Что такое скольжение асинхронного двигателя с короткозамкнутым ротором

Снятие рабочих характеристик трехфазного асинхронного электродвигателя с короткозамкнутым ротором

лабораторная работа 3

Снятие рабочих характеристик трехфазного асинхронного электродвигателя с короткозамкнутым ротором

Цель работы. 1. Изучить устройство трехфазного асинхронного двигате­ля с короткозамкнутым ротором.

2. Испытать асинхронный двигатель с по­мощью электро-магнитного тормоза.

3. Построить по опытным данным рабочие характеристики асинхронного двигателя.

Общие теоретические положения.

Асинхронный двигатель трехфазного тока представляет собой электрическую машину, служащую для преобразо­вания электрической энергии трехфазного тока в механическую.

Двигатель имеет две основные части : неподвижную — статор

Статор состоит из чугунного, стального или алюминиевого корпуса, внутри которого находится полый цилиндр, собранный из тонких изолированных друг от друга листов электротехнической стали. На внутрен­ней поверхности цилиндра имеются пазы, в которых размещается трехфазная обмотка статора, состоящая из трех одинаковых частей, называемых фа­зами. Выводы начала и конца одной фазы сдвинуты в пространстве относи­тельно аналогичных выводов другой фазы иа 120°.

На корпусе двигателя имеется панель с зажимами, с помощью которых обмотка присоединяется к трехфазной сети. К каждому зажиму подключен соответствующий вывод обмотки. Для зажимов приняты следующие обозначе­ния: зажимы, к которым подключены начала обмоток, обозначают С1 — С3; зажимы, к которым подсоединены концы обмоток, — С4 — С6

Обмотки двигателей малой и средней мощности изготовляют на напряже­ния 380/220 и 220/127 В. Напряжение, указанное в числителе, соответствует соединению обмоток звездой, в знаменателе—треугольником. Таким образом, один и тот же двигатель при соответствующей схеме соединения его обмоток может быть включен в сеть на любое указанное в паспорте напряжение.

Ротор представляет собой цилиндр, собранный, так же как и сердечник статора, из отдельных листов электротехнической стали, надежно укреплен на валу машины и имеет в пазах, расположенных вблизи его поверхности, короткозамкнутую обмотку.

Подключим обмотку статора к сети трехфазного переменного тока (рис. 10.1).

Внутри статора возникает магнитное поле, вращающееся с часто­той

где f — частота токов в обмотке статора;

р— число пар полю­сов обмотки статора.

Магнитные линии поля пересекают обмотку неподвижно­го ротора и индуцируют в ней ЭДС. Под действием ЭДС в обмотке ротора про­текает ток. Ток ротора, взаимодействуя с вращающимся магнитным полем, создает вращающий момент, под действием которого ротор начинает вращать­ся в ту же сторону, что и поле с частотой

где s — скольжение, определяемое по формуле: s = (n 0 — n)/n 0

При работе электродвигателя без нагрузки (холостой ход) скольжение очень мало. С увеличением нагрузки на валу двигателя частота вращения ротора уменьшается, а скольжение увеличи­вается. Скольжение асинхронного двигателя в зависимости от нагрузки меня­ется незначительно (1—6 %). Чем больше мощность двигателя, тем меньше его скольжение. Частота вращения ротора может быть измерена с помощью тахо­метра. Для изменения направле­ния вращения (реверсирование) асинхронного двигателя следует поменять ме­стами два любых провода из трех, идущих к обмоткам статора двигателя.

Зависимость между вращающим моментом M и скольжением s называют механической характеристикой (рис. 10.2). В начальный момент пуска s =1 и п = 0, вращающий пусковой момент двигателя относительно невелик. При некотором скольжении, называемом критическим, вращающий момент двига­теля максимальный. В режиме холостого хода, когда двигатель не нагружен, а механическими потерями (на трение) можно пренебречь, s = С. Работе дви­гателя с номинальной нагрузкой соответствует точка A на механической ха-

Рис 10.1. Схема присоеди­нения трехфазного асинх­ронного двигателя с корот-козамкнутым ротором к пи­тающей сети

