Что такое теловой двигатель

Тепловой двигатель

Теплово́й дви́гатель — устройство, совершающее работу за счет использования внутренней энергии топлива, тепловая машина, превращающая тепло в механическую энергию, использует зависимость теплового расширения вещества от температуры. (Возможно использование изменения не только объёма, но и формы рабочего тела, как это делается в твёрдотельных двигателях, где в качестве рабочего тела используется вещество в твёрдой фазе.) Действие теплового двигателя подчиняется законам термодинамики. Для работы необходимо создать разность давлений по обе стороны поршня двигателя или лопастей турбины. Для работы двигателя обязательно наличие топлива. Это возможно при нагревании рабочего тела (газа), который совершает работу за счёт изменения своей внутренней энергии. Повышение и понижение температуры осуществляется, соответственно, нагревателем и охладителем.

Содержание

История

Первой известной нам тепловой машиной была паровая турбина внешнего сгорания, изобретённая во ΙΙ (или в Ι ?) веке н. эры в римской империи. Это изобретение не получило своего развития предположительно из-за низкого уровня техники того времени (например, тогда ещё не был изобретён подшипник).

Теория

Работа, совершаемая двигателем, равна:

, где:

  • — количество теплоты, полученное от нагревателя,
  • — количество теплоты, отданное охладителю.

Коэффициент полезного действия (КПД) теплового двигателя рассчитывается как отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя:

Часть теплоты при передаче неизбежно теряется, поэтому КПД двигателя менее 1. Максимально возможным КПД обладает двигатель Карно. КПД двигателя Карно зависит только от абсолютных температур нагревателя() и холодильника():

Типы тепловых двигателей

Двигатель Стирлинга

Дви́гатель Сти́рлинга — тепловая машина, в которой жидкое или газообразное рабочее тело движется в замкнутом объёме, разновидность двигателя внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменения объёма рабочего тела. Может работать не только от сжигания топлива, но и от любого источника тепла.

Поршневой двигатель внутреннего сгорания

ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ, тепловой двигатель, в котором часть химической энергии топлива, сгорающего в рабочей полости, преобразуется в механическую энергию. По роду топлива различают жидкостные и газовые; по рабочему циклу непрерывного действия, 2- и 4-тактные; по способу приготовления горючей смеси с внешним (напр., карбюраторные) и внутренним (напр., дизели) смесеобразованием; по виду преобразователя энергии поршневые, турбинные, реактивные и комбинированные. Коэффициент полезного действия 0,4-0,5. Первый двигатель внутреннего сгорания сконструирован Э. Ленуаром в 1860. В наше время чаще встречается автомобильный транспорт, который работает на тепловом двигателе внутреннего сгорания, работающем на жидком топливе. Рабочий цикл в двигателе происходит за четыре хода поршня, за четыре такта. Поэтому такой двигатель и называется четырёхтактным. Цикл двигателя состоит из следующих четырёх тактов: 1.впуск, 2.сжатие, 3.рабочий ход, 4.выпуск.

Роторный (турбинный) двигатель внешнего сгорания

Примером такого устройства является тепловая электрическая станция в базовом режиме. Таким образом колёса локомотива (электровоза) также, как и в 19 веке, вращает энергия пара. Но тут есть два существенных отличия. Первое отличие заключается в том, что паровоз 19 века работал на качественном дорогом топливе, например на антраците. Современные же паротурбинные установки работают на дешевом топливе, например на канско-ачинском угле, который добывается открытым способом шагающими экскаваторами. Но в подобном топливе много пустого балласта, который транспорту не приходится возить с собой вместо полезного груза. Электровозу не надо возить не только балласт, но и топливо вообще. Второе отличие заключается в том, что тепловая электрическая станция работает по циклу Ренкина, который близок к циклу Карно. Цикл Карно состоит из двух адиабат и двух изотерм. Цикл Ренкина состоит из двух адиабат, изотермы и изобары с регенерацией тепла, которая приближает этот цикл к идеальному циклу Карно. На транспорте трудно сделать такой идеальный цикл, так как у транспортного средства есть ограничения по массе и габаритам, которые практически отсутствуют у стационарной установки.

Роторный (турбинный) двигатель внутреннего сгорания

Примером такого устройства является тепловая электрическая станция в пиковом режиме. Порой в качестве газотурбинной установки используют списанные по технике безопасности воздушно-реактивные двигатели.

