Что такое ступень двигателя
Описание ракеты-носителя «Протон-К»
Ракета-носитель «Протон-К» относится к тяжелому классу. Она разработана под руководством В.Н.Челомея на базе двухступенчатого носителя УР-500. В состав «Протона» входят ускорители I, II и III ступеней и головной блок (космическая головная часть).
Ускорители всех ступеней соединены последовательно (схема тандем). Разделение ускорителей первой и второй ступеней производится по горячей схеме, а ускорителей второй и третьей — по полугорячей.
На ускорителях всех ступеней установлены высокоэффективные маршевые ракетные двигатели с высоким давлением в камере и турбонасосной системой подачи, выполненные по схеме с дожиганием генераторного газа. Они разработаны под руководством В.П.Глушко (ЖРД I ступени) и С.А.Косберга (ЖРД II и III ступеней). Все двигатели питаются высококипящими компонентами ракетного топлива — азотным тетроксидом (окислитель) и несимметричным диметилгидразином (горючее).
Управление носителем на участке полета первой ступени осуществляется путем отклонения маршевых двигателей, закрепленных в шарнирном подвесе. Аналогично «Протон-К» управляется и на участке полета второй ступени. Управление третьей ступенью производится с помощью специального четырехкамерного рулевого двигателя.
Ракета-носитель «Протон-К» оснащена автономной инерциальной системой управления, обеспечивающей высокую точность выведения различных полезных грузoв на заданные орбиты. Она разработана под руководством Н.А.Пилюгина. Приборы системы управления размещаются в приборном отсеке, который расположен на ускорителе третьей ступени.
Ускоритель первой ступени РН «Протон-К» состоит из центрального блока и шести боковых блоков, симметрично расположенных вокруг центрального. Между боковыми блоками, в зоне хвостовых отсеков, установлены обтекатели, предназначенные для уменьшения воздействия набегающего воздушного потока на двигатели при их отклонении.
Центральный блок имеет цилиндрическую форму. Он включает в себя переходный отсек, бак окислителя и хвостовой отсек. Кабельная сеть и трубопроводы пневмогидравлической системы проложены по борту центрального блока и закрыты тремя гаргротами.
Переходный отсек состоит из фермы и проставки. Ферма соединяет ускорители первой и второй ступеней, а также обеспечивает свободный выход газов при запуске двигателей второй ступени. Ферма образована стальным шпангоутом швеллерного сечения и крестовинами, закрепленными на нем болтами. Крестовины двутаврового сечения, отштампованы из алюминиевого сплава В95. Шпангоут и крестовины имеют теплозащитное покрытие. Проставка клепаной конструкции, включает два шпангоута и обшивку. Верхний шпангоут проставки служит опорной поверхностью при транспортировке центрального блока.
Бак окислителя несущей конструкции, сварной, выполнен из алюминиевого сплава Амг-6. Бак состоит из гладкой цилиндрической обечайки, усиленной шпангоутами, и двух сферических днищ. Внутри бака окислителя смонтированы 12 продольных демпфирующих перегородок, а также датчики уровней системы синхронного опорожнения баков (СОБ) и системы контроля заправки (СКЗ). К верхнему днищу крепится кольцевой распылитель газов наддува и дренажно-предохранительный клапан. Снаружи днище закрыто теплозащитным экраном. На нижнем днище имеется шесть фланцев для расходных трубопроводов.
Хвостовой отсек центрального блока конической формы, клепаной конструкции, выполнен из сплава В95. Каркас отсека образуют шпангоуты, стрингеры из прессованных профилей и 12 продольных штампованных лонжеронов, воспринимающих тягу двигателей и нагрузки от стартовых опор. Стрингеры и лонжероны расположены по наружной поверхности корпуса. Лонжероны попарно соединены плитами, в каждой из которых имеются отверстия под дренажные и заправочные горловины. На торцах плит размещены шесть стальных стартовых опор для установки и крепления ракеты на пусковом устройстве. Внутри отсека расположена трубчатая ферма, предназначенная для крепления расходных трубопроводов и кольцевого коллектора системы наддува, к которому от каждого двигателя поступает разбавленный окислителем «мятый» турбогаз. Торцевая часть хвостового отсека закрыта экраном, предохраняющим расположенные в отсеке арматуру и коммуникации от теплового воздействия при работе двигателей. В центре торца хвостового отсека смонтирован автостык, через который осуществляется автоматическая подстыковка заправочных коммуникаций всех трех ступеней, а также пневмо- и электроразъемов. При старте РН после расстыковки соединений ходом ракеты автостык закрывается специальными крышками.
Боковые блоки ускорителя первой ступени по конструкции одинаковы. Каждый из них состоит из переднего отсека, бака горючего и хвостового отсека, в котором закреплен двигатель.
Передний отсек бокового блока клепаной конструкции, имеет коническую форму и служит аэродинамическим обтекателем бокового блока. Снаружи он покрыт теплозащитным материалом. Для доступа к размещенному в отсеке оборудованию имеются люки, и верхняя часть отсека сделана съемной.
Бак горючего сварной конструкции, изготовлен из сплава АМг-6. Он состоит из гладкой цилиндрической обечайки секционного типа, усиленной шпангоутами, и двух сферических днищ. Внутри бака установлены датчики СОБ и СКЗ, а также четыре продольные демпфирующие перегородки.
Хвостовой отсек бокового блока клепаной конструкции. Корпус отсека образуют шпангоуты, стрингерный набор из прессованных профилей, две штампованные плиты из алюминиевого сплава АК4, служащие базой для двух стальных траверс крепления двигателя, и обшивка из листов Д16-Т. Отсек закрыт теплозащитным экраном, предохраняющим коммуникации и агрегаты двигателя от нагрева при его работе.