Рис. 10.2. График зависи­мости вращающего момен­та асинхронного двигателя от скольжения

Рис. 10.3. Характеристики асинхронного двигателя:

а — механическая; б — рабочие

рактеристике. При скольжении S ном двигатель развивает номинальный мо­мент, значение которого (Н-м) вычисляют по формуле:

М ном = 9550 Р 2ном / n ном

где Р 2ном — номинальная мощность двигателя, кВт;

n ном — номинальная частота вращения ротора, мин -1

Свойства асинхронного двигателя определяют по его механической ха­рактеристике п = f (М) (рис. 10.3, а) и по рабочим характеристикам п = f (Р 2 ),

s = f(Рг), М = f (Р 2 ), I = f(Р 2 ), cos  = f (Р 2 ),  — f(Р 2 ) при напряжении U = const и частоте тока I = const (рис. 10.3, б), где М и Р — соответственно момент и мощность на валу двигателя.

Прямой пуск асинхронного двигателя с короткозамкнутым ротором мож­но производить включением рубильника (магнитного пускателя) и т.п. (см. рис. 10.1). При прямом пуске на двигатель подается полное напряжение сети. При таком способе пуска возникают большие пусковые токи, в 2—7 раз пре­вышающие номинальные токи двигателей. Однако в этом случае на валу дви­-

Рис. 10.4. Устройство электромагнитного (индукционного) тор­моза:

1 — электромагниты; 2 — стальной диск; 3 — груз; 4—шкала: 5 — стрелка; 6 — вал испытуемой машины

Рис. 10.5. Схема для исследования трехфазного асинхронного дви­гателя с короткозамкнутым ротором

гателя развивается начальный вращающий момент М п , составляющий 1,2— 2,2 номинального момента М ном , что достаточно для разгона большинства устройств, пускаемых без нагрузок.

Трехфазный асинхронный двигатель с короткозамкнутым ротором харак­теризуется такими номинальными величинами:

мощностью Р 2НОМ на валу,

линейным напряжением U ном ,

линейным током I ном .

типом соединения фаз ста­тора,

частотой переменного тока f ном ,

частотой вращения ротора n ном ,

коэф­фициентом мощности cos  ном

КПД  ном — которые приведены на табличке машины.

Для нагрузки электродвигателей широко применяют электромагнитные
(индукционные) тормозные устройства (рис. 10.4, где 1— электромагниты,
2 — стальной диск, 3 — груз, 4— шкала, 5 — стрелка, 6— вал испыту­
емой машины). При некотором угле поворота груза со стрелкой вращающий и
противодействующий моменты уравновешиваются и по заранее проградуиро-
ванной шкале в ньютон-метрах определяют вращающий момент, развиваемый
на валу электродвигателя.

Читать еще:  Двигатель cummins cge250 30 газовый характеристики

Мощность Р 2 на валу (кВт) определяется по формуле: Р 2 = М  n / 9550

Коэффициент мощности вычисляют по формуле: cos  = Р 1 /  3  U  I

КПД определяют по формуле:  = Р 2 / Р 1,

где Р 1 — активная мощность, потребляемая двигателем электрической энергии из трехфазной сети;

U и I —линейные на­пряжения и ток.

Приборы и оборудование:

источники- питания (трехфазная сеть перемен­ного тока; сеть постоянного тока),

трехфазный асинхронный двигатель с ко­роткозамкнутым ротором,

амперметр и вольтметр электромагнитной системы,

двухэлементный ваттметр ферродинамической системы,

трехполюсный и двухполюсный автоматические выключатели,

Порядок выполнения работы.

Ознакомиться с приборами, аппаратурой и оборудованием, предназ-наченными для выполнения лабораторной работы, записать их технические характеристики.

Собрать электрическую схему для исследования асинхронного двига-­
теля (рис. 10.5) и представить ее для проверки преподавателю.

Произвести пуск двигателя без нагрузки на его валу (холостой ход).
Показания всех приборов записать в табл. 10.1

Постепенно нагружать двигатель с помощью электромагнитного тор­-
моза, для этого ступенями изменять ток в обмотках электромагнитов тормоза с помощью делителя напряжения R. Записать показания всех приборов в табл. 10.1 для 6—7 различных случаев возрастающей нагрузки.

