Что такое режим короткого замыкания асинхронного двигателя

Режим короткого замыкания

Режи́м коро́ткого замыка́ния в электротехнике, электронике, при теоретическом анализе электрических цепей — состояние пары некоторых узлов электрической цепи (2 вывода, обычно в качестве закорачиваемого участка цепи рассматриваются двухполюсники), при котором его выводы (зажимы, контакты) присоединены к двум узлам другой цепи с модулем полного входного сопротивления пренебрежимо малым по сравнению с модулем полного выходного сопротивления закорачиваемой цепи (при этом говорят, что пара узлов цепи (источник, выход) замкнута, закорочена, соединена накоротко, соединена коротким соединением).

Таким образом, условие короткого замыкания можно записать:

∣ Z i ∣ ≪ ∣ Z o ∣ mid ll mid Z_mid >

где ∣ Z i ∣ mid > — модуль входного импеданса закорачивающей цепи, ∣ Z o ∣ mid > — модуль выходного импеданса закорачиваемой цепи.

Часто вместо термина Режим короткого замыкания используются аббревиатуры: Режим КЗ или просто КЗ. Среди электриков и электронщиков также распространены жаргонизмы «коротец», «коротыш» и «кэзэшка» [ источник не указан 2350 дней ] .

Различают КЗ для постоянного и переменного токов. Например, подсоединение конденсатора с достаточно большой ёмкостью к паре узлов цепи, между которыми присутствует напряжение с достаточно высокой частотой, когда модуль реактивного сопротивления конденсатора пренебрежимо мал по сравнению с модулем выходного импеданса закорачиваемой цепи, называют КЗ по переменному току.

Изучение режима короткого замыкания применяется в анализе электрических цепей. При этом рассматривается поведение математической модели электрической цепи при «виртуальном» коротком замыкании (см., например, внутреннее сопротивление).

Содержание

  • 1 Применение
    • 1.1 Полезные применения
    • 1.2 Опасность короткого замыкания
  • 2 См. также
  • 3 Литература

Применение [ править | править код ]

Режим короткого замыкания может быть как полезным, так и вредным или даже опасным в том или ином техническом устройстве.

Полезные применения [ править | править код ]

Часто в системах промышленной автоматики информация об измеряемых параметрах передается в аналоговом виде передачей токового сигнала. При этом измерительные и промежуточные преобразователи сигналов по типу выходного сигнала являются источником тока, в идеале с бесконечным внутренним выходным сопротивлением. При этом наиболее благоприятный случай, с точки зрения точности передачи информации, когда источник сигнала нагружен на потребитель с нулевым внутренним входным сопротивлением, — то есть, источник сигнала работает в режиме КЗ. (См. подробнее Токовая петля).

Электродинамические датчики, например, индукционные виброметры, сейсмоприёмники также очень часто работают в режиме короткого замыкания, эта мера позволяет дополнительно демпфировать механические колебания подвижной системы датчика из-за возникновения вязких электродинамических сил.

Часто режим короткого замыкания применяется в соединении усилительных каскадов в электронике. Каскодный усилитель представляет собой соединение двух активных компонентов, модуль выходного импеданса для малого сигнала первого каскада в этой схеме многократно превышает модуль входного импеданса второго каскада, то есть, выход первого каскада работает в режиме короткого замыкания.

Цепи питания электронных устройств тоже почти всегда работают в режиме короткого замыкания для переменного тока. Их линии питания обычно шунтируются блокировочными конденсаторами для исключения вредного самовозбуждения усилительных каскадов, помех и сбоев кодов в цифровых устройствах.

