Что такое реактивный двигатель определение

реактивный двигатель

Энциклопедия «Техника». — М.: Росмэн . 2006 .

Авиация: Энциклопедия. — М.: Большая Российская Энциклопедия . Главный редактор Г.П. Свищев . 1994 .

  • рафинёр
  • реактивный самолёт

Смотреть что такое «реактивный двигатель» в других словарях:

РЕАКТИВНЫЙ ДВИГАТЕЛЬ — РЕАКТИВНЫЙ ДВИГАТЕЛЬ, двигатель, который обеспечивает продвижение вперед, быстро выпуская струю жидкости или газа в направлении, противоположном направлению движения. Чтобы создать высокоскоростной поток газов, в реактивном двигателе горючее… … Научно-технический энциклопедический словарь

Реактивный двигатель — двигатель, создающий необходимую для движения силу тяги путём преобразования исходной энергии в кинетическую энергию реактивной струи рабочего тела (См. Рабочее тело); в результате истечения рабочего тела из сопла двигателя образуется… … Большая советская энциклопедия

РЕАКТИВНЫЙ ДВИГАТЕЛЬ — (двигатель прямой реакции) двигатель, тяга которого создается реакцией (отдачей) вытекающего из него рабочего тела. Подразделяются на воздушно реактивные и ракетные двигатели … Большой Энциклопедический словарь

Реактивный двигатель — двигатель, преобразующий какой либо вид первичной энергии в кинетическую энергию рабочего тела (реактивной струи), которая создает реактивную тягу. В реактивном двигателе сочетаются собственно двигатель и движитель. Основной частью любого… … Морской словарь

РЕАКТИВНЫЙ ДВИГАТЕЛЬ — РЕАКТИВНЫЙ двигатель, двигатель, тяга которого создается прямой реакцией (отдачей) истекающего из него рабочего тела (например, продуктов сгорания химического топлива). Подразделяются на ракетные двигатели (если запасы рабочего тела размещаются… … Современная энциклопедия

Реактивный двигатель — РЕАКТИВНЫЙ ДВИГАТЕЛЬ, двигатель, тяга которого создается прямой реакцией (отдачей) истекающего из него рабочего тела (например, продуктов сгорания химического топлива). Подразделяются на ракетные двигатели (если запасы рабочего тела размещаются… … Иллюстрированный энциклопедический словарь

РЕАКТИВНЫЙ ДВИГАТЕЛЬ — двигатель прямой реакции, реактивная (см.) которого создаётся отдачей вытекающей из него струи рабочего тела. Различают воздушно реактивные и ракетные (см.) … Большая политехническая энциклопедия

реактивный двигатель — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN jet engine … Справочник технического переводчика

Реактивный двигатель — Испытания ракетного двигателя Спейс Шаттла … Википедия

реактивный двигатель — (двигатель прямой реакции), двигатель, тяга которого создаётся реакцией (отдачей) вытекающего из него рабочего тела. Подразделяются на воздушно реактивные и ракетные двигатели. * * * РЕАКТИВНЫЙ ДВИГАТЕЛЬ РЕАКТИВНЫЙ ДВИГАТЕЛЬ (двигатель прямой… … Энциклопедический словарь

ИДЕНТИФИКАЦИЯ ВОЗДУШНЫХ РАДИОЛОКАЦИОННЫХ ЦЕЛЕЙ ПРИ ПОМОЩИ ЭФФЕКТА ДОПЛЕРА ОТ НАГРЕТОГО РЕАКТИВНОГО ДВИГАТЕЛЯ

Полный текст:
Аннотация

Цель. Целью исследования является разработка методики диагностирования летательных аппаратов по отраженному электромагнитному радиолокационному лучу от нагретого реактивного двигателя.

Методы. Атомы кристаллической решетки металлических деталей на работающем реактивном двигателе за счет нагрева будут находиться в состоянии хаотического броуновского движения. Электромагнитный луч, попадая на эти атомы, будет менять свою частоту в соответствии с эффектом Доплера, тем самым спектральная составляющая электромагнитного излучения будет расширяться прямо пропорционально величине температуры двигателя. При определении ширины спектральной линии пеленгующего радиоизлучения можно точно идентифицировать температуру летательного аппарата для исключения ложных целей.

