Что такое скольжение асинхронного двигателя и от чего оно зависит

Регулирование скорости асинхронного двигателя

Долгое время в промышленности использовались нерегулируемые электроприводы на базе АД, но, в последнее время возникла надобность в регулировании скорости асинхронных двигателей.

Частота вращения ротора равна

При этом, синхронная частота вращения зависит от частоты напряжения и числа пар полюсов

Исходя из этого, можно сделать вывод, что регулировать скорость АД можно с помощью изменения скольжения, частоты и числа пар полюсов.

Рассмотрим основные способы регулировки.

Регулирование скорости с помощью изменения активного сопротивления в цепи ротора

Этот способ регулирования скорости применим в двигателях с фазным ротором. При этом в цепь обмотки ротора включается реостат, которым можно плавно увеличивать сопротивление. С увеличением сопротивления, скольжение двигателя растёт, а скорость падает. Таким образом, обеспечивается регулировка скорости вниз от естественной характеристики.

Недостатком данного способа является его неэкономичность, так как при увеличении скольжения, потери в цепи ротора растут, следовательно, КПД двигателя падает. Плюс к этому, механическая характеристика двигателя становится более пологой и мягкой, из-за чего небольшое изменение момента нагрузки на валу, вызывает большое изменение частоты вращения.

Регулирование скорости данным способом не эффективно, но, несмотря на это применяется в двигателях с фазным ротором.

Регулирование скорости двигателя с помощью изменения напряжения питания

Данный способ регулирования можно осуществить, если включить в цепь автотрансформатор, перед статором, после питающих проводов. При этом, если снижать напряжение на выходе автотрансформатора, то двигатель будет работать на пониженном напряжении. Это приведёт к снижению частоты вращения двигателя, при постоянном моменте нагрузки, а также к снижению перегрузочной способности двигателя. Это связано с тем, что при уменьшении напряжения питания, максимальный момент двигателя уменьшается в квадрат раз. Кроме того, этот момент уменьшается быстрее, чем ток в цепи ротора, а значит, растут и потери, с последующим нагревом двигателя.

Способ регулирования изменением напряжения, возможен только вниз от естественной характеристики, так как увеличивать напряжение выше номинального нельзя, потому что это может привести к большим потерям в двигателе, перегреву и выходу его из строя.

Кроме автотрансформатора, можно использовать тиристорный регулятор напряжения.

Регулирование скорости с помощью изменения частоты питания

При данном способе регулирования, к двигателю подключается преобразователь частоты (ПЧ). Чаще всего это тиристорный преобразователь частоты. Регулирование скорости осуществляется изменением частоты напряжения f, так как она в данном случае влияет на синхронную скорость вращения двигателя.

При снижении частоты напряжения, перегрузочная способность двигателя будет падать, чтобы этого не допустить, требуется повысить величину напряжения U1. Значение на которое нужно повысить, зависит от того какой привод. Если регулирование производится с постоянным моментом нагрузки на валу, то напряжение нужно изменять пропорционально изменению частоты (при снижении скорости). При увеличении скорости этого делать не следует, напряжение должно оставаться на номинальном значении, иначе это может причинить вред двигателю.

Если регулирование скорости производится с постоянной мощностью двигателя (например, в металлорежущих станках), то изменение напряжения U1 необходимо производить пропорционально квадратному корню изменения частоты f1.

При регулировании установок с вентиляторной характеристикой, необходимо изменять подводимое напряжение U1 пропорционально квадрату изменения частоты f1.

Регулирование с помощью изменения частоты, является наиболее приемлемым вариантом для асинхронных двигателей, так как при нем обеспечивается регулирование скорости в широком диапазоне, без значительных потерь и снижения перегрузочных способностей двигателя.

Регулирование скорости АД изменением числа пар полюсов

Такой способ регулирования возможен только в многоскоростных асинхронных двигателях с короткозамкнутым ротором, так как число полюсов этого ротора, всегда равно количеству полюсов статора.

В соответствии с формулой, которая рассматривалась выше, скорость двигателя можно регулировать изменением числа пар полюсов. Причём, изменение скорости происходит ступенчато, так как количество полюсов принимают только определённые значения – 1,2,3,4,5.