Крепление боковых блоков к центральному блоку осуществляется в пяти поясах. Два нижних пояса имеют неподвижное соединение, остальные — подвижное. Нижние пояса осуществляют передачу усилий тяги двигателя и веса бокового блока к хвостовому отсеку центрального блока. Остальные пояса имеют соединение типа «шип-паз», допускающее продольное перемещение, и тяги, фиксирующие боковой блок в радиальном направлении. Они воспринимают усилия, возникающие в боковом направлении. Два таких пояса крепят баки горючего к баку окислителя, а третий соединяет верхнюю часть переднего отсека бокового блока с верхним шпангоутом бака окислителя.
Двигательная установка первой ступени состоит из шести автономных маршевых ЖРД РД-253. Он разработан в ОКБ-456 (ныне НПО «Энергомаш» имени В.П.Глушко) под руководством академика В.П.Глушко. Каждый ЖРД установлен на двух траверсах хвостового отсека бокового блока. Для управления вектором тяги двигатель с помощью гидропривода может отклоняться на угол до 7 градусов 30 минут. Для этого он с помощью специальных цапф в районе критического сечения камеры закреплен в подшипниках траверс.
Ускоритель второй ступени РН «Протон-К» имеет цилиндрическую форму. Он состоит из переходного, топливного и хвостового отсеков.
Переходный отсек клепаной конструкции соединяет ускорители второй и третьей ступеней. Корпус отсека образуют шпангоуты, стрингерный набор из прессованных профилей и обшивка. В верхней части отсека имеются четыре канала для отвода газов при запуске рулевого двигателя третьей ступени. В нижней части отсека установлены шесть тормозных пороховых двигателей, закрытых обтекателями.
Топливный отсек ускорителя представляет собой единый блок баков окислителя и горючего. Для уменьшения длины отсека баки имеют общее промежуточное днище. Обечайка бака окислителя гладкая, сварена из трех секций. Обечайка бака горючего состоит из четырех секций вафельной конструкции, изготовленных механическим фрезерованием. Все днища сферические, приварены к обечайкам встык через торцевые шпангоуты.
В верхней части бака окислителя установлена горизонтальная демпфирующая перегородка. Внутри бака горючего проходит расходный магистральный трубопровод окислителя, который приварен к промежуточному днищу непосредственно, а к нижнему днищу бака горючего через сильфонный компенсатор. Внутри баков установлены датчики уровней СОБ и СКЗ, укрепленные с помощью расчалок.
Заправка бака горючего производится из магистрали, общей для заправки баков горючего всех ступеней; бака окислителя — из магистрали, общей для заправки баков окислителя ускорителей второй и третьей ступеней. Все трубопроводы выведены в хвостовой отсек центрального блока первой ступени.
Хвостовой отсек второй ступени включает в себя корпус (юбку), силовой конус и защитный экран. Юбка состыкована из двух частей — верхней и нижней. Верхняя часть клепаной конструкции, состоит из стрингерного набора, шпангоутов и обшивки. Нижняя часть представляет собой ферму, аналогичную по конструкции ферме переходного отсека ускорителя первой ступени, но без кольцевого шпангоута. Крестовины нижней части юбки соединяются со шпангоутом фермы первой ступени разрывными болтами и центрирующими штырями. Силовой конус клепаной конструкции, служит для крепления двигательной фермы и передачи усилия тяги маршевых ЖРД к топливному отсеку. Он состоит из обшивки, шпангоутов и стрингеров. Стрингеры размещены с внешней стороны обшивки. Защитный экран расположен на торце отсека и обеспечивает необходимый температурный режим внутри отсека.
Двигательная установка второй ступени состоит из четырех однотипных автономных маршевых ЖРД: трех РД-0210 и одного РД-0211. ЖРД разработаны в КБХА под руководством С.А.Косберга.
На двигателе РД-0211, в отличие от РД-0210, установлены агрегаты наддува баков аналогичные агрегатам двигателя первой ступени (РД-253) — газогенератор наддува бака горючего и смеситель наддува бака окислителя. Все ЖРД с помощью цапф закреплены в ферме таким образом, что допускают отклонение любого из них на углы до 3 градусов 15 минут с помощью гидравлических приводов.
Ускоритель третьей ступени РН «Протон-К» имеет цилиндрическую форму и состоит из приборного, топливного и хвостового отсеков.
Приборный отсек клепаной конструкции имеет обшивку, подкрепленную шпангоутами и стрингерами. На шпангоутах закреплены блоки системы управления и прицеливания. Для доступа к приборам в корпусе отсека имеются люки.
Хвостовой отсек также клепаной конструкции служит для размещения четырехкамерного рулевого двигателя и крепления четырех тормозных пороховых двигателей. Корпус отсека состоит из обшивки, двух стыковочных шпангоутов и стрингерного набора. К хвостовому отсеку с помощью разрывных болтов и центрирующих штырей пристыковывается ускоритель второй ступени.
Топливный отсек ускорителя имеет конструкцию, подобную блоку баков ускорителя второй ступени. Разница заключается в том, что в этом топливном отсеке бак окислителя не имеет обечайки: он образован средним и верхним днищами, соединенными сваркой по шпангоутам, что придает ему чечевицеобразную форму. Обечайка бака горючего сварена из двух секций вафельной конструкции. Нижнее днище имеет коническую форму и воспринимает усилие тяги закрепленного на нем маршевого ЖРД. В верхней части бака окислителя установлена горизонтальная демпфирующая перегородка. Внутри бака горючего проходит наклонно установленный расходный магистральный трубопровод окислителя. Кроме того, в баках смонтированы датчики уровней СОБ и СКЗ, укрепленные с помощью расчалок.
Двигательная установка РД-0212 третьей ступени состоит из маршевого ЖРД РД-0213 и четырехкамерного рулевого ЖРД РД-0214. Маршевый двигатель РД-0213 по устройству и работе аналогичен двигателю второй ступени РД-0210 и является его модификацией — на нем с целью размещения элементов рулевого двигателя изменена компоновка подводящих магистралей и ряда агрегатов.