Реактивные и ракетные двигатели

Твёрдотельные двигатели

(источник журнал “Техника молодёжи“)== == Здесь в качестве рабочего тела используется твёрдое тело. Здесь изменяется не объём рабочего тела, а его форма. Позволяет использовать рекордно малый перепад температур.

В МФТИ создают «локальный» вечный двигатель второго рода

Второй закон термодинамики гласит, что тепловая энергия не может переходить от менее горячих объектов к более горячим, или, в иной формулировке — величина энтропии (степени неупорядоченности) в замкнутой системе либо растёт, либо остаётся постоянной. Согласно ещё одной формулировке закона, КПД тепловой машины никогда не может достигать 100%, иными словами, невозможен вечный двигатель второго рода.

Читать еще:  Tfsi двигатель какой бензин

«Любой тепловой двигатель состоит из нагревателя, который собственно и является источником энергии, и холодильника, задача которого состоит в охлаждении рабочего тела двигателя. Холодильник понижает энтропию двигателя и при этом неизбежно тратит впустую часть тепловой энергии, полученной от нагревателя. Именно поэтому КПД теплового двигателя никогда не достигает 100%», — поясняет ведущий автор исследования Андрей Лебедев , сотрудник Технического университета Цюриха и МФТИ.

Ранее группа под руководством ведущего научного сотрудника Лаборатории квантовой теории информации МФТИ и Института теоретической физики имени Л. Д. Ландау РАН Гордея Лесовика , пытаясь доказать справедливость второго закона термодинамики для квантовых систем, обнаружила , что в квантовом мире он может при определённых условиях нарушаться.

Оказалось, что в квантовых системах относительно небольшого, но макроскопического размера — сантиметры и даже метры (в линейном измерении) — энтропия может снижаться, но этот процесс происходит без передачи тепловой энергии, за счёт явления квантовой запутанности.

Гордей Лесовик и Андрей Лебедев (слева направо). Фото Евгения Пелевина, пресс-служба МФТИ.

В новой статье Лебедев, Лесовик и их коллеги из Цюриха описали квантовую тепловую машину, КПД которой может достигать 100%. Она состоит из нескольких квантовых элементов — кубитов, которые могут находиться в состоянии квантовой запутанности друг с другом. Один из кубитов поглощает тепло, но в силу его квантовой природы эту энергию можно использовать только с вероятностью 50%. Чтобы извлекать энергию с вероятностью 100%, нужно снизить его энтропию, сделать это состояние «чистым» (в терминологии квантовой механики). Эту задачу решает вспомогательный чистый кубит, который обменивается своим квантовым состоянием с термализованным «грязным» состоянием рабочего кубита. Важно, что при этом передачи энергии между двумя кубитами не происходит.

«Можно сказать, что избыточная энтропия телепортируется из системы наружу во вспомогательный кубит, который играет роль квантового „демона Максвелла“», — говорит Лесовик.

После «вычищения» рабочего кубита оказывается, что собрать энергию с вероятностью 100% в одном кубите — это всё ещё непростая задача. Чтобы её решить, пришлось вдвое увеличить число рабочих элементов — кубитов.

«Финальная часть цикла — „демонские“ ( их, кстати, по смыслу можно назвать скорее „ангельскими“ — за их очистительно-информационную деятельность) кубиты нужно почистить обычным образом, с затратой энергии, но это происходит вдали от системы. Важно подчеркнуть, что на этой стадии в объёме, заключающем в себе и систему и „демона/ангела“, справедливость второго закона восстанавливается», — говорит Гордей Лесовик.

Сейчас группа занимается детальной разработкой установки для экспериментальной проверки своей теории на базе сверхпроводящих кубитов — трансмонов.

Тепловой двигатель

Термодинамика возникла как наука с основной задачей – созданием наиболее эффективных тепловых машин.

Тепловая машина или тепловой двигатель – это периодически действующий двигатель, совершающий работу за счет получения теплоты.

Обычно совершение работы в тепловом двигателе производится газом при его расширении. Газ, находящийся в нем, получил название рабочего тела. Зачастую его заменяют на воздух или водяные пары. Расширение газа происходит по причине повышения его температуры и давления.

Устройство, от которого рабочее тело получает тепло Q n , называю нагревателем.

Это понимается как расширение от объема V 1 к V 2 V 2 > V 1 , затем сжатие до первоначального объема. Чтобы значение совершаемой работы за цикл было больше нуля, необходимо температуру и давление увеличить и сделать больше, чем при его сжатии. То есть при расширении телу сообщается определенное количество теплоты, а при сжатии отнимается. Значит, кроме нагревателя тепловой двигатель должен иметь холодильник, которому рабочее тело может отдавать тепло.