Изменение количества полюсов достигается переключением катушечных групп статорной обмотки. При этом катушки соединяются различными схемами соединения, например “звезда — звезда” или “звезда – двойная звезда”. Первая схема соединения даёт изменение количества полюсов в соотношении 2:1. При этом обеспечивается постоянная мощность двигателя при переключении. Вторая схема изменяет количество полюсов в таком же соотношении, но при этом обеспечивает постоянный момент двигателя.

Применение данного способа регулирования оправдано сохранением КПД и коэффициента мощности при переключении. Минусом же является более сложная и увеличенная конструкция двигателя, а также увеличение его стоимости.

Расчет ЭДС и токов асинхронных двигателей

Новые аудиокурсы повышения квалификации для педагогов

Слушайте учебный материал в удобное для Вас время в любом месте

откроется в новом окне

Выдаем Удостоверение установленного образца:

магистр психологии, клинический психолог. .

психолог-консультант, клинический психолог. .

«IQ и EQ как основа успешного обучения»

  • для учителей, репетиторов и родителей
  • свидетельство + скидки на курсы для всех!

ПРАКТИЧЕСКАЯ РАБОТА №6

« Расчет ЭДС и токов асинхронных двигателей »

ЦЕЛЬ РАБОТЫ: рассчитать значение скольжения, ЭДС асинхронного двигателя и величину протекающих в нем токов.

КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ:

В соответствии с принципом обратимости электрических машин асинхронные машины могут работать как в двигательном, так и в генераторном режимах. Кроме того, возможен еще и режим электромагнитного торможения противовключением.

Двигательный режим. При включении обмотки статора в сеть трехфазного тока возникает вращающееся магнитное поле, которое, сцепляясь с короткозамкнутой обмоткой ротора, наводит в ней ЭДС. При этом в стержнях обмотки ротора появляются токи. В результате взаимодействия этих токов с вращающимся магнитным полем на роторе возникают электромагнитные силы. Совокупность этих сил создает электромагнитный вращающий момент, под действием которого ротор асинхронного двигателя приходит во вращение с частотой n 2 Весьма важным параметром асинхронной машины является скольжение — величина, характеризующая разность частот вращения ротора и вращающегося поля статора:

Читать еще:  Гидроудар двигателя причины возникновения

S = ( n 1 n 2)/ n 1 (формула 6.1)

Скольжение выражают в долях единицы либо в процентах. В последнем случае величину, полученную по (6.1), следует умножить на 100.

С увеличением нагрузочного момента на валу асинхронного двигателя частота вращения ротора n 2 уменьшается. Следовательно, скольжение асинхронного двигателя зависит от механической нагрузки на валу двигателя и может изменяться в диапазоне 0 s ≤ 1.

Скольжение, соответствующее номинальной нагрузке двигателя, называют номинальным скольжением s hom . Для асинхронных двигателей общего назначения s hom = 18%, при этом для двигателей большой мощности s ном = 1%, а для двигателей малой мощности s ном = 8%.

Формула для определения асинхронной частоты вращения (об/мин):

n 2 = n 1(1- s ). (формула 6.2)

Пример 6.1. Трехфазный асинхронный двигатель с числом полюсов 2р = 4 работает от сети с частотой тока f 1 = 50 Гц. Определить частоту вращения двигателя при номинальной нагрузке, если скольжение при этом составляет 6%.

Решение. Синхронная частота вращения по (6.9) n 1 = f1 60/ р = 50 • 60/4 = 1500 об/мин.

Номинальная частота вращения по (6.2): n ном = n 1(1 — s ном ) = 1500(1 — 0,06) = 1412 об/мин.

Генераторный режим. Если обмотку статора включить в сеть, а ротор асинхронной машины посредством приводного двигателя ПД (двигатель внутреннего сгорания, турбина и т. п.), являющегося источником механической энергии, вращать в направлении вращения магнитного поля статора с частотой n 2 > n1, то направление движения ротора относительно поля статора изменится на обратное (по сравнению с двигательным режимом работы пой машины), так как ротор будет обгонять поле статора. При этом скольжение станет отрицательным, а ЭДС, наведенная в обмотке ротора, изменит свое направление. Электромагнитный момент на роторе М также изменит свое направление, т. е. будет направлен встречно вращающемуся магнитному полю статора и станет тормозящим по отношению к вращающемуся моменту приводного двигателя М1. В этом случае механическая мощность приводного двигателя в основной своей части будет преобразована в электрическую активную мощность Р2 переменного тока. Особенность работы асинхронного генератора состоит в том, что вращающееся магнитное поле в нем создается реактивной мощностью Q трехфазной сети, в которую включен генератор и да он отдает вырабатываемую активную мощность Р2. Следовательно, для работы асинхронного генератора необходим источник переменного тока, при подключении к которому происходит возбуждение генератора.

