реактивного двигателя, который был в первых образцах, сохранен и до настоящего времени. Только теперь в нем используется жидкий водород. При окислении этого вещества удельный импульс увеличивается по сравнению с первыми ЖРД сразу на 30%. Стоит сказать о том, что идея применения водорода была предложена самим Циолковским. Однако существующие на тот момент трудности работы с этим чрезвычайно взрывоопасным веществом были просто непреодолимы.

Каков принцип работы реактивного двигателя? Топливо и окислитель попадают в рабочую камеру из отдельных баков. Далее происходит превращение компонентов в смесь. Она сгорает, выделяя при этом колоссальное количество тепла под давлением в десятки атмосфер.

Компоненты в рабочую камеру реактивного двигателя попадают по-разному. Окислитель вводится сюда напрямую. А вот топливо проходит более длинный путь между стенками камеры и сопла. Здесь оно разогревается и, уже имея высокую температуру, вбрасывается в зону горения через многочисленные форсунки. Далее струя, сформированная соплом, вырывается наружу и обеспечивает летательному аппарату толкающий момент. Вот так можно рассказать, какой имеет реактивный двигатель принцип работы (кратко). В данном описании не упоминаются многие компоненты, без которых работа ЖРД была бы невозможной. Среди них компрессоры, необходимые для создания нужного для впрыска давления, клапана, питающие турбины и т. д.

Современное использование

Несмотря на то что работа реактивного двигателя требует большого количества топлива, ЖРД продолжают служить людям и сегодня. Их применяют в качестве основных маршевых двигателей в ракетоносителях, а также маневровых для различных космических аппаратов и орбитальных станций. В авиации же используются другие виды РД, которые имеют несколько иные рабочие характеристики и конструкцию.

Развитие авиации

С начала 20-го столетия, вплоть до того периода, когда разразилась Вторая мировая война, люди летали только на винтомоторных самолетах. Эти аппараты были оснащены двигателями внутреннего сгорания. Однако прогресс не стоял на месте. С его развитием появилась потребность в создании более мощных и быстрых самолетов. Однако здесь авиационные конструкторы столкнулись с, казалось бы, неразрешимой проблемой. Дело в том, что даже при незначительном увеличении мощности двигателя значительно возрастала масса самолета. Однако выход из создавшего положения был найден англичанином Френком Уиллом. Он создал принципиально новый двигатель, названный реактивным. Это изобретение дало мощный толчок для развития авиации.

Принцип работы реактивного двигателя самолета схож с действиями пожарного брандспойта. Его шланг имеет зауженный конец. Вытекая через узкое отверстие, вода значительно увеличивает свою скорость. Создающаяся при этом сила обратного давления настолько сильна, что пожарный с трудом удерживает в руках шланг. Таким поведением воды можно объяснить и то, каков принцип работы реактивного двигателя самолета.

Прямоточные РД

Этот тип реактивного двигателя является самым простым. Представить его можно в виде трубы с открытыми концами, которая установлена на движущемся самолете. В передней части ее поперечное сечение расширяется. Благодаря такой конструкции входящий воздух снижает свою скорость, а его давление увеличивается. Самое широкое место такой трубы является камерой сгорания. Здесь происходит впрыскивание топлива и его дальнейшее сгорание. Такой процесс содействует нагреванию образовавшихся газов и их сильному расширению. При этом возникает тяга реактивного двигателя. Ее производят все те же газы, когда с силой вырываются наружу из узкого конца трубы. Именно эта тяга и заставляет самолет лететь.

Проблемы использования

Прямоточные реактивные двигатели имеют некоторые недостатки. Они способны работать только на том самолете, который находится в движении. Летательный аппарат, находящийся в состоянии покоя, прямоточные РД привести в действие не могут. Для того чтобы поднять в воздух такой самолет нужен любой другой стартовый двигатель.

Решение проблемы

Принцип работы реактивного двигателя самолета турбореактивного типа, который лишен недостатков прямоточного РД, позволил авиационным конструкторам создать самый совершенный летательный аппарат. Как действует это изобретение?