Результат. При пеленгации летательных аппаратов с работающим реактивным двигателем возможно не только определение координат цели, но и идентификация нагретого двигателя. Засчет применения высокоточных методов идентификации нагретых участков, возможна не только классификация пеленгуемых целей, но и определение ориентации в пространстве, как самого летательного аппарата, так и его управляющих плоскостей и направление вектора управляемой тяги реактивного двигателя.

Вывод. Применение инновационной методики пеленгации воздушных целей позволит с высокой точностью идентифицировать радиолокационные цели на фоне активных и пассивных помех. Кроме того, при анализе информации о величине и направлении тяги реактивного двигателя и положения органов управления летательного аппарата возможно определение не только координат пеленгуемого объекта, но и с упреждением идентифицировать выполняемые маневры.

Ключ. слова

Об авторах

367026, г. Махачкала, пр. Имама Шамиля, 70

Адалаева Патимат Шамильевна – аспирант, кафедра радиотехники, телекоммуникаций и микроэлектроники

367026, г. Махачкала, пр. Имама Шамиля, 70

Айгумов Тимур Гаджиевич – кандидат экономических наук, доцент, кафедра программного обеспечения, вычислительной техники и автоматизированных систем

367026, г. Махачкала, пр. Имама Шамиля, 70

Магомедова Сабина Владимировна – аспирант, кафедра радиотехники, телекоммуникаций и микроэлектроники

367026, г. Махачкала, пр. Имама Шамиля, 70

Челушкина Татьяна Алексеевна – кандидат технических наук, старший преподаватель, кафедра теоретической и общей электротехники.

Список литературы

1. Патент RU №2358284. МПК: G01S 13/08. Устройство устранения неоднозначных измерений дальности до целей, находящихся за пределами рабочей зоны радиолокационной станции/ Беляков Е.С., Кострова Т.Г., Антуфьев Р.В., Костров В.В.// Опубл. 10.06.2009. Бюл. № 16.

2. Патент RU №2149421. МПК: G01S 13/04. Способ радиолокационного обнаружения и сопровождения объектов и РЛС для его реализации / Беляев Б.Г., Голубев Г.Н., Жибинов В.А., Щекотов Ю.П.// Опубл. 20.05.2000. Бюл. № 14.

3. Патент RU №2389039. МПК: G01S 13/58. Способ измерения радиальной скорости воздушной цели в режиме перестройки частоты от импульса к импульсу по случайному закону при пониженном отношении сигнал-шум / Митрофанов Д.Г., Силаев Н.В., Майоров Д.А., Тулузаков В.Г., Немцов А.В. // Опубл. 20.05.2010. Бюл. № 13.

4. Патент RU №2341813. МПК: G01S 13/04. Подвижная наземная двухкоординатная РЛС кругового обзора метрового диапазона/ Башев В.В., Грачев О.Д., Зачепицкий А.А., Зяблов Н.Е., Кокурошников С.М., Малков М.А.// Опубл. 20.12.2008. Бюл. № 35.

5. Патент RU №2302077. МПК: H04B 1/04. Способ обработки сигнала / Анташев А.Б., Анташев В.Б.,Анташев Д.А.,Анташев П.В.// Опубл. 27.06.2007. Бюл. № 18.

6. Патент RU №2326401. МПК: G01S 13/34, H04D 7/00. Способ обнаружения сигнала / Анташев А.Б., Анташев В.Б., Анташев Д.А., Анташев П.В., Дементьев Р.С.// Опубл. 10.06.2008. Бюл. № 16.

7. Под ред. Соколов М. Вопросы перспективной радиолокации. — М.: Радиотехника. 2003. – 512 с.

8. Перунов Ю.М., Куприянов А.И. Радиоэлектронная борьба: радиотехническая разведка. — М.: Вузовская книга. 2016. – 190 с.

9. Радзиевский В.Г., Трифонов П.А. Обработка сверхширокополосных сигналов и помех. — М.: Радиотехника. 2009. – 288 с.

10. Панычев С.Н., Питолин В.М., Самоцвет Н.А. Универсальный показатель для оценки эффективности маскирующих и имитационных помех//Радиотехника. — 2016. — № 6. — С. 26-30.

