Что такое система двигателя vvt

Что такое система двигателя vvt

Схема VVT-iE (gen.2) — цепной привод ГРМ, механизм изменения фаз с электроприводом на впуске и традиционный гидравлический VVT на выпуске. Применяется на двигателях «Dynamic Force» (A25A, M20A, V35A), серии NR (-FKE).

Система VVT-iE (Variable Valve Timing intelligent Electric) позволяет плавно изменять фазы газораспределения в соответствии с условиями работы двигателя. Это достигается путем поворота распределительного вала впускных клапанов относительно звездочки привода в диапазоне 70° (A25A) или 85° (V35A) по углу поворота коленвала. Для регулировки используется электромотор, благодаря чему система эффективно функционирует при низких температурах или при низкой частоте вращения коленчатого вала и небольшом давлении масла. Привод действует сразу с момента включения, поэтому может обеспечивать наиболее оптимальные фазы при запуске.

Система VVT-i (Variable Valve Timing intelligent) позволяет плавно изменять фазы газораспределения в соответствии с условиями работы двигателя. Это достигается путем поворота распределительного вала выпускных клапанов относительно звездочки привода в диапазоне 41-44° по углу поворота коленвала.

На 4-цилиндровых двигателях оба распредвала приводятся единой цепью ГРМ, на двигателях V6 цепь привода ГРМ вращает впускной распредвал каждой головки и от него короткой соединительной цепью приводится выпускной распредвал.

Привод VVT-iE

Привод состоит из электромотора с EDU и двухступенчатого циклоидального редуктора.

1 — электромотор и EDU, 2 — шестерня звездочки, 3 — подшипник, 4 — эксцентриковый вал, 5 — планетарная шестерня, 6 — шестерня распредвала, 7 — звездочка, 8 — распредвал.

Электромотор VVT-iE включает в себя бесщеточный электродвигатель постоянного тока (установлен в крышке цепи привода ГРМ и вращаеется соосно с распредвалом), управляющий блок EDU и датчик вращения на эффекте Холла. EDU служит посредником между блоком управления двигателем и электродвигателем привода, контролируя направление и частоту его вращения. EDU постоянно передает в блок управления двигателем текущие данные о скорости электромотора, направлении вращения и состоянии сигналов управления.

Циклоидальный редуктор состоит из шестерни звездочки, эксцентрикового вала, планетарной шестерни и шестерни распредвала. Эксцентриковый вал приводит в движение планетарную шестерню. Шестерня звездочки имеет на 1 зуб больше, чем большая планетарная шестерня, а шестерня распредвала — на 1 зуб больше, чем малая планетарная шестерня. При вращении эксцентрикового вала планетарная шестерня приходит в движение и одновременно вращается, будучи сцепленной с шестернями звездочки и распредвала. За каждый оборот эксцентрикового вала, вращаемого электромотором, планетарная шестерня перемещается на 1 зуб относительно шестерней звездочки и распредвала.

1 — шестерня звездочки, 2 — эксцентриковый вал, 3 — планетарная шестерня (большая), 4 — шестерня распредвала, 5 — планетарная шестерня (малая). Эксцентриковый вал вращается: a — на 120°, b — на 240°, c — на 360°; d — смещение на 1 зуб планетарной шестерни.

Опережение. По сигналу ECM электродвигатель вращается быстрее распредвала. Через редуктор шестерня распредвала поворачивается по часовой стрелке, и жестко соединенный с ней распредвал перемещается в направлении опережения.

1 — электромотор, 2 — шестерня звездочки, 3 — эксцентриковый вал, 4 — планетарная шестерня, 5 — шестерня распредвала, 6 — звездочка. a — скорость звездочки, b — скорость распредвала, c — опережение.

Задержка. По сигналу ECM электродвигатель вращается медленнее распредвала. Через редуктор шестерня распредвала поворачивается против часовой стрелки, и жестко соединенный с ней распредвал перемещается в направлении задержки.

1 — электромотор, 2 — шестерня звездочки, 3 — эксцентриковый вал, 4 — планетарная шестерня, 5 — шестерня распредвала, 6 — звездочка. a — скорость звездочки, b — скорость распредвала, c — задержка.

Удержание. При достижении нужных фаз, по сигналу ECM электродвигатель вращается с той же скоростью, что и распредвал.

Привод VVT-i

На двигателях Dynamic Force используется привод нового образца — с управляющим клапаном, встроенным в центральный болт, и э/м клапаном на крышке цепи привода ГРМ.