Рулевой двигатель РД-0214 разработан в КБХА под руководством С.А.Косберга и А.Д.Конопатова. Двигатель выполнен по схеме без дожигания с насосной системой подачи топлива на базе одного ТНА, приводимого во вращение двумя турбинами, работающими на различных (окислительном и восстановительном) газах. Выхлопные газы после турбин используются для наддува баков ускорителя. Камеры ЖРД максимально разнесены по диаметру ступени и подвешены шарнирно на цапфах. Для управления полетом ступени камеры могут отклоняться с помощью электроприводов на углы до 45 градусов.
Выведение полезных грузов РН «Протон-К» осуществляется в трехступенчатом или четырехступенчатом вариантах. В трехступенчатом варианте в состав космической головной части (КГЧ) входят полезный груз и головной аэродинамический обтекатель. Полезный груз (ПГ) устанавливается на верхний шпангоут приборного отсека ускорителя третьей ступени посредством проставки, стыкуемой болтами и центрирующими штырями. Отделение ПГ осуществляется по его стыку с проставкой при срабатывании разрывных болтов. Торможение третьей ступени производится специальными РДТТ.
В четырехступенчатом варианте в состав космической головной части входит также разгонный блок (РБ), выступающий в качестве четвертой ступени. В настоящее время на «Протоне-К» используется разгонный блок «ДМ» и его модификации. РБ размещается в специальной цилиндрической проставке. Крепление этой проставки к третьей ступени осуществляется через короткую коническую проставку, которая остается на ступени при отделении КГЧ. На верхнем торце цилиндрической проставки устанавливается головной обтекатель (ГО). В настоящее время для запуска коммерческих спутников с помощью ракеты-носителя «Протон-К» используется стандартный ГО, впервые опробованный в полете при запуске КА ASTRA-1F в апреле 1996 года. Сброс ГО осуществляется в начальный период работы ускорителя третьей ступени. Цилиндрическая проставка сбрасывается после отделения КГЧ.
Для стыковки КА с разгонным блоком «ДМ» в рамках стандартных пусковых услуг предоставляются стандартные адаптеры для интерфейсов диаметром 1194 мм и 1666 мм. Эти адаптеры были использованы при выведении КА ASTRA-1F (1666 мм) и INMARSAT-3 (1194 мм). А для одновременного выведения в одном пуске сразу семи КА IRIDIUM был разработан и изготовлен специальный диспенсер, который обеспечил не только размещение всех спутников, но и их одновременное отделение.
Многоступенчатая ракета
Многоступе́нчатая раке́та — летательный аппарат, состоящий из двух или более механически соединённых ракет, называемых ступенями, разделяющихся в полёте. Многоступенчатая ракета позволяет достигнуть скорости большей, чем каждая из её ступеней в отдельности.
Содержание
- 1 История
- 2 Принцип действия многоступенчатой ракеты
- 3 См. также
- 4 Ссылки
- 5 Комментарии
- 6 Примечания
История [ править | править код ]
Один из первых эскизов многоступенчатой ракеты был представлен в 1556 году в книге военного техника Конрада Хааса. В XVII веке рисунок с изображением ракет был опубликован в труде военного инженера и генерала от артиллерии Казимира Семеновича, «Artis Magnae Artilleriae pars prima» (лат. «Великое искусство артиллерии часть первая»), напечатанном в 1650 году в Амстердаме, Нидерланды. На нём — трехступенчатая ракета, в которой третья ступень вложена во вторую, а обе они вместе — в первую ступень. В головной части помещался состав для фейерверка. Ракеты были начинены твёрдым топливом — порохом. Это изобретение интересно тем, что оно более трёхсот лет назад предвосхитило направление, по которому пошла современная ракетная техника.
Впервые идея использования многоступенчатых ракет была выдвинута американским инженером Робертом Годдардом в 1914 году, и был получен патент на изобретение. В 1929 г. К. Э. Циолковский выпустил в свет свою новую книгу под заглавием «Космические ракетные поезда». Этим термином К. Циолковский назвал составные ракеты или, вернее, агрегат ракет, делающих разбег по земле, потом в воздухе и, наконец, в космическом пространстве. Поезд, составленный, например, из 5 ракет, ведётся сначала первой — головной ракетой; по использовании её горючего, она отцепляется и сбрасывается на землю. Далее, таким же образом, начинает работать вторая, затем третья, четвёртая и, наконец, пятая, скорость которой будет к тому времени достаточно велика, чтобы унестись в межпланетное пространство. Последовательность работы с головной ракеты вызвана стремлением заставить материалы ракет работать не на сжатие, а на растяжение, что позволит облегчить конструкцию. По Циолковскому, длина каждой ракеты — 30 метров. Диаметры — 3 метра. Газы из сопел вырываются косвенно к оси ракет, чтобы не давить на следующие ракеты. Длина разбега по земле — несколько сот километров.
Несмотря на то, что в технических деталях ракетостроение пошло во многом по другому пути (современные ракеты, например, не «разбегаются» по земле, а взлетают вертикально, и порядок работы ступеней современной ракеты — обратный, по отношению к тому, о котором говорил Циолковский), сама идея многоступенчатой ракеты и сегодня остаётся актуальной.
В 1935 году Циолковский написал работу «Наибольшая скорость ракеты», в которой утверждал, что при уровне технологии того времени достичь первой космической скорости (на Земле) можно только с помощью многоступенчатой ракеты. Это утверждение сохраняет свою справедливость и сегодня: все современные носители космических аппаратов — многоступенчатые. Первым рукотворным объектом, пересекшим линию Кармана и вышедшим в космос, была одноступенчатая немецкая ракета Фау-2. Высота полётов достигала 188 км.
Принцип действия многоступенчатой ракеты [ править | править код ]
Ракета является весьма «затратным» транспортным средством. Ракеты-носители космических аппаратов «транспортируют», главным образом, топливо, необходимое для работы их двигателей, и собственную конструкцию, состоящую в основном из топливных контейнеров и двигательной установки. На долю полезной нагрузки приходится лишь малая часть (1,5-2,0 %) стартовой массы ракеты.