11. Литвинов Н.Н., Лаврентьев А.М. Анализ. Возможности маскировки зондирующих сигналов радиолокационных станций группировки противовоздушной обороны//Вестник Воздушно-космической обороны. — М.: ПАО «НПО «Алмаз». — 2017. — № 1 (13). — С. 38-43.

12. Головков А.А., Минаков В.Г. Синтез согласующе-фильтрующих устройств амплитуднофазовых манипуляторов при включении управляемого элемента последовательно источнику сигнала // Телекоммуникации. — 2005. — № 3. — С. 33-37.

13. Головков А.А., Головков В.А. Параметрический синтез амплитудно-фазовых модуляторов с различными вариантами включения нелинейного элемента относительно резистивного четырехполюсника//Радиотехника и электроника. — 2013. — № 8. — С. 609-618.

14. Головков А.А., Семенов А.А. Математическое и схемотехническое моделирование амплитудно-фазовых модуляторов с использованием резистивного согласующего устройства при последовательном соединении трехполюсного нелинейного элемента и цепи обратной связи // Нелинейный мир. — 2013. — № 6. — Т. 11. — С. 417-422.

Читать еще:  Двигатель g4ed для каких авто

15. Под ред. А.И. Перова, В.Н. Харисова. ГЛОНАСС. Принципы построения и функционирования — М.: Радиотехника. 2010. – 688 с.

16. Подкорытов А.Н. Высокоточное определение координат потребителя в глобальных навигационных спутниковых системах c использованием уточненной эфемеридно-временной информации // Вестник Московского авиационного института. — М.: МАИ. 2011. — № 3. — Т. 18. — С. 233-239.

17. Подкорытов А.Н. Высокоточное местоопределение в абсолютном режиме в ГНСС с использованием разрешения целочисленной неоднозначности псевдофазовых измерений//Электронный журнал «Труды МАИ». — № 59.

18. Никитин Д.П., Валайтите А.А. Анализ качества высокоточной эфемеридно-временной информации для определения координат низкоорбитальных космических аппаратов//Электросвязь. 2016. № 11. С. 18-24.

19. Никитин Д.П., Валайтите А.А. Алгоритм высокоточного абсолютного местоопределения по сигналам ГНСС для низкоорбитальных космических аппаратов//Электросвязь. — 2016. — № 11. — С. 12-17.

20. Куликов С.В., Гудаев Р.А., Балдычев М.Т., Гайчук Ю.Н. Решение задачи распознавания излучающих объектов на основе подхода к отождествлению их диаграмм направленности // Наукоемкие технологии. — 2015. — № 12. — С. 26-30.

21. Рогов Д.А., Бабишкин А.А., Гудаев Р.А., Чистяков С.В. Алгоритм распознавания типа излучающего объекта на основе спектрального портрета в воздушно-космическом пространстве на основании использования спектрального портрета//Труды ВКА имени А.Ф.Можайского. — СПб.: ВКА имени А.Ф.Можайского. — 2016. — Вып. 654. — С. 38-42.

22. Федотов Н.Г. Теория признаков распознавания образов на основе стохастической геометрии и функционального анализа. — М.: Физматлит. 2010. – 304 с.

23. SobolevV.S., FeshenkoA.A. Accurate Cramer-Rao Bounds for a Laser Doppler anemometer // IEEE transactions on instrumentation and measurement. — 2006. — V. 55. — № 2. — P. 659-665.

24. Parkinson B., Spilker J. Global Positioning System: Theory and Practice. V. I, II. Washington, DC: American Institute of Aeronautics and Astronautics. — 1996.

25. Rodrigo F. Leandro. Precise point positioning with GPS a new approach for positioning, atmospheric studies, and signal analysis//Department of Geodesy and Geomatics Engineering University of New Brunswick. 2009.

26. Publication on Geodesy 68ESA’s Earth Observation Programmes: Advancing Earth Science Through New Sensing Technology. Ссылка активна на 30.06.2018. URL: http://earthzine.org/2007/10/29/esas-earth-observation-programmes-advancing-earth-science-throughnew-sensing-technology.