A25A: 1 — э/м клапан, 2 — обмотка, 3 — плунжер, 4 — вал.

V35A: 1 — э/м клапан, 2 — обмотка, 3 — плунжер, 4 — вал.

На выпускном распредвалу установлен привод VVT-i с лопастным ротором. При заглушенном двигателе фиксатор удерживает распредвал в положении максимального опережения для обеспечения нормального запуска.

A25A: 1 — клапан, 2 — корпус, 3 — ротор, 4 — фиксатор, 5 — звездочка, 6 — распредвал. a — при остановке, b — в работе.

Блок управления посредством э/м клапана контролирует подачу масла в полости опережения и задержки привода VVT, основываясь на сигналах датчиков положения распредвалов. На заглушенном двигателе золотник перемещается пружиной таким образом, чтобы обеспечить максимальный угол опережения.

A25A: 1 — э/м клапан. a — пружина, b — втулка, c — золотник, d — к приводу (полость опережения), e — к приводу (полость задержки), f — сброс, g — давление масла.

Опережение. Э/м клапан по сигналу ECM переключается в позицию опережения и сдвигает золотник управляющего клапана. Моторное масло под давлением поступает к ротору со стороны полости опережения, проворачивая его вместе с распредвалом в направлении опережения.

1 — ротор, 2 — э/м клапан VVT-i, 3 — от ECM. a — направление вращения, b — давление масла, c — сброс.

Задержка. Э/м клапан по сигналу ECM переключается в позицию задержки и сдвигает золотник управляющего клапана. Моторное масло под давлением поступает к ротору со стороны полости задержки, проворачивая его вместе с распредвалом в направлении задержки.

Что такое система двигателя vvt

Система Toyota VVT-i

1JZ-GE — объём 2491 куб. см., 2JZ-GE — объём 2997 куб. см.(отличаются лишь ходом поршня). Шестицилиндровые атмосферные рядные моторы, два распредвала, привод обоих распредвалов ременный (если ремень рвётся — клапаны с поршнями не встречаются). 24 клапана (по 4 клапана на цилиндр: два впускных и два выпускных).

Современный вариант (с 1998 года) оборудован VVTi (изменяемые фазы газораспределения, внешне можно определить по наличию характерного «нароста» в передней части мотора на оси левого распредвала).
Мощность 1JZ-GE — около 180 л.с. момент около 25 килограмм-метров (с VVTi около 200 л.с.), 2JZ-GE около 220 л.с. и 30 килограмм-метров. Есть некоторая разница в характеристиках моторов, приводимых для разных автомобилей, вероятно, это обусловлено немного разной конструкцией двигателей на разных кузовах. Например, существуют по крайней мере два типа воздушных фильтров и впускных труб для 1JZ-GE.

Читать еще:  Глохнет двигатель шевроле ланос что это может быть

Ставился и ставится на задне- и полноприводные модели тойоты : краун (1JZ-GE, 2JZ-GE), семейство марк II (1JZ-GE, 2JZ-GE, 1JZ-GTE), аристо, лексус GS300 (1JZ-GE?, 2JZ-GE) , соарер, лексус SC 300 (2JZ-GE, 1JZ-GTE), супра (2JZ-GTE).

Гидрокомпенсаторов клапанных зазоров нет, клапана регулировать (регулируются шайбами), говорят, смысл есть только при капремонте, (видел человека (и мотор), который проехал 900 000 км без капрем., возможно, неправда).
Степень сжатия 10,0 (из некоторых источников 10,5) . Без проблем ездит на 92-бензине; на 95-м , а особенно на 98-м, как правило, хуже заводится, но, якобы быстрее ездит. Есть два датчика детонации.
Система зажигания — электронная, с трамблёром, катушка зажигания находится отдельно от трамблёра. С 1996 года система зажигания модернизирована и не имеет трамблёра, на каждые 2 свечи имеется одна катушка зажигания. Свечи платиновые, смена через 100 000 км пробега.
Впрыск многоточечный, обыкновенный. Датчик положения коленвала находится внутри трамблёра. Пусковой форсунки нет. Регулятор холостого хода открывает отдельный канал в блоке дроссельной заслонки.
Расходомер воздуха вакуумный.
Объём масла около 5 литров.
Объём охл. жидкости около 8 литров.
Радиатор охлаждается вентилятором, посаженным на вал водяного насоса через вискомуфту. Вентилятор 7-лопастной, точно такой же, как на 2JZ-GE. Имеются также, в зависимости от модели машины, один или два электрические маленькие вентиляторы, которые включаются при включении кондиционера или соответствующих датчиков. Система охлаждения с атмосферным бачком и клапаном на радиаторе.
Лямбда-зонд (кислородный датчик) установлен довольно близко от выпускного коллектора, легкодоступен из моторного отсека; в зависимости от исполнения с подогревом или без (2-х или 4-х проводной), причём без подогрева на старых моделях (до 1992-го года) и на 2JZ-GE.