Составная ракета позволяет более рационально использовать ресурсы за счёт того, что в полёте ступень, выработавшая своё топливо, отделяется, и остальное топливо ракеты не тратится на ускорение конструкции отработавшей ступени, ставшей ненужной для продолжения полёта. Пример расчёта, подтверждающего эти соображения, приводится в статье «Формула Циолковского».
Конструктивно многоступенчатые ракеты выполняются c поперечным или продольным разделением ступеней.
При поперечном разделении ступени размещаются одна над другой и работают последовательно друг за другом, включаясь только после отделения предыдущей ступени. Такая схема даёт возможность создавать системы, в принципе, с любым количеством ступеней. Недостаток её заключается в том, что ресурсы последующих ступеней не могут быть использованы при работе предыдущей, являясь для неё пассивным грузом.
При продольном разделении первая ступень состоит из нескольких одинаковых ракет (на практике — от 2 до 8) или разных, работающих одновременно и располагающихся вокруг корпуса второй ступени симметрично, чтобы равнодействующая сил тяги двигателей первой ступени была направлена по оси симметрии второй. Такая схема позволяет работать двигателю второй ступени одновременно с двигателями первой, увеличивая, таким образом, суммарную тягу, что особенно нужно во время работы первой ступени, когда вес ракеты максимален. Ракета с продольным разделением ступеней, теоретически, может иметь неограниченное количество ступеней, работающих параллельно, но на практике количество таких ступеней ограничено двумя. Известен проект ракеты-носителя «Виктория-К», имеющей три ступени с продольным разделением [a] .
Существует и комбинированная схема разделения — продольно-поперечная, позволяющая совместить преимущества обеих схем, при которой первая ступень разделяется со второй продольно, а разделение всех последующих ступеней происходит поперечно. Пример такого подхода — отечественный носитель «Союз».
Уникальную схему двухступенчатой ракеты с продольным разделением имеет космический корабль «Спейс-Шаттл», первая ступень которого состоит из двух боковых твердотопливных ускорителей, главные двигатели второй ступени установлены на орбитере (собственно многоразовый космический корабль), а топливо второй ступени содержится во внешнем баке. После исчерпания топлива во внешнем баке, он отделяется и сгорает в атмосфере, главные двигатели отключаются [1] , а вывод корабля на орбиту завершает с помощью маневровой двигательной установки орбитера. Такая схема позволяет повторно использовать дорогостоящие главные двигатели.
При поперечном разделении ступени соединяются между собой специальными секциями — переходниками — несущими конструкциями цилиндрической или конической формы (в зависимости от соотношения диаметров ступеней), каждый из которых должен выдерживать суммарный вес всех последующих ступеней, помноженный на максимальное значение перегрузки, испытываемой ракетой на всех участках полёта, на которых данный переходник входит в состав ракеты.
При продольном разделении на корпусе второй ступени создаются силовые бандажи (передний и задний), к которым крепятся блоки первой ступени.
Элементы, соединяющие части составной ракеты, сообщают ей жёсткость цельного корпуса, а при разделении ступеней должны практически мгновенно освобождать верхнюю ступень. Обычно соединение ступеней выполняется с помощью пироболтов. Пироболт — это крепёжный болт, в стержне которого рядом с головкой создается полость, заполняемая бризантным взрывчатым веществом с электродетонатором. При подаче импульса тока на электродетонатор происходит взрыв, разрушающий стержень болта, в результате чего его головка отрывается. Количество взрывчатки в пироболте тщательно дозируется, чтобы, с одной стороны, гарантировать отрыв головки, а, с другой — не повредить ракету. При разделении ступеней на электродетонаторы всех пироболтов, соединяющих разделяемые части, одновременно подаётся импульс тока, и соединение освобождается. Альтернативно пироболтам, используются пневматические механизмы разделения. Такой тип механизма позволяет обеспечить его дистанционное испытание и контроль, повышая надёжность разделения ступеней.
Далее ступени должны быть разведены на безопасное расстояние друг от друга, так как запуск двигателя высшей ступени вблизи низшей может вызвать прогар её топливной ёмкости и взрыв остатков топлива, который повредит верхнюю ступень, или дестабилизирует её полет. При разделении ступеней в атмосфере для их разведения может быть использована аэродинамическая сила встречного потока воздуха, а при разделении в пустоте иногда используются вспомогательные небольшие твердотопливные ракетные двигатели.
На жидкостных ракетах эти же двигатели служат и для того, чтобы «осадить» топливо в баках верхней ступени: при выключении двигателя низшей ступени ракета летит по инерции, в состоянии свободного падения, при этом жидкое топливо в баках находится во взвешенном состоянии, что может привести к сбою при запуске двигателя. Вспомогательные двигатели сообщают ступени небольшое ускорение, под действием которого топливо «оседает» на днища баков.
На приведённом выше снимке ракеты «Сатурн-5», на корпусе третьей ступени (крайняя слева, в кадре представлена частично) виден чёрный корпус одного из вспомогательных твердотопливных двигателей разведения 3-й и 2-й ступеней.
Увеличение числа ступеней даёт положительный эффект только до определённого предела. Чем больше ступеней — тем больше суммарная масса переходников, а также двигателей, работающих лишь на одном участке полёта, и, в какой-то момент, дальнейшее увеличение числа ступеней становится контрпродуктивным. В современной практике ракетостроения более четырёх ступеней, как правило, не делается.
При выборе числа ступеней важное значение имеют также вопросы надёжности. Пироболты и вспомогательные РДТТ — элементы одноразового действия, проверить функционирование которых до старта ракеты невозможно. Между тем, отказ только одного пироболта может привести к аварийному завершению полёта ракеты. Увеличение числа одноразовых элементов, не подлежащих проверке функционирования, снижает надёжность всей ракеты в целом. Это также заставляет конструкторов воздерживаться от слишком большого количества ступеней.
Ракета-носитель
Раке́та-носи́тель (РН), также раке́та косми́ческого назначе́ния (РКН) — ракета, предназначенная для выведения полезной нагрузки в космическое пространство [1] .