5. Произвести необходимые расчеты, результаты записать в табл. 10.1.
Используя полученные результаты, построить в одной системе координат ра­бочие характеристики: п = f (Р 2 ), s = f(Рг), М = f (Р 2 ), I = f(Р 2 ), cos  = f (Р 2 ),  — f(Р 2 )

Составить отчет по результатам выполненной работы.

мтомд.инфо

Рабочие характеристики асинхронного двигателя

Раздел: Электротехника

Рабочие характеристики асинхронного двигателя представляют собой графически выраженные зависимости частоты вращения n2, КПД асинхронного двигателя η, полезного момента (момента на валу) М2, коэффициента мощности cos φ, и тока статора I1 от полезной мощности Р2 при U1 = const f1 = const.

Расчет рабочих характеристик асинхронного двигателя

Скоростная характеристика n2 = f(P2). Частота вращения ротора асинхронного двигателя n2 = n1(1 — s).

Скольжение s = Pэ2/Pэм, то есть скольжение асинхронного двигателя, а следовательно, и его частота вращения определяются отношением электрических потерь в роторе к электромагнитной мощности. Пренебрегая электрическими потерями в роторе в режиме холостого хода, можно принять Рэ2 = 0, а поэтому s ≈ 0 и n2 ≈ n1.

По мере увеличения нагрузки на валу асинхронного двигателя отношение s = Pэ2/Pэм растет, достигая значений 0,01 — 0,08 при номинальной нагрузке. В соответствии с этим зависимость n2 = f(P2) представляет собой кривую, слабо наклоненную к оси абсцисс. Однако при увеличении активного сопротивления ротора двигателя r2′ угол наклона этой кривой увеличивается. В этом случае изменения частоты асинхронного двигателя n2 при колебаниях нагрузки Р2 возрастают. Объясняется это тем, что с увеличением r2′ возрастают электрические потери в роторе.

Рабочие характеристики асинхронного двигателя

Зависимость М2 = f(P2). Зависимость полезного момента на валу асинхронного двигателя М2 от полезной мощности Р2 определяется выражением M2 = Р22 = 60 P2/(2πn2) = 9,55Р2/n2, где Р2 — полезная мощность, Вт; ω2 = 2πf2/60 — угловая частота вращения ротора.

Из этого выражения следует, что если n2 = const, то график М2 = f22) представляет собой прямую линию. Но в асинхронном двигателе с увеличением нагрузки Р2 частота вращения ротора уменьшается, а поэтому полезный момент на валу М2 с увеличением нагрузки возрастает не сколько быстрее нагрузки, а следовательно, график М2 = f (P2) имеет криволинейный вид.

Зависимость cos φ1 = f (P2). В связи с тем что ток статора асинхронного двигателя I1 имеет реактивную (индуктивную) составляющую, необходимую для создания магнитного поля в статоре, коэффициент мощности асинхронных двигателей меньше единицы. Наименьшее значение коэффициента мощности соответствует режиму холостого хода. Объясняется это тем, что ток холостого хода электродвигателя I при любой нагрузке остается практически неизменным. Поэтому при малых нагрузках двигателя ток статора невелик и в значительной части является реактивным (I1 ≈ I). В результате сдвиг по фазе тока статора относительно напряжения получается значительным (φ1 ≈ φ), лишь немногим меньше 90°.

Коэффициент мощности асинхронных двигателей в режиме холостого хода обычно не превышает 0,2. При увеличении нагрузки на валу двигателя растет активная составляющая тока I1 и коэффициент мощности возрастает, достигая наибольшего значения (0,80 — 0,90) при нагрузке, близкой к номинальной. Дальнейшее увеличение нагрузки на валу двигателя сопровождается уменьшением cos φ1 что объясняется возрастанием индуктивного сопротивления ротора (x2s) за счет увеличения скольжения, а следовательно, и частоты тока в роторе.