Основной элемент, находящийся в турбореактивном двигателе, – газовая турбина. С ее помощью приводится в действие воздушный компрессор, проходя через который, сжатый воздух направляется в специальную камеру. Полученные в результате сгорания топлива (обычно это керосин) продукты попадают на лопасти турбины, чем приводят ее в действие. Далее воздушно-газовый поток переходит в сопло, где разгоняется до больших скоростей и создает огромнейшую реактивную силу тяги.

Увеличение мощности

Реактивная сила тяги может значительно возрасти за короткий промежуток времени. Для этого используется дожигание. Оно представляет собой впрыскивание дополнительного количества топлива в поток газа, вырывающийся из турбины. Неиспользованный в турбине кислород способствует сгоранию керосина, что и увеличивает тягу двигателя. На больших скоростях прирост ее значения достигает 70%, а на малых – 25-30%.

Читать еще:  Что такое prm двигателя

Виды реактивных двигателей

Известны следующие основные типы реактивных двигателей:

Пороховой и жидкостной ракетный двигатели для своей работы не нуждаются в кислороде из окружающего воздуха, так как необходимый для сжигания топлива кислород содержится в веществах, входящих в состав пороха, или в жидком окислителе.

При сгорании пороха или жидкого топлива в смеси с жидким окислителем образуются продукты сгорания, занимающие во много раз больший объем, чем исходные продукты, поэтому продукты сгорания в виде газов с большой скоростью вырываются из реактивного сопла наружу.

В силу закона сохранения энергии количество движения системы тел есть величина постоянная. Двигатель и заключенные в нем продукты сгорания являются системой из двух тел. И если одно из тел системы (продукты сгорания) массой т получает скорость истечения V„CT, т. е. создает количество движения, равное произведению, то и другое тело системы (двигатель) должно получить равное по величине, но обратное по направлению количество движения. Только в этом случае количество движения всей системы не изменится и не будет нарушен закон сохранения энергии. Если двигатель имеет массу, то он получит скорость V в направлении, обратном истечению газа. Количество движения двигателя, равное произведению, должно равняться количеству движения продуктов сгорания

Использование пороховых и жидкостных ракетных двигателей для вертолета затруднительно из-за ограниченного времени их действия н трудности дросселирования. Будучи запушенными, эти двигатели все время развивают одинаковую тягу до тех пор, пока не сгорит все топливо.

В жидкостных ракетных двигателях сложно регулировать подачу топлива под высоким давлением, их экономичность Невелика, а срок службы мал. Поэтому как пороховые, так и жидкостные ракетные двигатели не могут применяться как двигатели для вращения несущего вита.

Прямоточный воздушно-pеактивный двигатель использует для сгорания топлива кислород «з окружающего воздуха и состоит из следующих основных частей: воздухозаборника (входной диффузор), камеры сгорания, реактивного сопла.

Воздухозаборник служит для направления потока воздуха в двигатель. Форма входа в воздухозаборник и изменение площади проходного сечения вдоль потока выбираются такими, чтобы с минимальными гидравлическими потерями на входе обеспечить прирост давления воздуха по пути в камеру сгорания. Для уменьшения потерь на входе в воздухозаборник передняя его кромка выполнена в виде кольцевого крыльевого профиля, носик которого имеет малый радиус кривизны. Для увеличения давления воздуха воздухозаборнику придается вид расширяющегося канала (диффузора).

Преобразование тепловой энергии, заключенной в газе, в механическую работу истечения может произойти только в результате расширения газа. Поэтому воздух перед поступлением в камеру сгорания должен быть подвергнут предварительному сжатию с целью повышения его давления.

В полете воздух подходит к воздухозаборнику двигателя со скоростью, равной скорости полета. При висении вертолета эта скорость равна окружной скорости конца лопасти. Перед входом в воздухозаборник воздух несколько притормаживается, за счет чего растет его давление, а попав в расширяющийся канал воздухозаборника, еще больше уменьшает свою скорость, за счет чего продолжает увеличиваться давление.