Иногда термин «ракета-носитель» применяется в расширенном значении: ракета, предназначенная для доставки в заданную точку (в космос либо в отдалённый район Земли) полезной нагрузки — например, искусственных спутников Земли, космических кораблей, ядерных и неядерных боевых блоков. В такой трактовке термин «ракета-носитель» объединяет термины «ракета космического назначения» (РКН) и «межконтинентальная баллистическая ракета».
Содержание
- 1 Классификация
- 1.1 Количество ступеней
- 1.2 Расположение ступеней (компоновка)
- 1.3 Используемые двигатели
- 1.4 Масса полезной нагрузки
- 1.5 Повторное использование
- 1.6 Присутствие человека
- 2 История
- 3 Проектируемые сверхтяжёлые РН
- 4 См. также
- 5 Примечания
- 6 Литература
- 7 Ссылки
Классификация [ править | править код ]
В отличие от некоторых горизонтально-стартующих авиационно-космических систем (АКС), ракеты-носители используют вертикальный тип старта и (много реже) воздушный старт.
Количество ступеней [ править | править код ]
Одноступенчатых ракет-носителей, выводящих полезную нагрузку в космос, до настоящего времени не создано, хотя имеются проекты различной степени проработки («КОРОНА», HEAT-1X и другие). В некоторых случаях как одноступенчатая может классифицироваться ракета, имеющая в качестве первой ступени воздушный носитель либо использующая в качестве таковой ускорители. Среди баллистических ракет, способных достичь космического пространства, немало одноступенчатых, в том числе и первая баллистическая ракета «Фау-2» [2] ; однако ни одна из них не способна выйти на орбиту искусственного спутника Земли.
Расположение ступеней (компоновка) [ править | править код ]
Конструктивное исполнение ракет-носителей может быть следующим:
- продольная компоновка (тандемная), у которой ступени расположены одна за другой и работают в полёте поочерёдно (РН «Зенит-2», «Протон», «Дельта-4»);
- параллельная компоновка (пакетная), при которой несколько блоков, расположенных параллельно и относящихся к разным ступеням, работают в полёте одновременно (РН «Союз»);
- условно-пакетная компоновка (т. н. полутораступенчатая схема), в которой используются общие топливные баки для всех ступеней, от которых питаются стартовые и маршевые двигатели, запускающиеся и работающие одновременно, по завершении работы стартовых двигателей сбрасываются только они;
- компоновка «спаржа» (термин введён аэрокосмическим инженером Эдом Кейтом, одним из создателей этой компоновки), в которой используются насосы, перекачивающие топливо из боковых ступеней в центральную. Эта схема использовалась в первоначальном проекте ракеты-носителя Falcon Heavy, от которого впоследствии отказались из-за сложности технической реализации схемы.
Используемые двигатели [ править | править код ]
В качестве маршевых двигателей могут использоваться:
Масса полезной нагрузки [ править | править код ]
Классификация ракет по массе полезной нагрузки (ПН), выводимой на низкую опорную орбиту (НОО), меняется с развитием техники и является достаточно условной [1] [3] :
Класс ракеты-носителя | Масса полезной нагрузки на НОО | ||
---|---|---|---|
по БСЭ [4] | по БРЭ [5] | НАСА [6] | |
Лёгкий | до 500 кг | до 5 т | до 2 т |
Средний | 0,5—10 т | 5—20 т | 2—20 т |
Тяжёлый | 10—100 т | 20—100 т | 20—50 т |
Сверхтяжёлый | свыше 100 т | свыше 100 т | свыше 50 т |
Также иногда выделяется сверхлёгкий класс ракет-носителей, способных доставить на НОО полезную нагрузку массой до 500 килограмм [7] .
Повторное использование [ править | править код ]
Наибольшее распространение получили одноразовые многоступенчатые ракеты как пакетной, так и продольной схем. Одноразовые ракеты отличаются высокой надёжностью благодаря максимальному упрощению всех элементов. Следует уточнить, что одноступенчатой ракете для достижения орбитальной скорости теоретически необходимо иметь конечную массу не более 7—10 % от стартовой, что при даже существующих технологиях делает их труднореализуемыми и экономически неэффективными из-за низкой массы полезного груза. В истории мировой космонавтики одноступенчатые ракеты-носители практически не создавались — существовали только так называемые полутораступенчатые модификации (например, американская РН «Атлас» со сбрасываемыми дополнительными стартовыми двигателями). Наличие нескольких ступеней позволяет существенно увеличить отношение массы выводимой полезной нагрузки к начальной массе ракеты. В то же время, многоступенчатые ракеты требуют отчуждения территорий для падения промежуточных ступеней.
Ввиду необходимости применения высокоэффективных сложных технологий (прежде всего в области двигательных установок и теплозащиты), полностью многоразовых ракет-носителей пока не существует, несмотря на постоянный интерес к этой технологии и периодически открывающиеся проекты разработки многоразовых носителей (за период 1990—2000-х годов — такие как ROTON, Kistler K-1, АКС VentureStar и др.). Частично многоразовой являлась широко использовавшаяся американская многоразовая транспортная космическая система (МТКС)-АКС «Спейс шаттл» («Космический челнок») и советская программа МТКС «Энергия—Буран», разработанная, но так и не использованная в прикладной практике, а также ряд нереализованных бывших (например, «Спираль», МАКС и другие АКС) и вновь разрабатываемых (например, «Байкал-Ангара») проектов. Вопреки ожиданиям, «Спейс шаттл» не смог обеспечить снижение стоимости доставки грузов на орбиту; кроме того, пилотируемые МТКС характеризуются сложным и длительным этапом предстартовой подготовки (из-за повышенных требований по надёжности и безопасности при наличии экипажа).
Частично многоразовой (первая ступень и головной обтекатель) является ракета-носитель Falcon 9. Первая ступень этой ракеты-носителя может использоваться до 10 и более раз с минимальным межполётным обслуживанием [8] [9] . По состоянию на май 2021 года, практический налёт ступеней достигает 10 раз (B1051), а минимальный межполётный интервал — 27 дней (B1058-7, B1060-5).