Дополнительные файлы

Для цитирования: Адалаева П.Ш., Айгумов Т.Г., Магомедова С.В., Челушкина Т.А. ИДЕНТИФИКАЦИЯ ВОЗДУШНЫХ РАДИОЛОКАЦИОННЫХ ЦЕЛЕЙ ПРИ ПОМОЩИ ЭФФЕКТА ДОПЛЕРА ОТ НАГРЕТОГО РЕАКТИВНОГО ДВИГАТЕЛЯ. Вестник Дагестанского государственного технического университета. Технические науки. 2018;45(2):31-41. https://doi.org/10.21822/2073-6185-2018-45-2-31-41

For citation: Adalaeva P.S., Aigumov T.G., Magomedova S.V., Chelushkina T.A. IDENTIFICATION OF AIR RADAR TARGETS USING THE DOPPLER EFFECT FROM A HEATED JET ENGINE. Herald of Dagestan State Technical University. Technical Sciences. 2018;45(2):31-41. (In Russ.) https://doi.org/10.21822/2073-6185-2018-45-2-31-41

Обратные ссылки

  • Обратные ссылки не определены.


Контент доступен под лицензией Creative Commons Attribution 4.0 License.

Реактивный двигатель

Реактивный двигатель — двигатель, создающий необходимую для движения силу тяги посредством преобразования внутренней энергии топлива в кинетическую энергию реактивной струи рабочего тела.

Рабочее тело с большой скоростью истекает из двигателя, и, в соответствии с законом сохранения импульса, образуется реактивная сила, толкающая двигатель в противоположном направлении. Для разгона рабочего тела может использоваться как расширение газа, нагретого тем или иным способом до высокой температуры (т. н. тепловые реактивные двигатели), так и другие физические принципы, например, ускорение заряженных частиц в электростатическом поле (см. ионный двигатель).

Реактивный двигатель сочетает в себе собственно двигатель с движителем, то есть он создаёт тяговое усилие только за счёт взаимодействия с рабочим телом, без опоры или контакта с другими телами. По этой причине чаще всего он используется для приведения в движение самолётов, ракет и космических аппаратов.

Содержание

  • 1 Классы реактивных двигателей
  • 2 Составные части реактивного двигателя
  • 3 Основные технические параметры реактивного двигателя
  • 4 История
  • 5 См. также

Классы реактивных двигателей

Существует два основных класса реактивных двигателей:

  • Воздушно-реактивные двигатели — тепловые двигатели, которые используют энергию окисления горючегокислородомвоздуха, забираемого из атмосферы. Рабочее тело этих двигателей представляет собой смесь продуктов горения с остальными компонентами забранного воздуха.
  • Ракетные двигатели — содержат все компоненты рабочего тела на борту и способны работать в любой среде, в том числе и в безвоздушном пространстве.

Составные части реактивного двигателя

Любой реактивный двигатель должен иметь, по крайней мере, две составные части:

  • Камера сгорания («химический реактор») — в нем происходит освобождение химической энергии топлива и её преобразование в тепловую энергиюгазов.
  • Реактивное сопло («газовый туннель») — в котором тепловая энергия газов переходит в их кинетическую энергию, когда из сопла газы вытекают наружу с большой скоростью, тем самым создавая реактивную тягу.

Основные технические параметры реактивного двигателя

Основным техническим параметром, характеризующим реактивный двигатель, является тяга (иначе — сила тяги) — усилие, которое развивает двигатель в направлении движения аппарата.

Ракетные двигатели помимо тяги характеризуются удельным импульсом, являющимся показателем степени совершенства или качества двигателя. Этот показатель является также мерой экономичности двигателя. В приведённой ниже диаграмме в графической форме представлены верхние значения этого показателя для разных типов реактивных двигателей, в зависимости от скорости полёта, выраженной в форме числа Маха, что позволяет видеть область применимости каждого типа двигателей. ПуВРД — Пульсирующий воздушно-реактивный двигатель, ТРД — Турбореактивный двигатель, ПВРД — Прямоточный воздушно-реактивный двигатель, ГПВРД — Гиперзвуковой прямоточный воздушно-реактивный двигатель

История

Реактивный двигатель был изобретен Гансом фон Охайном (Dr. Hans von Ohain), выдающимся немецким инженером-конструктором и Фрэнком Уиттлом (Sir Frank Whittle). Первый патент на работающий газотурбинный двигатель был получен в 1930 году Фрэнком Уиттлом. Однако первую рабочую модель собрал именно Охайн.