Опасность короткого замыкания [ править | править код ]

Если источник напряжения с малым внутренним сопротивлением закоротить, то в цепи потечёт ток равный отношению ЭДС источника к сумме внутреннего сопротивления источника и сопротивления закорачивающей цепи. При большой мощности источника ток достигнет очень большой величины, который может повредить источник, потребитель, соединительные провода. Перегрев соединительных проводов может привести к пожару. Поэтому при питании устройств от мощных источников почти всегда вводят защиту от КЗ в потребителе, которое может внезапно возникнуть от аварий устройств, ошибок людей, ударов молний. Простейшая защита от разрушительных последствий КЗ — плавкий предохранитель. Также применяются различные автоматы защиты сети, их преимущество — многократное восстановление цепи после актов срабатывания при защите, в отличие от однократно используемого плавкого предохранителя или его вставки.

Очень опасно КЗ мощных электрохимических источников электричества, — особо аккумуляторов. Так, например, длительное закорачивание свинцового аккумулятора приводит к вскипанию его электролита с разбрызгиванием капель серной кислоты, ещё опаснее закорачивание литиевых аккумуляторов, ведущее к его перегреву и возможному взрыву корпуса и возгоранию металлического лития.

При закорачивании обмоток статора мощного электрического генератора в нём развиваются огромные электродинамические силы, зачастую приводящие к его разрушению.

Большая Энциклопедия Нефти и Газа

Режим — короткое замыкание

Режим короткого замыкания , возникающий случайно в процессе эксплуатации при номинальном первичном напряжении, является аварийным процессом, сопровождающимся весьма большими токами в обмотках. [2]

Режим короткого замыкания возникает при замыкании выходов модуля питания. Запуск последнего при наличии короткого замыкания во вторичных цепях осуществляется импульсами от схемы запуска на транзисторе 4VT3, а включение транзистора 4VT4 — с помощью тиристора 4VS1 по максимальному току коллектора 4VT4 3 5 А. При поступлении запускающего импульса происходит одно колебание. После его окончания схема не возбуждается вследствие того, что вся энергия, накопленная в индуктивности трансформатора 4Т1, расходуется коротко замкнутой цепью. При снятии короткого замыкания модуль питания входит в режим стабилизации. [3]

Режим короткого замыкания возникает при наличии короткого замыкания в нагрузке вторичных источников питания. После окончания запускающего импульса устройство не возбуждается, поскольку вся энергия расходуется короткозамкнутой цепью. [4]

Читать еще:  Что такое квантовые двигатели и как они работают

Режим короткого замыкания может возникнуть в электрической цепи при соединении накоротко разнопотен-циальных зажимов источников питания проводником с нулевым сопротивлением. [5]

Режим короткого замыкания неблагоприятен и в других отношениях. В частности, при коротком замыкании может быть нарушена параллельная работа генераторов. Поэтому при эксплуатации место короткого замыкания приходится изолировать посредством отключения поврежденного участка сети или линии электропередачи автоматически действующими выключателями. Там, где нет такой возможности, отключают генератор. [6]

Режим короткого замыкания можно легко осуществить в цепи коллектора, где внутреннее сопротивление транзистора велико. Выполнение режима короткого замыкания в цепи эмиттера затруднено, особенно в области низких частот. Это ограничивает применение ( / — параметров для описания свойств транзистора. [7]

Режим короткого замыкания для них недопустим. [9]

Режим короткого замыкания можно легко осуществить в цепи коллектора, где внутреннее сопротивление транзистора велико. Выполнение режима короткого замыкания в цепи эмиттера затруднено, особенно в области низких частот. Это ограничивает применение ( / — параметров для описания свойств транзистора. [10]

Режим короткого замыкания возникает при каждом пуске двигателя, однако в этом случае он кратковременен. Несколько пусков двигателя с короткозамкнутым ротором подряд или через короткие промежутки времени могут привести к превышению допустимой температуры его обмоток и к выходу двигателя из строя. [12]

Режим короткого замыкания по переменному току соответствует режиму, при котором напряжение в цепи не зависит от тока. Практически это осуществляется включением на вход или выход емкостного сопротивления, величина которого много меньше величины входного или выходного сопротивления транзистора. [14]