В целях повышения коэффициента мощности асинхронных двигателей чрезвычайно важно, чтобы двигатель работал всегда или по крайней мере значительную часть времени с нагрузкой, близкой к номинальной. Это можно обеспечить лишь при правильном выборе мощности двигателя. Если же двигатель работает значительную часть времени недогруженным, то для повышения cos φ1, целесообразно подводимое к двигателю напряжение U1 уменьшить. Например, в двигателях, работающих при соединении обмотки статора треугольником, это можно сделать пересоединив обмотки статора в звезду, что вызовет уменьшение фазного напряжения в раз. При этом магнитный поток статора, а следовательно, и намагничивающий ток уменьшаются примерно в раз. Кроме того, активная составляющая тока статора несколько увеличивается. Все это способствует повышению коэффициента мощности двигателя.

Читать еще:  Datsun что за двигатель

Расчетные формулы основных параметров асинхронных двигателей

В таблице 1 представлены расчетные формулы для определения основных параметров асинхронных двигателей.

В данной таблице собраны все формулы, которые касаются расчета параметров асинхронных двигателей.

Используя формулы из данной таблицы, вам больше не придется искать нужную формулу в различных справочниках.

Таблица 1 — Расчетные формулы для определения основных параметров асинхронных двигателей

1. Справочная книга электрика. В.И. Григорьева, 2004 г.

Поделиться в социальных сетях

Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «PayPal» .

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

В данном примере требуется выбрать опорные изоляторы для раннее выбранных сборных шин 10 кВ. Исходные.

Методика выбора устройств компенсации реактивной мощности (КРМ) заключается в выборе устройств.

Требуется определить относительную величину потери напряжения автотрансформатора типа АТДЦТН-125000/220/110.

В данной статье я хотел бы рассказать, как ограничивать токи короткого замыкания в сетях напряжением.

Рассмотрим пример выбора выключателя в сети 6(10) кВ. В нашем случае, нужно выбрать элегазовый.

Отправляя сообщение, Вы разрешаете сбор и обработку персональных данных.
Политика конфиденциальности.

Что такое скольжение асинхронного двигателя с короткозамкнутым ротором

Вы не зарегистрированы?
Нажмите здесь для регистрации.

Забыли пароль?
Запросите новый здесь.

Широкое распространение в различных отраслях народного хозяйства получили асинхронные двигатели трехфазного тока с короткозамкнутым ротором. Они не имеют скользящих контактов, просты по устройству и обслуживанию. Двигатель с короткозамкнутым ротором в разобранном виде показан на рис. 1. Основными его частями являются статор и ротор. Сердечники статора и ротора набирают из листов электротехнической стали. В пазах сердечника статора укладывают и закрепляют трехфазную обмотку. В зависимости от напряжения питающей сети и данных двигателя ее соединяют звездой или треугольником. Выводы обмоток статора маркируют, благодаря чему облегчается сборка нужной схемы соединения.

Рис. 1. Асинхронный двигатель с короткозамкнутым ротором в разобранном виде:

1 — статор; 2 — клеммная коробка; 3 — ротор; 4 — подшипниковые щиты; 5— вентилятор; 6— кожух вентилятора.

В соответствии с ГОСТ приняты следующие обозначения выводов обмоток отдельных фаз: соответственно начало и конец первой фазы С1 и С4, второй — С2 и С5 и третьей — СЗ и С6 (рис. 2).

Рис. 2. Расположение выводов щитке двигателя при соединении:

а — звездой; б— треугольником

Расположение выводов на коробке контактных зажимов двигателя должно удовлетворять требованию простоты соединения обмоток по любой схеме. Обмотку ротора от его сердечника не изолируют. Ее вместе с вентиляционными лопатками выполняют литой из алюминия или его сплавов. Стержни обмотки и накоротко замыкающие их кольца образуют так называемую беличью клетку.

Асинхронные короткозамкнутые двигатели по способу охлаждения и степени защиты персонала от соприкосновения с токоведущими или вращающимися частями, а также самой машины от попадания в нее посторонних тел имеют два исполнения: закрытое обдуваемое (обозначение IP44) и защищенное (обозначение IP23).

Двигатели исполнения IP44 имеют аксиальную систему вентиляции. Воздух подается вентилятором и обдувает внешнюю оребренную поверхность станины.