Скольжение асинхронной машины в генераторном режиме может изменяться в диапазоне — ∞ s I 1 μ = (формула 6.3)

Исходным параметром при расчете магнитной цепи асинхронного двигателя является максимальная магнитная индукция в воздушном зазоре Вδ. Величину Вδ принимают по рекомендуемым значениям в зависимости от наружного диаметра сердечника статора D 1нар и числа полюсов 2р.

Магнитная индукция Вδ определяет магнитную нагрузку двигателя: при слишком малом Вδ магнитная система двигателя недогружена, а поэтому габаритные размеры двигателя получаются неоправданно большими; если же задаться чрезмерно большим течением Вδ, то резко возрастут магнитные напряжения на участках магнитной системы, особенно в зубцовых слоях статора и рот opa , в результате возрастет намагничивающий ток статора I снизится КПД двигателя.

Расчет магнитной цепи асинхронного двигателя. Расчет магнитной цепи электрической машины состоит в основном в определении магнитных напряжений для всех ее участков. Магнитное напряжение F x для любого участка магнитной цепи равно произведению напряженности поля на этом участке Нх на его длину l Х.

Участки магнитной цепи различаются конфигурацией, размерами и материалом. Наибольшее магнитное напряжение в воздушном зазоре δ. Напряженность магнитного поля в воздушном зазоре

H δ = Bδ/ μ, где μ = 4π/ 10 -7 Гн/м. Расчетная длина зазора l δ = δk δ , где k δ , — коэффициент воздушного зазора, учитывающий увеличение магнитного сопротивления зазора, вызванное зубчатостью поверхностей статора и ротора, ограничивающих воздушный зазор в асинхронном двигателе ( k δ > 1). Учитывая это, получим выражение магнитного напряжения воздушного зазора (А):

F δ = 0,8 Bδ δ k δ 10 3 . (формула 6.4)

где δ — значение одностороннего воздушного зазора, мм.

Обычно магнитное напряжение двух воздушных зазоров, входящих в расчетную часть магнитной цепи асинхронного двигателя, составляет — 85% от суммарной МДС на пару полюсов . Из этого следует, насколько значительно влияние величины воздушного зазора δ на свойства двигателя. С увеличением δ МДС значительно возрастает, что ведет к увеличению намагничивающего тока статора I , а, следовательно, ведет к росту потерь и снижению КПД двигателя. И наоборот, с уменьшением δ уменьшается , что ведет к росту КПД, т. е. двигатель становится более экономичным в эксплуатации. Однако при слишком малых зазорах δ усложняется изготовление двигателя (он становится менее технологичным), так как требует более высокой точности при обработке деталей и сборке двигателя. При этом снижается надежность двигателя – возрастает вероятность возникновения неравномерности зазора и, как следствие, вероятность задевания ротора о статор.

Пример 6.2. Воздушный зазор трехфазного асинхронного двигателя δ = 0,5 мм, максимальное значение магнитной индукции Вδ = 0,9 Тл. Обмотка статора четырехполюсная, число последовательно соединенных витков в обмотке одной фазы ω1 = 130, обмоточный коэффициент k об1 = 0,91. Определить значение намагничивающего тока обмотки статора I 1μ, если коэффициент воздушного зазора k δ = 1,38, а коэффициент магнитного насыщения k μ = 1,4.

Магнитное напряжение воздушного зазора по (6 .4)

F δ = 0,8 В δ δ k δ • 10 3 = 0,8 • 0,9 • 0,5 • 1,38 • 10 3 = 497 A .

Так как коэффициент магнитного насыщения k μ = ном / (2 F δ ), то МДС обмотки статора в режиме х.х. на пару полюсов ном = 2 F δ k μ =2 • 497 • 1,4 = 1392 А.

Намагничивающий ток статора по (6.3)

I 1 μ = p ном / (0,9 m 1 ω 1 k об1) = 2 • 1392 / (0,9 • 3 • 130 • 0,91) = 8,7 A

Если воздушный зазор данного двигателя увеличить на 20%, т. е. принять δ = 0,6 мм (при прочих неизменных условиях), то намагничивающий ток статора станет равным I 1 μ = 10,4 А, т. е. он возрастет пропорционально увеличению воздушного зазора.