2 августа 1939 года в Германии в небо поднялся первый реактивный самолет — Хейнкель He 178, оснащённый двигателем HeS 3, разработанный Охайном.

См. также

  • Реактивная тяга
  • Ракетный двигатель
Это заготовка статьи о ракетной, ракетно-космической технике или космическом аппарате. Вы можете помочь проекту, дополнив её.

Напишите отзыв о статье «Реактивный двигатель»

Отрывок, характеризующий Реактивный двигатель

На вопрос о колодниках, которые сидели в яме, граф сердито крикнул на смотрителя:
– Что ж, тебе два батальона конвоя дать, которого нет? Пустить их, и всё!
– Ваше сиятельство, есть политические: Мешков, Верещагин.
– Верещагин! Он еще не повешен? – крикнул Растопчин. – Привести его ко мне.

К девяти часам утра, когда войска уже двинулись через Москву, никто больше не приходил спрашивать распоряжений графа. Все, кто мог ехать, ехали сами собой; те, кто оставались, решали сами с собой, что им надо было делать.
Граф велел подавать лошадей, чтобы ехать в Сокольники, и, нахмуренный, желтый и молчаливый, сложив руки, сидел в своем кабинете.
Каждому администратору в спокойное, не бурное время кажется, что только его усилиями движется всо ему подведомственное народонаселение, и в этом сознании своей необходимости каждый администратор чувствует главную награду за свои труды и усилия. Понятно, что до тех пор, пока историческое море спокойно, правителю администратору, с своей утлой лодочкой упирающемуся шестом в корабль народа и самому двигающемуся, должно казаться, что его усилиями двигается корабль, в который он упирается. Но стоит подняться буре, взволноваться морю и двинуться самому кораблю, и тогда уж заблуждение невозможно. Корабль идет своим громадным, независимым ходом, шест не достает до двинувшегося корабля, и правитель вдруг из положения властителя, источника силы, переходит в ничтожного, бесполезного и слабого человека.
Растопчин чувствовал это, и это то раздражало его. Полицеймейстер, которого остановила толпа, вместе с адъютантом, который пришел доложить, что лошади готовы, вошли к графу. Оба были бледны, и полицеймейстер, передав об исполнении своего поручения, сообщил, что на дворе графа стояла огромная толпа народа, желавшая его видеть.
Растопчин, ни слова не отвечая, встал и быстрыми шагами направился в свою роскошную светлую гостиную, подошел к двери балкона, взялся за ручку, оставил ее и перешел к окну, из которого виднее была вся толпа. Высокий малый стоял в передних рядах и с строгим лицом, размахивая рукой, говорил что то. Окровавленный кузнец с мрачным видом стоял подле него. Сквозь закрытые окна слышен был гул голосов.
– Готов экипаж? – сказал Растопчин, отходя от окна.
– Готов, ваше сиятельство, – сказал адъютант.
Растопчин опять подошел к двери балкона.
– Да чего они хотят? – спросил он у полицеймейстера.
– Ваше сиятельство, они говорят, что собрались идти на французов по вашему приказанью, про измену что то кричали. Но буйная толпа, ваше сиятельство. Я насилу уехал. Ваше сиятельство, осмелюсь предложить…
– Извольте идти, я без вас знаю, что делать, – сердито крикнул Растопчин. Он стоял у двери балкона, глядя на толпу. «Вот что они сделали с Россией! Вот что они сделали со мной!» – думал Растопчин, чувствуя поднимающийся в своей душе неудержимый гнев против кого то того, кому можно было приписать причину всего случившегося. Как это часто бывает с горячими людьми, гнев уже владел им, но он искал еще для него предмета. «La voila la populace, la lie du peuple, – думал он, глядя на толпу, – la plebe qu’ils ont soulevee par leur sottise. Il leur faut une victime, [„Вот он, народец, эти подонки народонаселения, плебеи, которых они подняли своею глупостью! Им нужна жертва“.] – пришло ему в голову, глядя на размахивающего рукой высокого малого. И по тому самому это пришло ему в голову, что ему самому нужна была эта жертва, этот предмет для своего гнева.
– Готов экипаж? – в другой раз спросил он.
– Готов, ваше сиятельство. Что прикажете насчет Верещагина? Он ждет у крыльца, – отвечал адъютант.
– А! – вскрикнул Растопчин, как пораженный каким то неожиданным воспоминанием.
И, быстро отворив дверь, он вышел решительными шагами на балкон. Говор вдруг умолк, шапки и картузы снялись, и все глаза поднялись к вышедшему графу.
– Здравствуйте, ребята! – сказал граф быстро и громко. – Спасибо, что пришли. Я сейчас выйду к вам, но прежде всего нам надо управиться с злодеем. Нам надо наказать злодея, от которого погибла Москва. Подождите меня! – И граф так же быстро вернулся в покои, крепко хлопнув дверью.