Недостатки:
1. Ремень привода агрегатов (водяной насос, насос гидроусилителя руля, компрессор кондиционера, генератор) один и имеет автоматический натяжитель. Это натяжитель американского производства на машинах с большими пробегами (более 100-150 т.км) зачастую свистит и требует разборки и смазки. Если этого не сделать, он может заклинить и машина остановится до тех пор, пока не поставить исправный ролик. Вывод: если он свистит (особенно при старте мотора, пока холодный) следует сделать ему профилактику. На несколько лет должно хватить. Такой ролик стоит на всех моторах JZ, кроме GTE, на последних японский пластмассовый ролик. При очень больших пробегах просто истирается.

Рекомендации по эксплуатации:
1. Мыть мотор необходимо с очень большой осторожностью: если вода попадёт в свечные колодцы, то мотор начнёт работать на 3 (и т.п.) цилиндрах и ехать будет нельзя (можно испортить мотор и катализатор, а возможно и задний бачок глушителя). Лучше не мыть вовсе или ЧРЕЗВЫЧАЙНО внимательно.
2. Перед самостоятельной заменой свечей необходимо удостоверится, что в наличии есть ПРОЧНЫЙ свечной ключ на 16. Для замены свечей нужно снять верхнюю часть впускного коллектора. Отсоединять его от шлангов с охл. жидкостью не нужно.
3. В мае, когда много тополиного пуха, необходимо каждый день проверять щель между радиаторами и вычищать оттуда пух, который ведёт к перегреву мотора, если процесс запустить.
Всё остальное не требует особых пояснений и является совершенно обычным.

Системы изменения фаз ГРМ и основные неисправности

20 августа 2013, Сергей ПЕТРОВ

Газораспределительный механизм (ГРМ) служит для обеспечения своевременной подачи в цилиндры двигателя воздуха или горючей смеси (в зависимости от типа двигателя) и выпуска отработавших газов из цилиндров. Разберемся, зачем же необходимо менять фазы ГРМ.

Для всех режимов работы двигателя есть свои оптимальные значения по продолжительности открытия и закрытия клапанов. Благодаря автоматическому управлению механизмом газораспределения можно увеличить мощность и крутящий момент практически на всех режимах работы двигателя и уменьшить токсичность отработавших газов без применения других конструктивных решений.

Таким образом, система изменения фаз газораспределения служит для их оптимизации при работе двигателя на режимах холостого хода, максимальной мощности и максимального крутящего момента и для обеспечения рециркуляции отработавших газов.

На современных автомобилях применяется система автоматического изменения фаз ГРМ, а также система отключения цилиндров для сокращения расхода топлива и снижения токсичности в режиме неполной нагрузки на двигатель. Рассмотрим основные типы таких систем.

Способы изменения фаз газораспределения можно классифицировать по регулируемым параметрам работы ГРМ:

  • поворот распределительного вала;
  • применение кулачков с разным профилем;
  • изменение высоты подъема клапанов.

Наиболее распространена система, изменяющая фазы посредством поворота распредвала, которая применяется на автомобилях следующих марок:

  • BMW: VANOS (Double VANOS);
  • Toyota: VVT-i (Dual VVT-i), Variable Valve Timing with intelligence;
  • Volkswagen: VVT, Variable Valve Timing;
  • Honda: VTC, Variable Timing Control;
  • Hyundai, KIA, Volvo, General Motors: CVVT, Continuous Variable Valve Timing;
  • Renault: VCP, Variable Cam Phases.

На примере автомобилей VAG (Volkswagen Audi Group) можно рассмотреть распространенную систему изменения фаз ГРМ VVT с гидроуправляемыми муфтами, расположенными по одной на каждом распределительном валу двигателя.

Муфты представляют собой гидравлические устройства, подключенные к системе смазки двигателя. Управление осуществляется блоком управления двигателя на основании данных о частоте вращения коленчатого вала, нагрузке, температуре и других параметров. Масло из системы смазки двигателя поступает через каналы в корпусе механизма газораспределения и в распределительных валах в гидроуправляемые муфты, которые поворачивают распредвалы в соответствии с командами блока управления.