Что такое режим короткого замыкания асинхронного двигателя

Главное меню

  • Главная
  • Паровые машины
  • Двигатели внутреннего сгорания
  • Электродвигатели
  • Автоматическое регулирование двигателей
  • Восстановление и ремонт двигателей СМД
  • Топливо для двигателей
    • Реактивные и дизельные топлива
    • Очистка топлива
    • Топливо для судовых двигателей
    • Испытания и обслуживание фильтров
    • Расчет топливных сепараторов
  • Карта сайта

Судовые двигатели

  • Судовые двигатели внутреннего сгорания
  • Судовые паровые турбины
  • Судовые газовые турбины
  • Судовые дизельные установки

В современной электроэнергетике почти повсеместно пе­ременный ток вытесняет постоянный. Это объясняется многими преимуществами машин переменного тока в сравнении с ма­шинами постоянного тока. В частности, у машин переменного тока вес, габариты и стоимость меньше, а к. п. д. выше; они проще в обслуживании, долговечнее и надежнее машин посто­янного тока. Правда, электродвигатели переменного тока хуже поддаются регулировке, они развивают значительно меньшие пусковые моменты. Поэтому, если от электродвигателей требу­ются высокие регулировочные качества и повышенные пусковые моменты, применяют электродвигатели постоянного тока.

Привод механизмов портовых подъемно-транспортных машин чаще всего осуществляется асинхронными электродвига­телями трехфазного переменного тока, получившими наибольшее распространение в электроэнергетике. Зависимости от исполнения ротора, различают асин­хронные электродвигатели с короткозамкнутым ротором и с фазным ротором (с контактными кольцами). Принципиальная схема включения этих электродвигателей приведена на рис. 40..

Из курса электротехники известно, что принцип действия асинхронных электродвигателей основан на использовании так называемого вращающегося магнитного поля. При подаче трехфазного тока в обмотке статора создается магнитное поле, вращающееся со скоростью

где f— частота тока в обмотке статора;

р — число пар полюсов обмотки статора.

Эта скорость называется синхронной. Магнитное поле статора, (пересекая обмотку ротора, наводит в ней э. д. с., ко­торая создает в цепи ротора ток. Последний, взаимодействуя с магнитным полем статора, образует вращающий момент, заставляющий ротор вращаться в ту же сторону, что и магнит­ное поле статора. При нормальной работе асинхронного электродвигателя его ротор вращается со скоростью п 2 1 . Если бы скорость вращения ротора была равна скорости, с которой вращается магнитное поле статора, то последнее относительно ротора было бы неподвижным. В этом случае э. д. с. и ток в обмотке ротора были бы равны нулю и никакого вращающего момента не возникло бы.

Величиной, характеризующей работу асинхронного электро­двигателя, является скольжение s :

где n 1 —синхронная скорость;

n 2 — скорость вращения ротора.

Зная скольжение, нетрудно определить скорость вращения электродвигателя

При работе электродвигателя без нагрузки скорость его близка к синхронной, а скольжение очень мало.

Двигательный режим асинхронного электродвигателя имеет место при скольжениях, изменяющихся в пределах от 0 до 1, при этом число оборотов ротора изменяется от n 1 до 0. Номинальная величина скольжения асинхронного электродви­гателя составляет 0,03—0,1, причем первая цифра относится к более мощным, а вторая — к менее мощным электродвигателям (до 10—20 квт).

Очевидно, s = 0 в том случае, когда ротор вращается с син­хронной скоростью n 1 . Можно считать, что на холостом ходу электродвигателя его ротор вращается с этой скоростью, если не учитывается трение.

Величина скольжения s =1, когда ротор электродвигателя не вращается при включенной обмотке статора. Этот режим называют режимом короткого замыкания электродвигателя (или режимом стоянки под током). Получить режим короткого замыкания можно, искусственно затормозив ротор или пере­грузив электродвигатель до полной остановки его. Пуск асин­хронного электродвигателя также начинается именно с этого режима.