Читать еще:  Ваз двигатель инжектор не заводится не искра есть

Что смогут авиационные двигатели будущего?

Текст: Леонид Нерсисян, военный обозреватель

Авиационные двигатели представляют собой, пожалуй, самый сложный компонент любого летательного аппарата.

Их технология производства отличается большой сложностью, а время от начала разработки до начала серийного производства может превышать и 10 лет. Рассмотрим наиболее перспективные проекты в военном двигателестроении.

Перспективные двигатели для истребительной авиации

Современная истребительная авиация является сверхзвуковой, более того, для пятого поколения истребителей необходима также возможность выполнения полета на бесфорсажной сверхзвуковой крейсерской скорости. Естественно, это требует применения более мощных и эффективных двигателей. На истребителях как четвертого, так и пятого поколения на сегодняшний день применяются двухконтурные турбореактивные двигатели (ТРДД) c низкой степенью двухконтурности с форсажем. Рассмотрим перспективные силовые установки для истребителей.

«Изделие 30» для Су-57

Один из самых сложных и перспективных проектов в российском двигателестроении – разработка двигателя «второго этапа» для истребителя пятого поколения Су-57. Силовая установка, которая должна после 2020 года заменить АЛ-41Ф1 (двигатель, очень близкий к АЛ-41Ф1С, который устанавливается на серийные Су-35С), пока разрабатывается под временным названием «изделие 30». По доступной информации, разработку ведет ОКБ им. Люльки – московский филиал ПАО «ОДК-УМПО» («Уфимское моторостроительное производственное объединение»).

Из информации, в течение последних лет появляющейся в СМИ, известно, что двигатель, как и АЛ-41Ф1, имеет управляемый вектор тяги, а тяга на форсаже достигает 17 000 – 18 000 кгс, против 15 000 кгс у АЛ-41Ф1. В целом характеристики двигателя должны превосходить таковые у АЛ-41Ф1 на 20–25%, кроме того, можно предположить, что будет проделана работа и по снижению заметности в радиолокационном и инфракрасном спектрах [1]. Сочетание этих факторов должно позволить Су-57 достичь требуемых критериев истребителя пятого поколения.

«Трехконтурные» адаптивные двигатели в рамках программы Adaptive Engine Technology Development (AETD)

Еще в 2007 году стартовала программа министерства обороны США Adaptive Versatile Engine Technology (ADVENT), в которой участвовали General Electric (GE) и Rolls-Royce. В 2012 году ADVENT была завершена и перешла в программу Adaptive Engine Technology Development (AETD), в которой вместо Rolls-Royce оказалась Pratt & Whitney (P&W). С 2016 года с обеими компаниями были подписаны контракты на выполнение работ в рамках программы Adaptive Engine Transition Program (AETP). Обе компании получили по 1 млрд долларов, со сроком исполнения программы до 30 сентября 2021 года [2].

Перед обеими компаниями стоит цель разработать и испытать новый тип двигателей, которые в перспективе планируется устанавливать на истребителях F-35 и перспективных истребителях шестого поколения. Цель программы заключается в создании двигателя, который расходует на 25% меньше топлива и выдает на 10% больше тяги, чем доступные на сегодня силовые установки. Такое серьезное улучшение показателей достигается за счет добавления третьего контура к ТРДД, который включается в работу только в режиме экономичного полета, сильно повышая степень двухконтурности двигателя. К тому же более холодный воздух третьего контура используется для снижения температуры газов, покидающих двигатель, и, соответственно, снижения заметности в инфракрасном диапазоне. В боевом режиме достигается повышенная мощность двигателя за счет перехода на традиционный двухконтурный режим с низкой степенью двухконтурности.