Существуют и системы изменения фаз ГРМ, работа которых основана на применении кулачков различной формы, благодаря которым достигается ступенчатое изменение продолжительности открытия и высоты подъема клапанов. Такие системы используются на следующих автомобилях:

  • Honda: VTEC, Variable Valve Timing and Lift Electronic Control;
  • Toyota: VVTL-i, Variable Valve Timing and Lift with intelligence;
  • Mitsubishi: MIVEC, Mitsubishi Innovative Valve Timing Electronic Control;
  • Audi: Valvelift System.
Читать еще:  Эфиры для быстрого запуска двигателя

Данные системы имеют в основном схожие конструкцию и принцип действия, которые можно рассмотреть на примере VTEC.

Распределительный вал имеет два малых и один большой кулачок на каждые два клапана. В режиме работы двигателя с небольшой частотой вращения коленчатого вала малые кулачки через двигателя с небольшой частотой вращения коленчатого вала малые кулачки через соответствующие рокеры воздействуют на пару впускных клапанов. Большой кулачок перемещает свободное коромысло вхолостую. Клапаны имеют минимальную высоту подъема, фазы ГРМ характеризуются малой продолжительностью.

Система управления с блокирующим механизмом, имеющим гидравлический привод, обеспечивает ступенчатое переключение с одного режима работы на другой при достижении коленвалом двигателя определенной частоты вращения. Рокеры малых и большого кулачков соединяются с помощью стопорного штифта в единое целое, и после этого усилие на впускные клапаны передается от большого кулачка распредвала. Таким образом, увеличивается ход клапанов и фазы газораспределения.

Недостатками такой системы являются ступенчатый переход с одного режима на другой и конструктивная сложность реализации процесса блокировки.

Наиболее совершенная конструкция системы изменения фаз ГРМ на данный момент основана на регулировании высоты подъема клапанов. Первопроходец в этом направлении — компания BMW, предложившая разработку Valvetronic. Аналогичный принцип реализован и в других системах:

  • Toyota: Valvematic;
  • Nissan: VEL, Variable Valve Event and Lift System;
  • FIAT: MultiAir;
  • Peugeot: VTI, Variable Valve and Timing Injection.

Система Valvetronic устанавливается только на впускные клапаны. Изменение хода клапана осуществляется с помощью сложной кинематической схемы. Эксцентриковый вал 9 приводится в движение от электродвигателя 1 через червячную передачу 2. Вращение эксцентрикового вала 9 изменяет положение промежуточного рычага 10, который, в свою очередь, задает определенное движение коромысла 11 и соответствующее ему перемещение клапана 16. Изменение высоты подъема клапана осуществляется непрерывно в зависимости от режимов работы двигателя. Такая система позволяет отказаться от использования дроссельной заслонки на некоторых режимах работы двигателя.

Система изменения фаз ГРМ надежна и обычно не доставляет хлопот владельцам автомобилей. Но предъявляются жесткие требования к качеству и сроку эксплуатации моторного масла, так как управление приводом гидравлическое. Не допускается никаких примесей, инородных частиц, строго должны быть соблюдены требования по вязкости и регламенту замены масла.

Поговорим о некоторых известных неисправностях системы изменения фаз ГРМ. Например, на автомобиле Renault Megane III (выпуск после 2008 года, двигатель K4M/F4R 830 объемом 1,6 литра) часто можно услышать стук со стороны верхней части двигателя после холодного пуска. Самая распространенная причина этого недуга кроется в приводе системы фаз ГРМ, а именно в муфте распределительного вала впускных клапанов. Для устранения неисправности требуется замена привода системы изменения фаз и обязательное обновление программного обеспечения для электронного блока управления двигателем.

На автомобиле Mazda CX-7 (выпуск после 2007 года с двигателем L3 Turbo объемом 2,3 литра) встречается аналогичная неисправность: чрезмерный шум от привода системы изменения фаз ГРМ, особенно при пуске холодного двигателя. Основная причина — неполное включение стопорного штифта привода системы изменения фаз газораспределения. Порядок устранения поломки следующий:

  1. Установить модифицированный привод системы изменения фаз газораспределения.
  2. Заменить моторное масло.
  3. Запустить двигатель, дать ему поработать на холостом ходу минимум 5 минут.
  4. Проверить топливный насос высокого давления на наличие утечек.
  5. Выключить зажигание.
  6. Дождаться снижения температуры охлаждающей жидкости.
  7. Заменить моторное масло и масляный фильтр.