Читать еще:  Что такое холодильник в двигателе внутреннего сгорания

Электродвижущие силы, наводимые в обмотке ротора. Асинхронный двигатель аналогичен трансформатору, у которого вторичная обмотка (обмотка ротора) вращается. При этом вращающийся магнитный поток сцепляется не только с обмоткой статора, где индуцирует ЭДС Е и но и с обмоткой вращающегося ротора, где индуцирует ЭДС. В процессе работы асинхронного двигателя ротор вращается в сторону вращения поля статора с частотой n 2. Поэтому частота вращения поля статора относительно ротора равна разности частот вращения ( n 1 – n 2). Основной магнитный поток Ф, обгоняя ротор с частотой вращения n s = ( n 1 — n 2), индуцирует в обмотке ротора ЭДС

Е2 = 4,44 f 2 Ф ω2 коб2 (формула 6.5)

где f 2— частота ЭДС Е2 s в роторе, Гц; ω2 — число последовательно соединенных витков одной фазы обмотки ротора; k o 62 — обмоточный коэффициент обмотки ротора.

Частота ЭДС (тока) в обмотке вращающегося ротора пропорциональна частоте вращения магнитного поля относительно ротора n s = n 1 — n 2, называемой частотой скольжения:

f 2 = pn s / 60 = p(n 1 – n 2 ) / 60,

f 2 = = = f 1 s (формула 6.6)

т. е. частота ЭДС (тока) ротора пропорциональна скольжению. Для асинхронных двигателей общепромышленного назначения эта частота обычно невелика и при f 1 = 50 Гц не превышает нескольких герц, так при s = 5% частота f 2 = 50 0,05 = 2,5 Гц.

E 2s = 4,44 f 1 s Ф ω 2 k об 2 = E 2 s . (формула 6.7)

Здесь Е2 — ЭДС, наведенная в обмотке ротора при скольжении s = 1, т. е. при неподвижном роторе, В.

Уравнения МДС и токов асинхронного двигателя. МДС обмоток статора и ротора на один полюс в режиме нагруженного двигателя

F 1 = 0,45 m 1 I 1 ω 1 k об 1 / P

F 2 = 0,45 m 2 I 2 ω 2 k об 2 / P ( формула 6.8)

где m2 — число фаз в обмотке ротора; k o 62 — обмоточный коэффициент обмотки ротора.

С подключением нагрузки в фазах обмотки статора появляются токи I А, I B , I C . При этом трехфазная обмотка статора создает вращающееся магнитное поле. Частота вращения этого поля равна частоте вращения ротора генератора (об/мин):

n 1 = f 160/ p . (формула 6.9)

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ:

Решить задачу №1. В табл. 6.1 приведены данные следующих параметров трехфазного асинхронного двигателя с короткозамкнутым ротором: основной магнитный поток ф, число последовательно соединенных витков в обмотке статора, номинальное скольжение , ЭДС, индуцируемая в обмотке ротора при его неподвижном состоянии , и ЭДС ротора при его вращении с номинальным скольжением E 2 s , частота этой ЭДС f 2 при частоте вращения ротора n ном. Частота тока в питающей сети 50 Гц. Требуется определить значения параметров, не указанные в таблице в каждом из вариантов.

Режим работы асинхронной машины

В соответствии с принципом обратимости элек­трических машин (см. § В.2) асинхронные машины могут работать как в двигательном, так и в генератор­ном режимах. Кроме того, возможен еще и режим электромагнитного торможения противовключением.

Двигательный режим.Принцип действия трехфазного асинхронного двигателя рассмотрен в § 6.2. При включении обмотки статора в сеть трех­фазного тока возникает вращающееся магнитное поле, которое, сцепляясь с короткозамкнутой обмот­кой ротора, наводит в ней ЭДС. При этом в стерж­нях обмотки ротора появляются токи (см. рис. 6.4). В результате взаимодействия этих токов с вращаю­щимся магнитным полем на роторе возникают элек­тромагнитные силы. Совокупность этих сил создает электромагнитный вращающий момент, под дейст­вием которого ротор асинхронного двигателя при­ходит во вращение с частотой n2 = 0). При этом скольжение sравно единице.