Присутствие человека [ править | править код ]
Ракеты для пилотируемых полётов должны обладать бо́льшей надёжностью (также на них устанавливается система аварийного спасения), допустимые перегрузки для них ограничены (обычно не более 3 — 4,5 g ). При этом сама ракета-носитель является полностью автоматической системой, выводящей в космическое пространство аппарат (космический корабль) с людьми на борту, это могут быть пилоты, способные осуществлять непосредственное управление кораблём, специалисты (инженеры, исследователи, медики), космические туристы.
История [ править | править код ]
10 мая 1897 года К. Э. Циолковский в рукописи «Ракета» исследует ряд задач реактивного движения, где определяет скорость, которую развивает летательный аппарат под воздействием тяги ракетного двигателя, неизменной по направлению, при отсутствии всех других сил; конечная зависимость получила название «формула Циолковского» (статья опубликована в журнале «Научное обозрение» в 1903 году).
В 1903 году К. Э. Циолковский опубликовал работу «Исследование мировых пространств реактивными приборами» — первую в мире, посвященную теоретическому обоснованию возможности осуществления межпланетных полетов с помощью реактивного летательного аппарата — «ракеты». В 1911—1912 годах опубликована вторая часть этой работы, в 1914 году — дополнение. К. Э. Циолковский и независимо от него Ф. А. Цандер пришли к выводам, что космические полёты возможны и на известных уже тогда источниках энергии, и указали практические схемы их реализации (форму ракеты, принципы охлаждения двигателя, использование жидких газов в качестве топливной пары и др.).
Первым теоретическим проектом ракеты-носителя был «Lunar Rocket», спроектированный Британским межпланетным обществом в 1939 году. Проект представлял собой попытку разработки ракеты-носителя, способной доставить полезный груз на Луну, основанную исключительно на существующих в 1930-х годах технологиях, то есть был первым проектом космической ракеты, не имевшим фантастических допущений. Ввиду начала Второй мировой войны работы по проекту были прерваны и существенного влияния на историю космонавтики он не оказал [10] .
Первой в мире настоящей ракетой-носителем, доставившей в 1957 году груз (искусственный спутник Земли № 1) на орбиту, была советская Р-7 («Спутник»). Далее СССР и США, а затем и ещё несколько стран стали так называемыми «космическими державами», начав использовать собственные ракеты-носители. СССР и США, а значительно позже также и Китай создали РН для пилотируемых полётов.
В настоящее время среди ракет государственных космических агентств наибольшую полезную нагрузку могут вывести следующие ракеты-носители: российская РН «Протон-М», американская РН «Дельта-IV Heavy» и европейская РН «Ариан-5» тяжёлого класса. Они позволяют выводить на низкую околоземную орбиту ( 200 км ) 21 — 25 тонн полезного груза, на ГПО — 6—10 тонн и на ГСО — до 3—6 тонн [11] . Однако самая мощная ракета-носитель из действующих — это Falcon Heavy от частной компании SpaceX, ракета сверхтяжёлого класса (по американской классификации), способная вывести на низкую околоземную орбиту до 64 тонн, а на ГПО — до 27 тонн.
В прошлом были созданы (в рамках проектов высадки человека на Луну) и более мощные ракеты-носители сверхтяжёлого класса — такие, как американская РН «Сатурн-5» и советская РН «Н-1», а также, позднее, советская «Энергия». Но в настоящее время они не используются. Соизмеримой мощной ракетной системой была американская МТКС «Спейс шаттл», которую можно было рассматривать как РН сверхтяжёлого класса для вывода пилотируемого корабля 100-тонной массы, или как РН тяжёлого класса, для вывода на НОО прочей полезной нагрузки (до 20—30 тонн, в зависимости от орбиты). При этом космический корабль-челнок являлся второй ступенью многоразовой космической системы, которая могла использоваться только при его участии — в отличие от советского аналога МТКС «Энергия—Буран».
Проектируемые сверхтяжёлые РН [ править | править код ]
В рамках проекта Артемида космическое агентство NASA разрабатывает SLS (космическая пусковая система), с помощью которой будут возобновлены пилотируемые полёты к Луне и построена лунная база [12] . Эта РН должна будет способна доставить на низкую опорную орбиту груз от 95 до 131,5 тонн. Первый беспилотный запуск SLS планируется не раннее 3 ноября 2021 года. 3 мая 2021 NASA уточнило, что в связи с фактором риска запуск может быть перенесён на начало марта 2022 года [13] .
Третьей ракетой-носителем сверхтяжелого класса в России может стать РН класса «Енисей», детальный план-график создания которой был подписан в начале января 2019 года. Строительство инфраструктуры под ракету начнётся в 2026 году, первый полёт запланирован на 2028 год с космодрома Восточный. Новая российская сверхтяжелая РН будет выводить на низкую околоземную орбиту более 70 тонн груза и обеспечивать полёты в дальний космос [14] .
См. также [ править | править код ]
- Ракета-носитель многоразового применения
- Список ракет-носителей
- Хронология первых космических запусков по странам
Примечания [ править | править код ]
- ↑ 12БСЭ, 1975.
- ↑Дорнбергер, 2004.
- ↑Горкин, 2006.
- ↑БСЭ, 1975: «Р.-н. можно условно разделить на след. классы: лёгкие (до 500 кг), средние (до 10 т), тяжёлые (до 100 т), сверхтяжёлые (св. 100 т).».
- ↑БРЭ: «РН разделяются на лёгкие (до 5 т, напр., «Космос», «Вега»), средние (5–20 т, «Союз», «Зенит»), тяжёлые (20–100 т, «Протон-М», «Ариан-5»), сверхтяжёлые (св. 100 т, «Н-1», «Энергия»)».
- ↑McConnaughey.