У автомобиля KIA Rio (2005-2011 гг. выпуска, двигатель G4ED объемом 1,6 литра) иногда встречаются неприятные проблемы: неустойчивый холостой ход, ухудшение эксплуатационных характеристик двигателя. Причина аналогична: неисправность привода системы изменения фаз ГРМ, а именно муфты распределительного вала выпускных клапанов. Способ устранения следующий:

  1. Проверить работу привода системы фаз ГРМ.
  2. Проверить сопротивление привода системы фаз газораспределения. Номинальное сопротивление: 6,7-7,9 Ом.
  3. Заменить при необходимости.

Что такое система двигателя vvt

VVT-i (Variable Valve Timing with intelligence) — система сдвига фаз газораспределения двигателя внутреннего сгорания фирмы Toyota.

Принцип работы: основным управляющим устройством является муфта VVT-i. Изначально фазы открытия клапанов спроектированы для хорошей тяги на низких оборотах. После того, как обороты значительно увеличиваются, а вместе с этим увеличивается давление масла, которое открывает клапан VVT-i. После того как клапан открыт распределительный вал поворачивается на определенный угол относительно шкива. Кулачки имеют определенную форму и при повороте коленчатого вала открывают впускные клапана немного раньше, а закрывают позже, что благоприятно сказывается на увеличении мощности и крутящего момента на высоких оборотах.

Исполнительный механизм VVT-i размещен в шкиве распределительного вала — корпус привода соединен со звездочкой или зубчатым шкивом, ротор — с распредвалом.

Масло подводится с одной или другой стороны каждого из лепестков ротора, заставляя его и сам вал поворачиваться. Если двигатель заглушен, то устанавливается максимальный угол задержки (то есть угол, соответствующий наиболее позднему открытию и закрытию впускных клапанов).

Чтобы сразу после запуска, когда давление в масляной магистрали еще недостаточно для эффективного управления VVT-i, не возникало ударов в механизме, ротор соединяется с корпусом стопорным штифтом (затем штифт отжимается давлением масла).

Управление VVT-i осуществляется при помощи клапана VVT-i (OCV — Oil Control Valve). По сигналу блока управления электромагнит через плунжер перемещает основной золотник, перепуская масло в том или ином направлении. Когда двигатель заглушен, золотник перемещается пружиной таким образом, чтобы установился максимальный угол задержки.

Система VVTL-i

VVTL-i — Variable Valve Timing and Lift with intelligence, что в переводе означает интеллектуальное изменение фаз газораспределения и подъема клапанов.

Третье поколение системы VVT. Отличительная особенность от второго поколения VVT-i кроется в английском слове Lift — подъем клапанов. Теперь распределительный вал не просто поворачивается в муфте VVT относительно шкива плавно регулируя время открытия впускных клапанов, а еще при определенных условиях двигателя опускает клапана глубже в цилиндры. Причем подъем клапанов реализован на обоих распределительных валах, т.е. для впускных и выпускных клапанов.

Читать еще:  Вечный двигатель какие есть

Toyota VVTL-i — самый сложный проект VVT. Его мощные функции включают в себя: — Непрерывное регулирование фаз газораспределения — двухступенчатый клапан с изменяемым клапаном плюс длительность открытия клапана — применительно к впускным и выпускным клапанам Система может рассматриваться как комбинация существующих VVT-i и VTEC от Honda , хотя механизм переменного подъема отличается от механизма Honda.


Как и VVT-i, изменение фаз газораспределения осуществляется путем смещения фазового угла всего распределительного вала вперед или назад с помощью гидравлического привода, прикрепленного к концу распределительного вала. Время рассчитывается системой управления двигателем в соответствии оборотами двигателя, ускорением, подъемом вверх или вниз по склону и т.д. Кроме того, вариация является непрерывной в широком диапазоне до 60 °, поэтому только одна вариация по времени, пожалуй, самая совершенная конструкция до сих пор.

То, что делает VVTL-i лучше обычного VVT-i, является «L»-Lift, что означает подъем (подъем клапана). Давайте посмотрим на следующую иллюстрацию:

Как и VTEC, система Toyota использует одиночный следящий рычаг, чтобы приводить в действие оба впускных клапана. Он также имеет 2 кулачковых лепестка, действующие на этот ведущий рычаг, у кулачков разные профили — один с более длинным профилем продолжительности открытия клапана (для высокой скорости), другой с более коротким профилем продолжительности открытия клапана (для низкой скорости). При малой скорости медленный кулачок приводит в действие ведомый качающийся рычаг с помощью роликоподшипника (для уменьшения трения). Высокоскоростной кулачок не оказывает никакого влияния на качающийся следящий механизм, поскольку между гидравлическим толкателем имеется достаточное расстояние.