Рабочее тело совершает работу циклично. Очевидно, изменение внутренней энергии газа в двигателе равняется нулю. Если при расширении от нагревателя к рабочему телу передается теплота в количестве Q n , то при сжатии Q ‘ c h теплота рабочего тела передается холодильнику по первому закону термодинамики, учитывая, что ∆ U = 0 , то значение работы газа в круговом процессе запишется как:

A = Q n — Q ‘ c h ( 1 ) .

Отсюда теплота Q ‘ c h ≠ 0 . Выгодность двигателя определяется по количеству выделенной и превращенной теплоты, полученной от нагревателя, в работу. Его эффективность характеризуется коэффициентом полезного действия (КПД), определяющимся как:

Запись уравнения ( 2 ) при учитывании ( 1 ) примет вид:

η = Q n — Q ‘ c h Q n ( 3 ) , КПД всегда.

Машина, отбирающая от тела с меньшей температурой определенное количество теплоты Q c h и отдающая его Q ‘ n телу с наиболее высокой температурой с Q ‘ n > Q c h , получила название холодильной машины.

Читать еще:  Что приводит бензиновый двигатель в работу

Данная машина должна совершить работу A ‘ в течение цикла. Эффективность холодильной машины определяется по холодильному коэффициенту, вычисляемому:

a = Q ‘ n A ‘ = Q ‘ n Q ‘ n — Q c h ( 4 ) .

КПД необратимого теплового двигателя всегда меньше, чем работающего по обратимому циклу.

КПД теплового двигателя

Французским инженером Саади Карно была установлена зависимость КПД теплового двигателя от температуры нагревателя T n и холодильника T c h . Форма конструкции теплового двигателя и выбор рабочего тела не влияет на КПД идеальной тепловой машины:

η m a x = T n — T c h T n ( 5 ) .

Любой реальный тепловой двигатель может обладать КПД η ≤ η m a x .

Принцип работы теплового двигателя

Идеальная машина, модель которой разработал Карно, работает по обратимому циклу, состоящему из двух изотерм ( 1 — 2 , 4 — 3 ) и двух адиабат ( 2 — 3 , 4 — 1 ) , изображенная на рисунке 1 . В качестве рабочего тела выбран идеальный газ. Прохождение адиабатного процесса происходит без подвода и отвода тепла.

Участок 1 — 2 характеризуется сообщением рабочему телу от нагревателя с температурой T n количества тепла Q n . При изотермическом процессе запись примет вид:

Q n = T n ( S 2 — S 1 ) ( 6 ) , где S 1 , S 2 являются энтропиями в соответствующих точках цикла из рисунка 1 .

Видно, что участок 3 — 4 характеризуется отдачей тепла холодильнику с температурой T c h идеальным газом, причем количество теплоты равняется получению газом теплоты — Q c h , тогда:

— Q c h = T c h ( S 1 — S 2 ) ( 7 ) .

Выражение, записанное в скобках в ( 7 ) , указывает на приращение энтропии процесса 3 — 4 .

Принцип действия тепловых двигателей КПД

Произведем подстановку ( 6 ) , ( 7 ) в определение КПД теплового двигателя и получаем:

η = T n ( S 2 — S 1 ) + T c h ( S 1 — S 2 ) T n ( S 2 — S 1 ) = T n — T c h T n ( 8 ) .

В выведенном выражении ( 8 ) не выполнялось предположений о свойствах рабочего тела и устройстве теплового двигателя.

По уравнению ( 8 ) видно, что для увеличения КПД следует повышать T n и понижать T c h . Достижение значения абсолютного нуля невозможно, поэтому единственное решение для роста КПД – увеличение T n .

Задача по созданию теплового двигателя, совершающего работу без холодильника, очень интересна. В физике она получила название вечного двигателя второго рода. Такая задача не находится в противоречии с первым законом термодинамики. Данная проблема считается неразрешимой, как и создание вечного двигателя первого рода. Этот опытный факт в термодинамике приняли в качестве постулата – второго начала термодинамики.

Рассчитать КПД теплового двигателя с температурой нагревания 100 ° С и температурой холодильника, равной 0 ° С . Считать тепловую машину идеальной.

Решение

Необходимо применение выражения для КПД теплового двигателя, которое записывается как:

η = T n — T c h T n .