Двигатель Adaptive Cycle Engine (ACE), или XA-100, который разрабатывается GE, согласно официальной информации, позволяет снизить потребление топлива на 25%, повысить максимальную дальность полета на 35% и увеличить тягу на 20% [3].

Читать еще:  Фиат мареа троит двигатель

Что касается двигателя P&W под названием XA-101, он представляет собой глубокую модернизацию силовой установки F135, которая используется на истребителях F-35. В двигателе для программы AETP применяется внутренний контур (газогенератор) F-135 практически без изменений, идет разработка остальных компонентов, в том числе и третьего контура [4].

Отметим, что в открытых источниках информации о разработке аналогичных технологий в России пока нет.

Китайские проекты

В Китае, где активно развивается военное авиастроение, разработаны два истребителя пятого поколения – J-20 и J-31. Оба самолета поначалу полагаются на российские двигатели – АЛ-31Ф и РД-93, однако в перспективе должны получить китайские двигатели – WS-15 [5] и WS-19 [6] соответственно. Открытой информации о них немного, но ожидать какого-то технологического прорыва не стоит – это будет скорее локальным успехом и сокращением отставания от России и Запада.

АЛ-41Ф1 Изделие 117С

Прямоточные воздушно-реактивные двигатели

Несмотря на свою кажущуюся простоту, прямоточные воздушно-реактивные двигатели (ПВРД) – одно из самых многообещающих направлений развития военного двигателестроения. Прежде всего это касается ПВРД со сжиганием топлива в сверхзвуковом воздушном потоке или гиперзвуковых ПВРД (ГПВРД), а также двухрежимных вариантов – со сжиганием топлива как в дозвуковом, так и сверхзвуковом потоке воздуха. В первую очередь «чистый» ГПВРД интересен для установки на крылатые ракеты – в таком случае до минимальной для начала работы двигателя скорости ракету может довести твердотопливный ракетный ускоритель.

Российские работы в этой области засекречены, имеется лишь небольшое количество упоминаний в открытых источниках. Согласно им, авиационная гиперзвуковая крылатая ракета ГЗУР (гиперзвуковая управляемая ракета) получит ПВРД «Изделие 70», разработанный ПАО «ТМКБ «Союз» [7]. Он должен обеспечить полет ракеты на дальность 1500 км на скорости 6 M. Согласно данным того же источника, серийное производство ГЗУР должно начаться в 2020 году. О характеристиках двигателя ничего не известно.

С другой стороны, научный руководитель Государственного научно-исследовательского института авиационных систем академик Евгений Федосов в интервью «Интерфаксу» в 2017 году упоминал тему ГПВРД и сказал, что пока успехи в этой области не достигнуты [8]. Похожее мнение высказал и советник главы корпорации НПО «Машиностроения» по науке Герберт Ефремов в январе 2018 года [9]. Однако функционирование стандартного ПВРД на скорости 6 M видится маловероятным. Еще меньше известно о двигателе для противокорабельной ракеты «Циркон» разработки НПО «Машиностроения» [10]. Информации о реальных сроках готовности этой ракеты также нет.

Что касается стран Запада, там работы ведутся в более открытом режиме. Пока все известные работы были исключительно исследовательскими и направлены на изучение как тематики непосредственно ГПВРД, так и поведения летательных аппаратов на гиперзвуковой скорости в целом. На сегодняшний день ведутся работы в рамках программы Hypersonic Air-breathing Weapon Concept (HAWC), финансируемой DARPA и ВВС США [11]. Этим проектом занимаются как Lockheed Martin, так и Raytheon, получив контракты на 171,2 и 174,7 млн долларов соответственно. Еще 14,3 млн долларов было выделено в военном бюджете на 2019 год [12]. Работа заключается в создании прототипа гиперзвуковой крылатой ракеты с ГПВРД, другие детали пока неизвестны.