Рис. 10.1. Режимы работы асинхронной машины

В режиме работы двигателя без нагрузки на валу (режим холостого хода) ротор вращается с частотой лишь немного меньшей синхронной частоты вращения n1и скольжение весьма мало отличается от нуля (s ≈ 0). Скольжение, соответствующее номинальной нагрузке двигателя, называют номинальным скольжениемshom.Для асинхронных дви­гателей общего назначенияshom= 1 8%, при этом для двигателей большой мощности sном = 1%, а для двигателей малой мощности sном=8%.

Преобразовав выражение (10.1), получим формулу для опре­деления асинхронной частоты вращения (об/мин):

Пример 10.1.Трехфазный асинхронный двигатель с числом полюсов 2р = 4 работает от сети с частотой тока f1 = 50 Гц. Определить частоту вращения двигателя при номинальной нагрузке, если скольжение при этом составляет 6%.

Решение. Синхронная частота вращения по (6.3)

n1 = f1 60/ р = 50 • 60/4 = 1500 об/мин.

Номинальная частота вращения по (10.2)

nном = n1(1 — sном ) = 1500(1 — 0,06) = 1412 об/мин.

Генераторный режим.Если обмотку статора включить в сеть, а ротор асинхронной машины посредством приводного дви­гателя ПД (двигатель внутреннего сгорания, турбина и т. п.), яв­ляющегося источником механической энергии, вращать в направ­лении вращения магнитного поля статора с частотой n2 > n1, то направление движения ротора относительно поля статора изме­нится на обратное (по сравнению с двигательным режимом работы пой машины), так как ротор будет обгонять поле статора. При этом скольжение станет отрицательным, а ЭДС, наведенная в обмотке ротора, изменит свое направление. Электромагнитный момент на роторе М также изменит свое направление, т. е. будет направлен встречно вращающемуся магнитному полю статора и станет тормозящим по отношению к вращающемуся моменту приводного двигателя М1 (рис. 10.1, а). В этом случае механическая мощность приводного двигателя в основной своей части будет преобразована в электрическую активную мощность Р2 перемен­ного тока. Особенность работы асинхронного генератора состоит в том, что вращающееся магнитное поле в нем создается реактивной мощностью Q трехфазной сети, в которую включен генератор и да он отдает вырабатываемую активную мощность Р2. Следовательно, для работы асинхронного генератора необходим источник переменного тока, при подключении к которому происходит возбуждение генератора, т. е. в нем возбуждается вращающееся маг­нитное поле.

Скольжение асинхронной машины в генераторном режиме может изменяться в диапазоне — ∞

Читать еще:  Что придумано вечный двигатель

В режиме электромагнитного торможения частота вращения ротора является отрицательной, а поэтому скольжение приобрета­ет положительные значения больше единицы:

Скольжение асинхронной машины в режиме торможения противовключением может изменяться в диапазоне 1

Дата добавления: 2015-01-17 ; просмотров: 56 ; Нарушение авторских прав

Способы регулировки оборотов вращения асинхронных двигателей

Достаточно часто режим работы вспомогательного механизированного оборудования требует понижения штатных частот вращения. Добиться такого эффекта позволяет регулировка оборотов асинхронного двигателя. Как это сделать своими руками (расчет и сборку), используя стандартные схемы управления или самодельные устройства, попробуем разобраться далее.

Что такое асинхронный двигатель?

Электродвигатели переменного тока нашли довольно широкое применение в различных сферах нашей жизнедеятельности, в подъемно транспортном, обрабатывающем, измерительном оборудовании. Они используются для превращения электрической энергии, которая поступает от сети, в механическую энергию вращающегося вала. Чаще всего используются именно асинхронные преобразователи переменного тока. В них частота вращения ротора и статора отличаются. Между этими активными элементами обеспечивается конструктивный воздушный зазор.

И статор, и ротор имеют жесткий сердечник из электротехнической стали (наборного типа, из пластин), выступающий в роли магнитопровода, а также обмотку, которая укладывается в конструктивные пазы сердечника. Именно способ организации или укладки обмотки ротора является ключевым критерием классификации этих машин.

Двигатели с короткозамкнутым ротором (АДКР)

Здесь используется обмотка в виде алюминиевых, медных или латунных стержней, которые вставляются в пазы сердечника и с обеих сторон замыкаются дисками (кольцами). Тип соединения этих элементов зависит от мощности двигателя: для малых значений используют метод совместной отливки дисков и стержней, а для больших – раздельное изготовление с последующей сваркой между собой. Обмотка статора подключается с использованием схем «треугольника» или «звезды».