Выражение (81) показывает, что скольжение может изме­няться гораздо в больших пределах, чем указано выше. Дей­ствительно, ротор электродвигателя под действием посторон­него источника механической энергии (например, под действи­ем опускающегося груза) может вращаться со скоростью больше синхронной. В этом случае скольжение будет отрицательным (s 2 >n 1 .

Можно также представить, что ротор электродвигателя под действием опускающегося груза вращается в направлении, противоположном направлению вращения магнитного поля ста­тора. В этом случае s>1, так как в выражение (81) величи­ну п 2 нужно подставить с отрицательным знаком. Такой ре­жим называется режимом противовключения.

Читать еще:  Характеристики двигателя количество оборотов

Таким образом, теоретически скольжение асинхронного электродвигателя может изменяться в пределах от —? до + ?. Практически же скольжение асинхронного электродви­гателя при работе последнего в двигательном и тормозных режима« изменяется в пределах от —2 до +2.

Из курса электрических машин известно, что для асинхрон­ного электродвигателя может быть составлена схема замеще­ния, с помощью которой производится анализ работы электродвигателя и исследуются режимы его работы. На рис. 41 при­ведена упрощенная схема замещения асинхронного электро­двигателя, в которой приняты следующие обозначения:

U 1 — фазное напряжение обмотки статора, в;

I 1 — фазный ток обмотки статора, а;

I — фазный ток холостого хода электродвигателя, а;

I 2 — приведенный фазный ток обмотки ротора, а;

r 1 и х 1 — активное и индуктивное сопротивления фазы обмотки статора, ом;

r 2 ’ и х 2 ‘ — приведенные активное и индуктивное сопротивления фазы обмотки ротора, ом.

Для приведенных величин могут быть выведены следующие соотношения:

где т 1 и т 2 — число фаз обмоток статора и ротора;

к = U / E — коэффициент трансформации э. д. с. (U — номи­нальное фазное напряжение обмотки статора; E — фазная э. д. с. обмотки ротора при разом­кнутых контактных кольцах).

Мощность Р 1 забираемая электродвигателем из сети, опре­деляется напряжением сети U 1 , током статора I 1 зависящим от нагрузки, и коэффициентом мощности cos? т.е.

Мощность на валу электродвигателя зависит от его к. п. д.? и может быть вычислена по формуле

Если пренебречь механическими и вентиляционными поте­рями, которые незначительны, то можно считать, что механи­ческая мощность асинхронного электродвигателя (мощность на валу) равна, потерям мощности в сопротивлении схемы замещения, приведенной на рис. 41, т. е.

где т 2 = т 1 — приведенное число фаз обмотки ротора.

Между токами асинхронного электродвигателя, согласно схеме замещения, существует зависимость

Ток статора асинхронных электродвигателей I 1 очень велик даже при отсутствии нагрузки на валу. Это объясняется тем, что намагничивающий ток этих электродвигателей составляет 50—70% номинального тока статора.

Что такое режим короткого замыкания асинхронного двигателя

Электрическая машина во многом схожа по принципу работы с электрическим трансформатором. В особенности это касается электрических машин переменного тока. В самом деле, ведь статорная обмотка или обмотка возбуждения аналогичны первичной обмотке трансформатора. Роль вторичной обмотки выполняет роторная обмотка асинхронного двигателя или обмотка статора двигателя синхронного.

Конечно, эти аналогии условны и иногда неявны. Существенным отличием асинхронного двигателя является то, что его «вторичная» обмотка под воздействием переменного электромагнитного поля приходит в движение. Возникает электромагнитный момент.

А из-за движения ротора ток в его обмотке имеет частоту намного меньшей частоты по сравнению с частотой тока статорной цепи. У двигателей же постоянного тока с трансформаторами есть еще меньше общего в принципе работы.

Трансформаторов на постоянном токе просто не существует. Однако электромагнитная связь между первичной и вторичной обмотками – это общая черта для всех электрических машин и трансформаторов.