Для двигателей IP23 характерна двусторонняя радиальная си­стема вентиляции, которая осуществляется при помощи венти­ляционных лопаток, расположенных на короткозамыкающих кольцах ротора.

Ярославским электромашиностроительным заводом разработаны и выпускаются серии асинхронных машин мощностью до 100 кВт — RA, А, АИР. Машины этих серий отвечают мировым стандартам и отличаются улучшенными технико-экономическими и энергетическими показателями.

Основные технические данные двигателей небольшой мощ­ности серии RA приведены в табл. 1.

Двигатели серии RA выпускаются с градацией мощности и присоединительных размеров по стандартам DIN, серий А, АИР — по стандартам ГОСТ.

В обозначениях типа двигателя: А — асинхронный; 71 — 315 — высота оси вращения; А, В — обозначения длины сердечника (первая длина — А, вторая длина — В); S, L, М — установочные размеры подлине сердечника; 2,4,6, 8 — числа полюсов. Пример 1. RA80A2 — двигатель серии RA, асинхронный, высота оси вращения 80 мм, сердечник первой длины, двухполюсный.
Трехфазный ток, проходя по обмотке статора, создает вращающееся магнитное поле. Частота вращения поля n1 называется синхронной. Она зависит от частоты f1 питающего напряжения и числа пар полюсов р машины:


и при f1 = 50 Гц принимает значения: 3000 об/мин (р = 1), 1500 об/мин (р = 2), 1000 об/мин (р = 3) и тд. Для частоты напряжения сети будем иметь:

Ротор асинхронного двигателя, вращаясь в направлении поля, развивает частоту вращения, несколько меньшую, чем синхронная, называемую асинхронной. Отставание ротора характеризуется скольжением. Если частоту вращения ротора обозначить через n2, то соотношение для скольжения примет вид:

Из (2) следует, что скольжение асинхронного двигателя изменяется от единицы (при пуске, когда п2 = 0) до нуля (при синхронной частоте вращения, т.е. когда п2 = п1). Заметим, что точного равенства частоты вращения поля и ротора в двигательном режиме не достигается. Однако отставание ротора на холостом ходу машины так мало, что им можно пренебречь. Значения скольжений для малых двигателей, указанных в табл. 1, при полной нагрузке двигателя обычно составляют 4 — 6 %.
Выражение для частоты вращения ротора можно получить из соотношения (2):

Читать еще:  Что такое контрактный двигатель на хонду лого

Заметим, что числитель правой части равенства (2) имеет определенный физический смысл. Разность частоты вращения поля и ротора представляет собой относительную частоту вращения, т.е. частоту вращения поля относительно ротора ns, или частоту скольжения.
Пример 2. Известны n1 = 1000 об/мин, s = 4%. Вычислить частоту вращения ротора и относительную частоту вращения.
Имеем: n2 = 1000(1 — 0,04) = 960 об/мин; ns = n1 — n2 = 1000 — 960 = 40 об/мин.

Частота ЭДС и токов, наводимых в обмотке ротора вращающимся магнитным полем, определяется частотой скольжения:

Путем несложных преобразований это выражение приводится к виду:

т.е. частота ЭДС и токов ротора при условии f1 = const пропорциональна скольжению.

Пример 3. Найти частоту тока ротора для предыдущего примера.
Имеем: f2 =f1 • s = 50 • 0,04 = 2 Гц.
Развиваемая двигателем мощность в пределах нормальных нагрузок пропорциональна скольжению. Поэтому о нагрузке машины можно судить по скольжению.
Использование мощности двигателя в процессе его эксплуа­тации может быть различным. Коэффициент использования мощности

где Р2 — полезная мощность при произвольной нагрузке; Pном — номинальная мощность, т.е. полезная мощ­ность, на которую рассчитана электрическая машина.