Используя систему С И , получим:

T n + 100 ° C + 273 = 373 ( К ) . T c h = 0 ° C + 273 = 273 ( К ) .

Подставляем числовые значения и вычисляем:

η = 373 — 273 373 = 0 , 27 = 27 % .

Ответ: КПД теплового двигателя равняется 27 % .

Найти КПД цикла, представленного на рисунке 2 , если в его пределах объем идеального газа проходит изменения n раз. Считать рабочим веществом газ с показателем адиабаты γ .

Решение

Основная формула для вычисления КПД, необходимая для решения данной задачи:

η = Q n — Q ‘ n Q n ( 2 . 1 ) .

Получения тепла газом происходит во время процесса 1 — 2 Q 12 = Q n :

Q 12 = ∆ U 12 + A 12 ( 2 . 2 ) , где A 12 = 0 потому как является изохорным процессом. Отсюда следует:

Q 12 = ∆ U 12 = i 2 R T 2 — T 1 ( 2 . 3 ) .

Процесс, когда газ отдает тепло, обозначается как 3 — 4 , считается изохорным — Q 34 = Q ‘ c h . Формула примет вид:

Q 34 = ∆ U 34 = i 2 v R T 4 — T 3 ( 2 . 4 ) .

Адиабатные процессы проходят без подвода и отвода тепла.

Произведем подстановку полученных количеств теплоты в выражение для КПД, тогда:

η = i 2 v R T 2 — T 1 + i 2 v R T 4 — T 3 i 2 v R T 2 — T 1 = T 2 — T 1 + T 4 — T 3 T 2 — T 1 = 1 — T 3 — T 4 T 2 — T 1 ( 2 . 5 ) .

Следует применить уравнение для адиабаты процессу 2 — 3 :

T 2 V 1 γ — 1 = T 3 V 2 γ — 1 → T 2 = T 3 V 2 γ — 1 V 1 γ — 1 = T 3 n γ — 1 ( 2 . 6 ) .

Используем выражение для адиабаты процесса 4 — 1 :

T 1 V 1 γ — 1 = T 3 V 2 γ — 1 → T 1 = T 4 V 2 γ — 1 V 1 γ — 1 = T 4 n γ — 1 ( 2 . 7 ) .

Перейдем к нахождению разности температур T 2 — T 1 :

T 2 — T 1 = T 3 — T 4 n Г — 1 ( 2 . 8 ) .

Произведем подстановку из ( 2 . 8 ) в ( 2 . 5 ) :

η = 1 — T 3 — T 4 T 3 — T 4 n γ — 1 = 1 — 1 n γ — 1 = 1 — n 1 — γ ( 2 . 9 ) .

Ответ: КПД цикла равняется η = 1 — n 1 — Г .

Тепловые двигатели

Тепловым называется двигатель, который преобразует тепловую энергию, получаемую от сгорания топлива, в механическую энергию. Тепловые двигатели разделяются на двигатели внешнего и внутреннего сгорания топлива.

В тепловом двигателе внешнего сгорания в качестве теплоносителя (рабочего тела, выполняющего непосредственную работу в машине) используется водяной пар. Водяной пар получают в котле от теплоты сжигаемого топлива в топке (или реакторе атомных электростанций). Этот пар, называемый сырым, имеющий низкую температуру, равную температуре воды котла, при соприкосновении с холодными стенками машины интенсивно охлаждается и конденсируется, теряя давление. Это состояние называется «мятием» пара. Машины, работающие на сыром паре, имеют низкий КПД. Чтобы уменьшить эффект мятия, пар нагревают в пароперегревателе до температуры 300.600″С. Такие параметры пара приемлемы для работы паровых машин — поршневых или лопаточных (турбин). Поршневые машины применяются на паровозах и пароходах. Лопаточные двигатели применяются на тепловых и атомных электростанциях в качестве двигателей турбогенераторов.

Читать еще:  Газ 2410 технические характеристики двигатель

В двигателях внутреннего сгорания процессы сжигания топлива, выделения теплоты и преобразования части ее в механическую работу происходят непосредственно внутри двигателя. К таким двигателям относятся поршневые двигатели, газовые турбины, реактивные и комбинированные двигатели.

Основными деталями поршневого двигателя внутреннего сгорания (рис. 6.1) являются цилиндр 2, крышка (головка) цилиндра 5, картер 1, поршень 6, шатун 7, коленчатый вал 8, клапаны впуска 3 и выпуска 4.