И по аналогии с трансформатором для любого двигателя возможен режим короткого замыкания вторичной обмотки. При этом речь идет не о выходе на естественную характеристику электрической машины, когда в роторной или якорной цепи отсутствуют дополнительные регулировочные сопротивления – речь идет о случаях, когда из-за чрезмерной нагрузки на рабочем валу электромотор вынужден остановиться. При этом электромагнитный момент двигателя достигает максимального или близкого к максимальному (для асинхронников) значения.

Поскольку электромагнитный момент любого электромотора имеет прямую зависимость от величины потребляемого тока, то останов из-за повышенного статического момента сопротивления неизбежно ведет к многократным перегрузкам двигателя по току. Именно поэтому подобный режим часто называют «режимом короткого замыкания электродвигателя».

Режимы короткого замыкания не так уж и редки в работе электродвигателей. Причиной их может стать неисправность трансмиссии, например, заклинивание редуктора. Возможен также неправильный расчет электропривода и выбор двигателя, не соответствующего по механическим характеристикам.

Для многодвигательных электроприводов переход в режим короткого замыкания может быть связан с выходом одного или нескольких электродвигателей из строя.

Значительная часть электроприводов может быть технологически перегружена настолько, что электродвигатель не сможет развить необходимый момент, и перейдет в режим короткого замыкания. Это, например, привод грузоподъемных машин, транспортный, конвейерный привод. Электротехнологический персонал, работающий с установками, использующими подобный привод, в обязательном порядке получает инструкции, касающиеся механических перегрузок и действий при их возникновении.

Но полагаться в вопросах защиты привода от перегрузок по току исключительно только на грамотность персонала не следует. Поэтому приводные двигатели принято защищать при помощи максимально-токовых реле (например РЭО-411), блок-контакты которых включаются в цепь управления двигателя.

Для граничных положений, в которых механизм привода должен остановиться естественным образом, предусматривают концевые выключатели путевой защиты. Таким образом, двигатель защищается от режима короткого замыкания, если, допустим, механизм дошел до тупиковых упоров.

Для ответственных и мощных электроприводов нередко формируют искусственную электромеханическую характеристику, получившую название «экскаваторной». Формируется она при помощи тиристорных преобразователей либо другой полупроводниковой техники, и суть ее сводится к тому, что двигатель прекращает свое вращение сразу после возникновения недопустимой нагрузки без перехода в режим короткого замыкания и превышения тока. Экскаваторная характеристика состоит из двух частей: жесткой рабочей части и почти вертикальной характеристики, на которой привод останавливается.

Читать еще:  Touareg какой двигатель выбрать

Что такое режим короткого замыкания асинхронного двигателя

8-9. ОПЫТ КОРОТКОГО ЗАМЫКАНИЯ

а) Асинхронные двигатели

Опыт короткого замыкания для асинхроного двигателя позволяет сделать проверку паек и соединений по нагреву Кроме того, этот опыт позволяет проверить качество заливки короткозамкнутых роторов асинхронных двигателей Если есть дефекты зачивки (трещины, неза-литые пазы), то при поворачивании ротора ток короткого замыкания статора будем менять свою величину

Для проведения опыта необходим источник трехфазного напряжения с регулировкой в пределах от 0,1 UH до UH, где Us — номинальное напряжение испытуемого двигателя Двигатель включается на это напряжение через измерительную схему, позволяющую измерять токи по фазам, напряжение фаз и мощность, потребляемую двигателем Ротор двигателя должен быть заторможен. Фазный ротор должен быть замкнут накоротко

Регулировкой напряжения устанавливается ток короткого замыкания, равный номинальному При поворачивании ротора проверяется, как изменяется статорный ток, и записываются наибольшая и наименьшая величины его, напряжение на обмотке двигателя, мощность, потребляемая двигателем

После записи указанных данных следует выключить переменный ток и измерить сопротивление обмоток для того, чтобы знать, при какой температуре обмоток измерена мощность, потребляемая двигателем Эти данные нужны для сравнения полученных результатов с результатами измерений при предыдущих ремонтах двигателя

Неизменность данных опыга короткого замыкания, а также данных измерений при холостом ходе будет свидетельствовать о неизменных характеристиках двигателя

Опыт короткого замыкания следует совместить с испытанием на перегрузку по току, которая согласно ГОСТ 183-55 для бесколлекторных машин переменного тока (асинхронных, синхронных) производится при токе 1,5 /н, где /в — номинальный ток в течение 1 мин для

машин мощностью до 0,6 кет и 2 мин для машин мощностью выше 0,6 кет *.