Преимущество Непрерывная фазировка кулачков улучшает подачу крутящего момента в широком диапазоне оборотов; Переменный подъем и продолжительность улучшают высокую мощность вращения.
Недостаток Более сложные и дорогие

Если посмотреть на распределительный вал, то мы увидим, что для каждого цилиндра для каждой пары клапанов имеется одно коромысло, по которому отрабатывают сразу два кулачка — один обычный, а другой увеличенный. При нормальных условиях увеличенный кулачек отрабатывает в холостую, т.к. в коромысле под ним предусмотрен так называемый тапочек, который свободно входит внутрь коромысла, тем самым не позволяет большому кулачку передавать силу нажатия на коромысло. Под тапочком находится стопорный штифт, который приводится в действие давлением масла.

Принцип работы: при повышенной нагрузке на высоких оборотах ЭБУ подает сигнал на дополнительный клапан VVT — он практически такой же как и на самой муфте, за исключением не больших отличий по форме. Как только клапан открылся в магистрали создается давление масла, которое механически воздействует на стопорный штифт и сдвигает его в сторону основания тапочка. Все, теперь тапочек заблокирован в коромысле и не имеет свободного хода. Момент от большого кулачка начинает передаваться коромыслу, тем самым опуская клапан глубже в цилиндр.

Основные преимущества системы VVTL-i заключаются в том, что двигатель не плохо тянет на низах и выстреливает на верхах, улучшается топливная экономичность.

Недостатками является пониженная экологичность, из-за чего система в таком виде долго не просуществовала.

Система Dual VVT-i

Dual VVT-i — это фирменная система газораспределительного механизма TMC. Система имеет общий принцип работы с системой VVT-i, но распространенная на распределительный вал выпускных клапанов. В головке блока цилиндров на каждом шкиве обоих распределительных валах располагаются муфты VVT-i. Фактически это обычная двойная система VVT-i.

В итоге теперь ЭБУ двигателя управляет временем открытия впускными и выпускными клапанами, позволяя достигать большую топливную экономичность как на низких оборотах так и на высоких. Двигатели получились более эластичными — крутящий момент распределен равномерно по всему диапазону оборотов двигателя. Учитывая тот факт, что Toyota решила отказаться от регулировки высоты подъема клапанов как в система VVTL-i, поэтому Dual VVT-i лишена ее недостатка заключающегося в относительно невысокой экологичности.

Впервые система была установлена на двигатель 3S-GE автомобиля RS200 Altezza в 1998-м году. В настоящее время устанавливается практически на все современные двигатели Toyota, такие как V10 серия LR, V8 серия UR, V6 серия GR, серия AR и ZR.

Система VVT-iE

VVT-iE — Variable Valve Timing — intelligent by Electric motor, что в переводе означает интеллектуальное изменение фаз газораспределения с помощью электромотора.

На сегодняшний день это самая технологичная система Toyota предназначенная для изменения фаз газораспределения современных моторов. Ее смысл точно такой же как у системы VVTL-i. Отличие заключается в самой реализации системы. Распределительные валы отклоняются на определенный угол для опережения или запаздывания относительно звездочек с помощью электродвигателя, а те давления масла, как на предыдущих моделях VVT. Теперь работа системы не зависит от оборотов двигателя и рабочей температуры в отличие от системы VVT-i, которая не способна работать при низких оборотах двигателя и не достигнув рабочей температуры двигателя. На низких оборотах давления масла мало и не способно сдвинуть лопасть муфты VVT.

VVT-iE не имеет вышеперечисленных недостатков, т.к. не зависит от масла двигателя. А так же обладает дополнительным преимуществом — способностью точно позиционировать смещение распределительных валов в зависимости от условий работы двигателя. Система начинает свою работу начиная с начала запуска двигателя до его полной остановки. Ее работа способствует высокой экологичности современных двигателей Toyota, максимальной топливной эффективности и мощности.

Принцип работы: электромотор вращается вместе с распределительным валом на скорости равной скорости распределительного вала. При необходимости электромотор либо притормаживается либо ускоряется относительно звездочки распределительного вала смещая распределительный вал на необходимый угол опережая или запаздывая фазы газораспределения.

Ссылка на основную публикацию
Adblock
detector