- ↑Клюшников В. Ю.Ракеты-носители сверхлегкого класса: ниша на рынке пусковых услуг и перспективные проекты. Часть 1 (рус.) // Воздушно-космическая сфера : журнал. — 2019. — 5 сентября ( № 3 ). — С. 58—71 . — ISSN2587-7992. — doi:10.30981/2587-7992-2019-100-3-58-71.
- ↑Musk previews busy year ahead for SpaceX.
- ↑Block 5 Phone Presser.
- ↑BIS Lunar Lander.
- ↑ГКНПЦ имени М. В. Хруничева.
- ↑NASA.
- ↑www.nasaspaceflight.com.
- ↑Сверхтяжелая российская ракета получила название «Енисей».
Литература [ править | править код ]
- В. А. Александров, В. В. Владимиров, Р. Д. Дмитриев, С. О. Осипова. Ракеты-носители (рус.) / под ред. С. О. Осипова. — Москва: Воениздат, 1981. — 315 с. — 17 000 экз.
- В. И. Куренков. Часть 2. Основы проектирования ракет-носителей // Конструкция и проектирование изделий ракетно-космической техники (рус.) . — электрон. учеб. пособие. — Самара: Минобрнауки России, Самарский гос. аэрокосмический университет им. С. П. Королева, 2012.
- РАКЕ́ТА-НОСИ́ТЕЛЬ // Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов . — М. : Большая российская энциклопедия, 2004—2017.
- Техника. Современная иллюстрированная энциклопедия. — Москва: Росмэн, 2006.
- Дорнбергер В.«Фау-2». Сверхоружие Третьего Рейха. 1930—1945 = V-2. The Nazi Rocket Weapon / Пер. с англ. И. Е. Полоцка. — Москва: Центрполиграф, 2004. — 350 с. — ISBN 5-9524-1444-3.
- Ракета-носитель / Г. А. Назаров // Проба — Ременсы. — М. : Советская энциклопедия, 1975. — (Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров ; 1969—1978, т. 21).
Ссылки [ править | править код ]
- Медиафайлы на Викискладе
На английском:
- BIS Lunar Lander (англ.) .
- Block 5 Phone Presser (англ.) (10 May 2018).
- Clark, StephenMusk previews busy year ahead for SpaceX (англ.) . Spaceflight Now (4 April 2017).
- Paul K. McConnaughey; Mark G. Femminineo, Syri J. Koelfgen, Roger A. Lepsch, Richard M. Ryan, Steven A. Taylor.Draft Launch Propulsion Systems Roadmap: Technology Area 01 (англ.) (PDF). НАСА p.11 (November 2010). — «… Small: 0–2 t payloads, Medium: 2–20 t payloads, Heavy: 20-50t payloads, Super Heavy: >50t payloads». Дата обращения: 7 октября 2020.
- NASA Attemis(неопр.) .
- NASA evaluating schedule, launch date forecasts for Artemis 2(неопр.) .
Что такое ступень двигателя
15 ноября 2003 г. исполнится 15 лет со дня успешного запуска многоразовой космической системы в составе ракеты-носителя сверхтяжелого класса «Энергия» и космического самолета «Буран». Надо сказать, что в КБ Энергомаш одновременно разрабатывались два двигателя: РД-170 и РД-171, предназначавшиеся для первых ступеней ракет-носителей (РН) «Энергия» и «Зенит». По замыслу идеолога их создания В.П. Глушко первая ступень РН «Зенит» должна была обеспечить летную отработку двигательной установки до начала летных испытаний РН «Энергия». В связи с этим оба двигателя РД-170 и РД-171 разрабатывались как близнецы-братья и имели одинаковые рабочие параметры. Отработка РН «Зенит» должна была опережать летные испытания РН «Энергия».
Создание двигателей, ставших самыми мощными в мировой истории ракетостроения, оказалось и самым продолжительным в практике отечественного ракетного двигателестроения.
Наиболее полное и документированное изложение истории разработки двигателей РД-170 (РД-171) представлено в книге «Осуществление мечты», написанной В.Ф. Трофимовым.
Историка, изучающего какое-либо значительное событие, всегда интересует изначальная дата, побудительные причины его происхождения. Автор много размышлял по поводу определения времени возникновения у В.П. Глушко замысла разработки унифицированных двигателей для космических ракет тяжелого и сверхтяжелого класса. В.П. Глушко на протяжении всей своей творческой жизни стремился к разработке двигателей и ракет, превышающих по своей мощности существовавшие на тот момент. В августе 1956 г. В.П. Глушко предлагал С.П. Королеву приступить к разработке ракеты Р-8 с тягой единичного двигателя 200 тс (тяга каждого из пяти двигателей у находившейся в разработке ракеты Р-7 составляла 76 тс). Спустя четыре года он сделал новые предложения — в феврале 1960 г. С.П. Королеву и в марте того же года М.К. Янгелю — о разработке космических ракет тяжелого класса P-10 (суммарная тяга двигателей первой ступени 1960 тс) и сверхтяжелого класса Р-20 (суммарная тяга двигателей первой ступени 2800 тс).
Последний, самый мощный импульс для зарождения своего замысла Глушко получил в июне 1962 г., когда возглавляемому им ОКБ-456 было отказано в участии в разработке двигателей для ракеты-носителя H1. Отказано С.П. Королевым в представленном ОКБ-1 эскизном проекте на разработку этого сверхмощного носителя.
В подтверждение высказанного тезиса автор располагает рядом неопровержимых фактов. При обсуждении характеристик и облика ракеты-носителя H1 на заседаниях Совета главных конструкторов в 1960-1961 гг. Глушко последовательно предлагал использовать различные варианты ракетного топлива: НДМГ в сочетании вначале с азотной кислотой, затем с жидким кислородом и, по его мнению, с наиболее перспективным во всех отношениях азотным тетраоксидом (АТ). Большинство членов СГК поддерживали эти предложения. Королев не возражал. ОКБ-1 последовательно, по мере поступления предложений Глушко, выдало в ОКБ-456 три технических задания, подписанных Королевым. В этих ТЗ предусматривалась разработка двигателей первой ступени H1 на предложенных вариантах топлива. Следует уточнить, что на этапе обсуждения схемы ракеты и определения вида топлива Глушко был согласен с выбором тяги единичного двигателя в 150 тс. К выводу о целесообразности применения двигателей тягой порядка 600 тс и более он пришел несколько позже. Однако Королев выбрал четвертый вариант двигателя на кислородно-керосиновом топливе, ТЗ на который ОКБ-1 одновременно выдало в ОКБ-276 Н.Д. Кузнецова. Подчеркну, одновременно, а не вынужденно (вопреки, повторюсь, бытующему мнению, что техзадание Кузнецову, якобы, было выдано после отказа Глушко от разработки двигателей).