Двигатели с фазным ротором

К сети подключается трехфазная обмотка ротора, посредством контактных колец на основном валу и щеток. За основу принимается схема «звезда». На рисунке внизу представлена типичная конструкция такого двигателя.

Принцип работы и число оборотов асинхронных двигателей

Данный вопрос рассмотрим на примере АДКР, как наиболее распространенного типа электродвигателей подъемно-транспортном и обрабатывающем оборудовании. Напряжение от сети подается на обмотку статора, каждая из трех фаз которой смещена геометрически на 120°. После подачи напряжения возникает магнитное поле, создающее путем индукции ЭДС и ток в обмотках ротора. Последнее вызывает электромагнитные силы, заставляющие ротор вращаться. Еще одна причина, по которой все это происходит, а именно, возникает ЭДС, является разность оборотов статора и ротора.

Одной из ключевых характеристик любого АДКР является частота вращения, расчет которой можно вести по следующей зависимости:

n = 60f / p, об/мин

где f – частота сетевого напряжения, Гц, р – число полюсных пар статора.

Все технические характеристики указываются на металлической табличке, закрепленной на корпусе. Но если она отсутствует по какой-то причине, то определить число оборотов нужно вручную по косвенным показателям. Как правило, используется три основных метода:

  • Расчет количества катушек. Полученное значение сопоставляется с действующими нормами для напряжения 220 и 380В (см. табл. ниже),

  • Расчет оборотов с учетом диаметрального шага обмотки. Для определения используется формула вида:

где 2p – число полюсов, Z1 – количество пазов в сердечнике статора, y – собственно, шаг укладки обмотки.

Стандартные значения оборотов:

  • Расчет числа полюсов по сердечнику статора. Используются математические формулы, где учитываются геометрические параметры изделия:

2p = 0,35Z1b / h или 2p = 0,5Di / h,

где 2p – число полюсов, Z1 – количество пазов в статоре, b – ширина зубца, см, h – высота спинки, см, Di – внутренний диаметр, образованный зубцами сердечника, см.

После этого по полученным данным и магнитной индукции нужно определить количество витков, которое сверяется с паспортными данными двигателей.

Способы изменения оборотов двигателя

Регулировка оборотов любого трехфазного электродвигателя, используемого в подъемно-транспортной технике и оборудовании, позволяет добиться требуемых режимов работы точно и плавно, что далеко не всегда возможно, например, за счет механических редукторов. На практике используется семь основных методов коррекции скорости вращения, которые делятся на два ключевых направления:

  1. Изменение скорости магнитного поля в статоре. Достигается за счет частотного регулирования, переключения числа полюсных пар или коррекции напряжения. Следует добавить, что эти методы применимы для электродвигателей с короткозамкнутым ротором,
  2. Изменение величины скольжения. Этот параметр можно откорректировать за счет питающего напряжения, подключения дополнительного сопротивления в электрическую цепь ротора, применения вентильного каскада или двойного питания. Используется для моделей с фазным ротором.

Наиболее востребованными методами являются регулирование напряжения и частоты (за счет применения преобразователей), а также изменение количества полюсных пар (реализуется путем организации дополнительной обмотки с возможностью переключения).

Типичные схемы регуляторов оборотов

На рынке сегодня есть широкий выбор регуляторов и частотных преобразователей для асинхронных двигателей. Тем не менее, для бытовых нужд подъемного или обрабатывающего оборудования вполне можно сделать расчет и сборку на микросхеме самодельного прибора на базе тиристоров или мощных транзисторов.

Ниже представлен пример схемы достаточно мощного регулятора для асинхронного двигателя. За счет чего можно добиться плавного контроля параметров его работы, снижения энергопотребления до 50%, расходов на техническое обслуживание.

Данная схема является сложной. Для бытовых нужд ее можно значительно упростить, используя в качестве рабочего элемента симистор, например, ВТ138-600. В этом случае схема будет выглядеть следующим образом:

Обороты электродвигателя будут регулироваться за счет потенциометра, который определяет фазу входного импульса, открывающего симистор.

Как можно судить из информации, представленной выше, от оборотов асинхронного двигателя зависят не только параметры его работы, но и эффективность функционирования питаемого подъемного или обрабатывающего оборудования. В торговой сети сегодня можно приобрести самые разнообразные регуляторы, но также можно совершить расчет и собрать эффективное устройство своими руками.

Ссылка на основную публикацию
Adblock
detector