Во время испытания не должен иметь место значительный местный нагрев отдельных паек, соединений, контактов и т. д.

б) Машины постоянного тока

Опыт короткого замыкания для машин постоянного тока проводится в генераторном режиме Он дает возможность проверить под током все цепи рабочего тока двигателя и отрегулировать коммутацию Ч Для приведения машины во вращение нужен двигатель мощностью около 0,2—0,3 от мощности испытуемой машины с передачей, обеспечивающей номинальную скорость вращения испытуемой машины. Для проведения испытания якорную цепь машины, включая добавочные полюсы и последовательную обмотку, замыкают вначале через небольшое сопротивление, порядка 2—3 RHK (где Яяк — сопротивление якорной цепи), и пускают машину ери отключенной обмотке возбуждения. Щетки должны быть предварительно притерты и установлены на нейтраль.

Если при разгоне машины будет обнаружен сильный рост тока (самовозбуждение), то следует выключить последовательную обмотку или перевернуть ее, добиваясь такого положения, чтобы при полном закорачивании цепи якоря или минимальной величине сопротивления на его зажимах можно было устойчиво регулировать ток якорной цепи путем регулирования незначительного тока возбуждения. В цепи якоря желательно иметь выключатель для разрыва цепи в случае самовозбуждения машины.

Подняв ток якорной цепи до номинальной величины, можно приступить к регулировке коммутации машины.

Регулировку производят методом подпитки током добавочных полюсов. При этом методе параллельно к обмотке добавочных полюсов включается регулируемый источник постоянного тока, позволяющий усиливать и ослаблять ток в обмотках добавочных полюсов. Наблюдая, при каком усилении и ослаблении появляется искре-

* Синхронные машины, кроме того, должны выдерживать ударный ток короткого замыканич См ГОСТ 183-55

1 Если есть возможность дать машине полную нагрузку, тс наладку коммутации следует делагь при этом режиме

‘1 а б л и ц а 8-5

Шкала степеней искрения (классов коммутации) по ГОСТ 183-55

ние для машин, имеющих безыскровую коммутацию, или усиливается искрение, если машина не имеет безыскровой коммутации, можно определить зону наилучшей коммутации и среднее значение подпитки (усиление или ослабление), при которых машина имеет наилучшую коммутацию. В соответствии с найденным значением подпитки регулируется зазор под добавочным полюсом (т. е. если требуется усиление тока в обмотке добавочных полюсов, зазор уменьшается, и наоборот), а в редких случаях изменяется обмотка добавочных полюсов.

В условиях ремонта проведение опыта подпитки не всегда осуществимо, поэтому, если машина искрит не сильно (не выше степени l’/г) и проведены все мероприятия (см. § 6-1), то можно даже для машин с добавочными полюсами попробовать незначительно сдвинуть траверсу’ в обе стороны от нейтрали. При этом может быть найдено положение, улучшающее коммутацию.

Если же искрение сильное (степень 2 и более), несмотря на то, что выполнены все рекомендации, то следует прибегнуть к опыту подпитки.

Оценка коммутации проводится в соответствии с ГОСТ 183-55 по шкале степеней искрения (табл. 8-5).

Опыт короткого замыкания следует совместить с испытанием на перегрузку при токе, равном 1,5 /н, в течение 60 сек (ГОСТ 183-55).

При этом испытании следует проверить все соединения, контакты, щеточную арматуру, доступные места паек в катушках, якоре и т. д. на отсутствие недопустимого местного перегрева.

Ссылка на основную публикацию
Adblock
detector