Номинальной мощности соответствует номинальное напряжение. Двигатель потребляет при этом номинальный ток, имея номинальные значения частоты вращения, мощности на валу, КПД и cos ф.
Назначение двигателя состоит в преобразовании электриче­ской энергии в механическую. В процессе преобразования возникают потери. Они представляют ту часть активной мощности, которая расходуется на нагревание обмоток, стали сердечника статора и преодоление сил трения.
Отношение полезной мощности Р2, развиваемой двигателем на валу, к активной мощности Рь потребляемой им из сети, на­зывается коэффициентом полезного действия:

Кроме активной, двигатель потребляет реактивную намагничивающую мощность, необходимую для образования магнитного потока. Таким образом, полная мощность двигателя S состоит из активной и реактивной составляющих:

где Q — реактивная мощность двигателя.
Об относительном значении преобразованной мощности судят по коэффициенту мощности. Чем лучше используется мощность машины, тем выше коэффициент мощности. Для вычисления его достаточно активную мощность Р1 разделить на полную:

где U, I — фазные значения напряжения и тока.
Пример 4. На щитке трехфазного асинхронного двигателя с короткозамкнутым ротором имеются следующие обозначения: , 220/380 В, 10,5/6,1 А, 2,8 кВт, 50 Гц, 2880 об/мин, КПД 81,5 %,cosφ = 0,86.

Из рассмотрения этих данных заключаем: номинальное напряжение фазы 220 В, номинальный фазный ток 6,1 А, полезная мощность Р2 = 2,8 кВт, число пар полюсов р = 1. Так как синхронная частота вращения

(в данном случае она равна 3000 об/мин), то скольжение при номинальной нагрузке составит ((3000-2880)/3000) • 100 = 4%.

Полная мощность двигателя при номинальной нагрузке Sном = ЗUном / Iном = 3 • 220 • 6,1

Активная мощность, потребляемая двигателем при номинальной нагрузке, P1ном = 3Uном • Iном • cosφном = 3 • 220 • 6,1 • 0,86 = 3,44 кВт.

Потери в двигателе при номинальной нагрузке

С использованием данных табл. 1 построены кривые зависимости коэффициента мощности двигателей от их номинальной мощности (рис. 3).
Кривая 1 соответствует синхронной частоте вращения 3000 об/мин, 2— 1500 об/мин и 3— 1000 об/мин. Как видно, коэффициент мощности асинхронного двигателя зависит от номинальной мощности и синхронной частоты вращения.
С увеличением мощности при постоянстве синхронной частоты вращения (ω = const) уменьшается относительное значение воздушного зазора. Благодаря этому относительная реактивная намагничивающая мощность также уменьшается, а коэффициент мощности возрастает. К такому же результату приводит увеличение синхронной частоты вращения при постоянстве номинальной мощности двигателя. Двигатели с большими частотами вращения имеют меньшие габариты, что обусловлено уменьшением вращающего момента, у них существенно уменьшается объем воздушного пространства между сердечниками статора и ротора.

Рис. 3. Кривые зависимости коэффициента мощности от номинальной мощности асинхронных двигателей при различных значениях синхронной частоты вращения

Рис. 4. Кривые зависимости удельной намагничивающей мощности от номинальной мощности асинхронных двигателей при различных значениях синхронной частоты вращения:
1 — n1 = 1000 об/мин; 2 — n1 = 1500 об/мин; 3 — n1 = 3000 об/мин.

Кривые зависимости удельной намагничивающей мощности двигателей от номинальной при n1 = const показаны на рис. 4. Из рассмотрения их следует, что удельная намагничивающая мощность тем меньше, чем больше номинальная мощность двигателя и выше синхронная частота вращения.
Переход от зависимостей, приведенных на рис. 3 к зависимостям на рис. 4 производится с использованием следующих соотношений:

где Sном, Qном — полная и реактивная мощности двигателя при номинальной нагрузке. Из сопоставления рис. 3 и 4 нетрудно сделать заключение о влиянии коэффициента мощности на энергетические показатели двигателей и питающей их системы: у двигателей с повышенным коэффициентом мощности при данной номинальной нагрузке (Р2

Рном) реактивная намагничивающая мощность меньше. Это приводит к уменьшению полной мощности и, соответственно, к уменьшению тока, потребляемого из сети. В результате электрические потери в обмотках машины уменьшаются и ограничивается падение напряжения в проводах системы электроснабжения.

Ссылка на основную публикацию
Adblock
detector