Решение, принятое С.П. Королевым и поддержанное Государственной экспертной комиссией во главе с М.В. Келдышем, глубоко огорчило Глушко. Но это послужило импульсом, который через годы реализовался в идее разработки мощного унифицированного двигателя, на базе которого и были созданы РН «Зенит», «Энергия» и начаты работы по «Вулкану».
Отвергнутый ОКБ-1 вариант двигателя на топливе АТ и НДМГ был использован в ОКБ-52 В.Н. Челомея для первой ступени РН «Протон», запуск которой был успешно осуществлен в июле 1965 г. (напомним, что по правительственному постановлению начало летных испытаний ракеты H1 намечалось на 1965 г.).
Глушко предложил на первую ступень ракеты H1 вместо двигателей HK-15 разработки ОКБ-276 установить двигатели первой ступени РН «Протон», переведя их на кислородно-керосиновое топливо. Однако это предложение было отклонено так же, как не было принято предложение использовать двигатели 8Д420 тягой 640 тс, разрабатываемые для РH УР-700, переведя их на кислородно-керосиновое топливо. Следующее предложение последовало в начале 1973 г. КБ Энергомаш разработало технический проект кислородно-керосинового двигателя 11Д120 тягой 600 тс, и Глушко предложил установить семь таких двигателей на первую ступень H1 вместо тридцати HK-15. И вновь отказ. Глушко окончательно убедился, что разрабатываемые под его руководством двигатели несовместимы с ракетой, разработкой которой руководит В.П. Мишин.
Революционный подход к созданию ракетной техники, сформулированный В.П. Глушко, опрокидывал привычную последовательность создания ракеты. Сформулировав основной принцип дальнейшей работы, Глушко приступил к его реализации. В КБ Энергомаш были проведены проектно-расчетные исследования, осенью 1973 г. состоялся расширенный научно-технический совет предприятия.
После назначения в мае 1974 г. Глушко директором и генеральным конструктором НПО «Энергия», в которое вошли ЦКБЭМ (бывшее ОКБ-1) и КБ Энергомаш с их заводами и филиалами, отработка двигателя приняла более целенаправленный характер.
Сохраняя верность принципу «от двигателя — к ракете», Глушко предложил главному конструктору КБ «Южное» В.Ф. Уткину с опережением по сравнению со сроками разработки сверхтяжелой ракеты-носителя «Энергия» создать ракету-носитель среднего класса «Зенит» с одним двигателем первой ступени РД-171, аналогичным по своим характеристикам двигателю РД-170. Постановление на разработку РН «Зенит» вышло в марте 1976 г. В августе 1980 г. состоялось первое огневое испытание РД-171.
У двигателей РД-170 (РД-171) выявился совершенно новый дефект — неработоспособность ТНА. Полоса аварийных испытаний двигателей затянулась.
Создавшаяся ситуация породила раскол среди специалистов КБ и завода Энергомаш в вопросе выбора конструкции двигателя, главным образом в отношении его мощности. Предложение «четвертовать» двигатель, в форме докладной записки было направлено главному конструктору КБ Энергомаш В.П. Радовскому, который сразу же ознакомил с её содержанием В.П. Глушко. Генеральный конструктор РН «Энергия» к предложению отнесся резко отрицательно, увидев в применении многодвигательной схемы возвращение к схеме H1. Однако о поданной докладной записке стало известно министру общего машиностроения С.А. Афанасьеву, который поручил работникам службы безопасности КБ Энергомаш изъять докладную из сейфа Радовского и доставить её в министерство. Надо сказать, что С.А. Афанасьев очень болезненно воспринимал аварийные результаты испытаний двигателей РД-171. «Руководство страны не позволит повторить бесплодный опыт разработки H1», — считал он. Неудача с РН «Энергия» оказалось бы провалом второго грандиозного проекта в министерстве, которое Афанасьев возглавлял к тому моменту уже более 15 лет. В этой обстановке министр видел выход в дублировании работ по созданию двигателя для РН «Энергия», в подстраховке на случай неудачи с разработкой основного варианта. Предложенное в докладной записке «четвертование» двигателя РД-170 фактически означало создание двигателя тягой 185 тс, т.е. аналога отработанного к тому времени в авиационном ОКБ-276 Н.Д. Кузнецова двигателя НК-33, предназначавшегося для первой ступени H1. Успешное завершение доводки НК-33 вселяло уверенность в возможности благополучного разрешения проблем и с двигателями для РН «Энергия». Создание резервного варианта при осуществлении сложной технической задачи является вполне допустимым решением, но при этом необходимо обеспечить взаимозаменяемость основного и резервного варианта. А это условие при «четвертовании» двигателя РД-170 применительно к схеме РН «Энергия» не соблюдалось.
Однако соблазн выхода из тупикового, по мнению некоторых специалистов, положения путем использования четырех двигателей вместо одного был очень велик. В этом спустя много лет признался главный конструктор комплекса «Энергия», заместитель генерального конструктора НПО «Энергия» Б.И. Губанов. В тайне от Глушко он летал в Куйбышев к Н.Д. Кузнецову и оговаривал возможность поставки двигателей НК-33 для РН «Энергия». Н.Д. Кузнецов поставку двигателей связал с выполнением ряда условий. Этот эпизод свидетельствует об остроте создавшейся ситуации и образе мыслей ближайших сотрудников Глушко.