Есть проекты и в других странах, но менее конкретные и с размытыми перспективами. К примеру, европейская компания MBDA ведет исследования в направлении создания гиперзвуковой крылатой ракеты ASN4G, но ее появление «в металле» ожидается не ранее 2030 года [13]. Ведет работы и Индийская организация космических исследований: в 2016 году прошли успешные испытания ГПВРД – два двигателя были выведены на необходимую стартовую скорость с помощью ракеты-носителя Advanced Technology Vehicle (ATV) и успешно отработали в течение 5 секунд [14].

Комбинированные двигатели

Перспективная задача создания гиперзвуковых и атмосферно-космических самолетов требует разработки соответствующих двигателей. На гиперзвуковых скоростях использование традиционного ТРД/ТРДД невозможно, при этом применение исключительно прямоточного воздушно-реактивного двигателя (ПРВД) также не представляется возможным – он неэффективен на дозвуковых и низких сверхзвуковых скоростях. В связи с этим целесообразна разработка комбинированных двигателей – «турбопрямоточных» или же «турборакетных». Опыт создания и реального применения «турбопрямоточных» двигателей имеется в США – пара Pratt & Whitney J58 позволяла самолету-разведчику SR-71 разгоняться до скорости 3,2 М.

Сейчас в США на ранних стадиях ведутся работы по созданию как гражданских [15], так и военных гиперзвуковых самолетов. Как Boeing, так и Lockheed Martin стремятся создать гиперзвуковой самолет-разведчик, фактически «наследника» SR-71. В рамках программы DARPA Advanced Full Range Engine (AFRE) [16] идут работы по созданию комбинированного двигателя, включающего в себя два компонента – ТРД и двухрежимный ПРВД, со сжиганием топлива в дозвуковом воздушном потоке и со сжиганием топлива в сверхзвуковом воздушном потоке. На скорости, достаточной для запуска ПРВД, воздушный поток полностью перенаправляется во внешний контур, минуя газогенератор (турбина полностью отключается) и напрямую попадая в камеру сгорания ПРВД, расположенную за турбиной (вероятно, в форсажной камере). В англоязычной литературе такой двигатель получил название turbine-based combined cycle (TBCC). Работу ведут Boeing в сотрудничестве с Orbital ATK (ныне является частью Northrop Grumman) c 2016 года [17] и Lockheed Martin (отдел Skunk Works) с Aerojet Rocketdyne с 2009 года [18], [19].

Еще один перспективный тип комбинированного двигателя – это «турборакетный» двигатель. Такой двигатель, в отличие от «турбопрямоточного», может работать как в атмосфере, так и в безвоздушном пространстве. Наиболее интересным проектом в этой области является британский двигатель SABRE (Synergistic Air-Breathing Rocket Engine), разрабатываемый частной компаний Reaction Engines Limited [20]. Фактически в нем сочетаются три компонента – ТРД, ПВРД и ракетный двигатель.

Механизм работы двигателя достаточно сложный: воздух после попадания в воздухозаборник моментально охлаждается до –140 °С (примерно с 1000 °С) в теплообменнике. Происходит это за счет опосредованной передачи тепла от жидкого водорода (является топливом SABRE) через гелий, который находится в промежуточной петле. Нагревшийся гелий в дальнейшем применяется для обеспечения работы турбины компрессора, а водород сжигается как в камерах сгорания (всего их четыре), так и в дополнительных прямоточных камерах сгорания (на охлаждение гелия требуется больше водорода, чем для сжигания в основных камерах сгорания), расположенных кольцеобразно вокруг основных. На высоте 28,5 км и скорости 5,14 M двигатель переходит в ракетный режим – воздухозаборник закрывается, а в камеру сгорания начинает поступать жидкий кислород. За счет этого должен обеспечиваться вывод на орбиту одноступенчатого космического аппарата SKYLON [21].

Первые стендовые испытания двигателя планируется провести в 2020 году [22]. На раннем этапе подобные работы проходят и в России – в филиале Военной академии РВСН имени Петра Великого (Серпухов) ведутся работы над двигателем для перспективного воздушно-космического самолета [23].

©»Новый оборонный заказ. Стратегии»
№6 (53) 2018г.

Ссылка на основную публикацию
Adblock
detector