Таким образом, в прямоточном двигателе давление воздуха повышается за счет использования кинетической энергии входящего в него воздуха. Этим объясняется невозможность работы прямоточного двигателя на месте, когда скорость набегающего потока равна нулю. Этим же объясняется увеличение тяги двигателя с увеличением скорости его движения. Несущий винт вертолета с установленными на концах лопастей прямоточными двигателями требует поэтому перед запуском двигателей предварительной раскрутки от постороннего источника энергии.

В камеру сгорания через форсунки непрерывно подается топливо. При горении топлива воздух нагревается и расширяется, за счет чего происходит увеличение его скорости. Газ выходит из реактивного сопла со скоростью, значительно превышающей скорость входа. В результате ускорения массы газа внутри двигателя образуется реактивная тяга.

Прямоточный двигатель может быть с успехом применен для вертолета, если обеспечить предварительную раскрутку винта.

Пульсирующий воздушно-pеактивный двигатель в этом отношении выгодно отличается от прямоточного, так как может создавать тягу на месте (без движения вертолета) и не требует раскрутки винта.

В пульсирующем двигателе сгорание топлива происходит не непрерывно, как в прямоточном, а периодически. Перед камерой сгорания пульсирующего двигателя установлена решетка с клапанами. Из-за наличия разности давлений воздуха в воздухозаборнике и камере сгорания клапаны открываются и пропускают в камеру сгорания порцию свежего воздуха. Одновременно с этим в камеру сгорания впрыскивается топливо и поджигается. Нагрев воздуха вызывает кратковременное повышение давления в камере сгорания, в результате чего клапаны в решетке закрываются. Газы из камеры сгорания с большой скоростью вытекают через реактивное сопло, что вызывает понижение давления

в камере сгорания, и клапаны вновь открываются, впуская в камеру очередную порцию свежего воздуха, после чего цикл повторяется. Тяга такого двигателя изменяется от максимального до нулевого значения. Однако ввиду того, что частота пульсаций очень велика, изменения тяги практически не сказываются -на равномерности вращения несущего винта. Частота пульсаций обратно пропорциональна длине двигателя. Так, если двигатель, имеющий длину 610 мм, работает с частотой пульсаций 270 циклов в секунду, то двигатель, имеющий длину 915 мм, — с частотой 180 циклов в секунду.

Следует сказать, что подача топлива к двигателям на концах лопастей не требует применения насосов для принудительной подачи. Дело в том, что возникающая при вращении несущего винта центробежная сила сама гонит топливо от втулки винта к двигателям по топливо-проводам, проложенным вдоль лопасти. Однако в этом случае трудно осуществить герметизацию подвижного соединения, через которое топливо от трубопроводов, находящихся на неподвижной части вертолета, передается на вращающуюся втулку.

Конструкция двигателя и регулировка подачи топлива и зажигания должны быть таковы, чтобы обеспечить синхронность сгорания с пульсацией столба газов.

Пульсирующий двигатель, кроме того, что может развивать тягу при работе на месте, имеет также то преимущество, что он значительно меньше расходует топлива на создание каждого килограмма тяги, чем другие типы воздушно-реактивных двигателей. При выборе двигателя для установки на концах лопастей вертолета конструкторы чаще всего останавливаются «а пульсирующем двигателе еще и потому, что этот двигатель развивает наибольшую величину тяги на каждую единицу лобовой площади.

Основным недостатком пульсирующих двигателей являются значительные вибрационные нагрузки, этим объясняется малый срок службы впускных клапанов (несколько часов) и частые усталостные поломки хвостовой трубы. Кроме того, к недостаткам относятся потребность в сжатом воздухе для запуска (для первоначальных циклов работы) и, наконец, большой шум работающего двигателя.

Турбореактивный и турбовинтовой двигатели в том виде, в котором они существуют сейчас, на концах лопастей использоваться не могут. Хотя эти двигатели и обладают наименьшим удельным расходом топлива в час на каждый килограмм тяги или на каждую лошадиную силу, но удельный вес этих двигателей, т. е. отношение веса к тяге, еще настолько велик, что не позволяет их эффективно использовать на концах лопастей. Эти двигатели могут быть применены на вертолетах в обычной силовой установке с механическим приводом к несущему винту.

Ссылка на основную публикацию
Adblock
detector