В процессе работы этого двигателя топливо и необходимый для его сгорания воздух вводятся в объем цилиндра двигателя, ограниченный днищем крышки, стенками цилиндра и днищем поршня. Образующиеся при сгорании газы (рабочее тело), имеющие высокую температуру, давят на поршень и перемещают его в ци-

Рис. 6.1. Поршневой двигатель внутреннего сгорания (ДВС): 1 — картер; 2 — цилиндр; 3 — клапан впуска; 4 — клапан выпуска; 5 — крышка цилиндра; 6 — поршень; 7 — шатун; 8 — коленчатый вал

Рис. 6.2. Газовая турбина — ДВС: 1 — топливный насос; 2 — камера сгорания; 3 — направляющий аппарат; 4 — турбина; 5 — компрессор

линдре. Поступательное движение поршня через шатун передается установленному в опорах картера коленчатому валу, который и преобразует его во вращательное движение.

В газовых турбинах (рис. 6.2) сжигание топлива производится в камере сгорания 2. Топливо в нее подается насосом 1 через форсунку. Воздух, необходимый для горения, нагнетается в камеру сгорания с помощью компрессора 5, установленного на одном валу с рабочим колесом газовой турбины 4. Продукт сгорания (рабочее тело) через направляющий аппарат 3 поступает на лопатки рабочего колеса турбины 4.

Газовые турбины широко используются в качестве вспомогательных агрегатов в поршневых и реактивных двигателях, а также как самостоятельные силовые установки. В отличие от поршневых двигателей тепловой процесс в газовой турбине происходит непрерывно, реализуя значительную мощность при сравнительно небольших габаритах и массе.

В реактивном двигателе внутреннего сгорания (рис. 6.3) топливо и окислитель насосами 3 подаются из емкостей 1 и 2 в камеру сгорания 4. Продукты сгорания (рабочее тело) расширяются в сопле 5. Истечение газов из сопла в окружающую среду с большой скоростью создает реактивную силу тяги двигателя.

Особенностью реактивных двигателей является независимость силы тяги от скорости движения реактивной установки, а их мощность возрастает с увеличением скорости движения и количества поступающего воздуха в двигатель. Это свойство турбореактивных двигателей используют в авиации. Главные недостатки реактивных двигателей — их низкая экономичность и небольшой срок службы.

Рис. 6.3. Реактивный двигатель внутреннего сгорания: 1 — емкость для топлива; 2 — емкость для окислителя; 3 — насосы; 4 — камера сгорания; 5 — сопло

Рис. 6.4. Комбинированный двигатель внутреннего сгорания: 1 — поршневая часть (ПЧ); 2- газовая турбина (Т); 3 — компрессор (К)

Комбинированный двигатель внутреннего сгорания (рис. 6.4) со* стоит из поршневой части 1, в качестве которой используется поршневой двигатель внутреннего сгорания, газовой турбины 2 и компрессора 3. Выпускные газы из поршневого двигателя, имеющие высокую температуру и давление, отдают свою энергию лопаткам рабочего колеса газовой турбины, приводящей в действие компрессор. Компрессор засасывает воздух из атмосферы и под определенным давлением нагнетает его в цилиндры поршневого двигателя. Это увеличение наполнения цилиндров двигателя воздухом путем повышения давления на впуске называется наддувом. При наддуве плотность воздуха повышается, и увеличивается заряд воздуха в цилиндре. Известно, что для сжигания 1 кг жидкого топлива необходимо около 15 кг воздуха. Поэтому чем больше воздуха поступит в цилиндр, тем больше топлива можно сжечь в нем, получив при этом большую мощность.

Комбинированные двигатели имеют значительный срок службы, сравнительно небольшие габаритные размеры, массу и высокую экономичность, благодаря чему они нашли широкое применение на железнодорожном транспорте.

Такт — это одно перемещение поршня в цилиндре от одного крайнего положения в другое.

Крайним положением поршня в цилиндре, или мертвой точкой, называется положение, при котором происходит изменение направления поступательного движения поршня в цилиндре (мертвая точка верхняя, нижняя, внутренняя, внешняя или наружная).

Рабочее тело (энергоноситель) ДВС — это теплоноситель (газ), посредством которого в двигателе совершается механическая работа. Рабочее тело образуется в результате сгорания топлива. В связи с возвратно-поступательным движением поршня сгорание топлива в поршневых двигателях возможно лишь последовательными порциями, причем сгоранию каждой порции топлива должен предшествовать ряд подготовительных процессов.

Ссылка на основную публикацию
Adblock
detector