Что такое тепловой двигатель физика 8 класс

Что такое тепловой двигатель физика 8 класс

Что такое тепловой двигатель физика 8 класс

Азбука физики

Научные игрушки

Простые опыты

Этюды об ученых

Решение задач

Презентации

Книги по физике
Умные книжки

Есть вопросик?

Его величество.

Музеи науки.

Достижения.

Викторина по физике

Физика в кадре

Учителю

Читатели пишут

Физика 8 класс. РАБОТА ГАЗА И ПАРА ПРИ РАСШИРЕНИИ

Пар или газ, расширяясь, может совершить работу.
При этом внутренняя энергия пара превращается в механическую энергию.
Устройства, в которых внутренняя энергия пара или газа (рабочего тела) превращается в механическую энергию, называются тепловыми двигателями.

Существуют различные виды тепловых двигателей:

Простейший «одноразовый» тепловой двигатель (паровая машина).

При нагревании воды в закрытой пробкой пробирке увеличивается количество пара, находящегося под пробкой, и повышается его давление на пробку. Наконец, давление пара выталкивает пробку, при этом пар совершает работу. Часть первоначальной энергии пара пошло на совершение работы по выталкиванию пробки. Внутренняя энергия пара превратилась в механическую энергию. Так как пар выходит еще достаточно горячий, то оставшуюся энергию он отдает окружающему воздуху, имеющему более низкую температуру.

Две с лишним тысячи лет тому назад, в 3 веке до нашей эры , великий греческий математик и механик Архимед построил пушку, которая стреляла с помощью пара. Рисунки пушки Архимеда были найдены позднее в рукописях Леонардо да Винчи.
При стрельбе один конец ствола сильно нагревали на огне . Затем в нагретую часть ствола наливали воду. Вода мгновенно испарялась , и пар, расширяясь с силой и грохотом выбрасывал ядро. Ствол пушки представлял собой, как бы цилиндр, по которому, как поршень, скользило ядро.

В настоящее время подавляющее большинство работающих на Земле двигателей — тепловые.

ЗАГЛЯНИ НА КНИЖНУЮ ПОЛКУ!

ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ
( четырехтактный )

Двигатель состоит из цилиндра, внутри которого перемещается поршень.

Сгорание топлива происходит внутри двигателя.
Двигатель работает на жидком топливе.
Повторяющийся рабочий цикл двигателя состоит из четырех процессов (тактов):
а) впуск, б) сжатие, в) рабочий ход , г) выпуск.
(только во время рабочего хода происходит поворот вала)

Коэффициент полезного действия

Коэффицие́нт поле́зного де́йствия (КПД) — характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии. Определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой; обозначается обычно η («эта») [1] . КПД является безразмерной величиной и часто выражается в процентах.

Содержание

  • 1 Определение
  • 2 Другие похожие показатели
    • 2.1 КПД котлов
    • 2.2 Тепловые насосы и холодильные машины
  • 3 Литература
  • 4 Примечания

Определение [ править | править код ]

Математически КПД определяется как

η = A Q , >,>

где А — полезная работа (энергия), а Q — затраченная энергия.

Если КПД выражается в процентах, эту формулу иногда записывают в виде

η = A Q × 100 % >times 100%> .

Здесь умножение на 100 % не несёт содержательного смысла, поскольку 100 % = 1 . В связи с этим второй вариант записи формулы менее предпочтителен (одна и та же физическая величина может быть выражена в различных единицах независимо от формул, где она участвует).

В силу закона сохранения энергии и в результате неустранимых потерь энергии КПД реальных систем всегда меньше единицы, то есть невозможно получить полезной работы больше или столько, сколько затрачено энергии.

КПД теплово́го дви́гателя — отношение совершённой полезной работы двигателя к энергии, полученной от нагревателя. КПД теплового двигателя может быть вычислен по следующей формуле

η = Q 1 − Q 2 Q 1 -Q_<2>>>>> ,

где Q 1 > — количество теплоты, полученное от нагревателя, Q 2 > — количество теплоты, отданное холодильнику. Наибольшим КПД среди циклических машин, оперирующих при заданных температурах нагревателя T1 и холодильника T2, обладают тепловые двигатели, работающие по циклу Карно; этот предельный КПД равен

η k = T 1 − T 2 T 1 =-T_<2>>>>> .

Другие похожие показатели [ править | править код ]

Не все показатели, характеризующие эффективность энергетических процессов, соответствуют вышеприведённому описанию. Даже если они традиционно или ошибочно называются «коэффициент полезного действия», они могут иметь другие свойства, в частности, превышать 100 %.

Читать еще:  В систему охлаждения двигателя попало масло как и чем промыть

КПД котлов [ править | править код ]

КПД котлов на органическом топливе традиционно рассчитывается по низшей теплоте сгорания; при этом предполагается, что влага продуктов сгорания покидает котёл в виде перегретого пара. В конденсационных котлах эта влага конденсируется, теплота конденсации полезно используется. При расчёте КПД по низшей теплоте сгорания он в итоге может получиться больше единицы. В данном случае корректнее было бы считать его по высшей теплоте сгорания, учитывающей теплоту конденсации пара; однако при этом показатели такого котла трудно сравнивать с данными о других установках.

Тепловые насосы и холодильные машины [ править | править код ]

Достоинством тепловых насосов как нагревательной техники является возможность получать больше теплоты, чем расходуется энергии на их работу. Холодильная машина может отвести от охлаждаемого конца больше теплоты, чем затрачивается энергии на организацию процесса.

Эффективность машин характеризует холодильный коэффициент [en]

ε X = Q X / A >=Q_ >/A> ,

где Q X >> — тепло, отбираемое от холодного конца (в холодильных машинах холодопроизводительность); A — затрачиваемая на этот процесс работа (или электроэнергия).

Для тепловых насосов используют термин коэффициент трансформации

ε Γ = Q Γ / A =Q_/A> ,

где Q Γ > — тепло конденсации, передаваемое теплоносителю; A — затрачиваемая на этот процесс работа (или электроэнергия).

В идеальной машине Q Γ = Q X + A =Q_ >+A> , отсюда для идеальной машины ε Γ = ε X + 1 =varepsilon _ >+1>

Наилучшими показателями производительности для холодильных машин обладает обратный цикл Карно: в нём холодильный коэффициент

ε = T X T Γ − T X > over -T_ >>>> ,

где T Γ > , T X >> — температуры горячего и холодного концов, K [2] . Данная величина, очевидно, может быть сколь угодно велика; хотя практически к ней трудно приблизиться, холодильный коэффициент может превосходить единицу. Это не противоречит первому началу термодинамики, поскольку, кроме принимаемой в расчёт энергии A (напр., электрической), в тепло Q идёт и энергия, отбираемая от холодного источника.

Тепловой двигатель

Презентация «Теловой двигатель». Виды тепловых двигателей

Просмотр содержимого документа
«Тепловой двигатель»

Муниципальное автономное общеобразовательное учреждение

гимназия №69 города Липецка

Тепловые двигатели

Болгов Антон,

Максимов Максим,

Рощупкин Иван

Руководитель:

Ломакина Татьяна Евгеньевна

учитель физики

Муниципальное автономное общеобразовательное учреждение

гимназия №69 города Липецка

Тепловые двигатели

Цель исследования: создать и исследовать модель теплового двигателя для их демонстрации, произвести сравнительный анализ тепловых двигателей.

Объект исследования: паровые машины.

Предмет исследования: изучение принципа работы теплового двигателя .

Актуальность выбранной темы состоит:

— во-первых, тепловой двигатель — необходимый атрибут современной цивилизации. С их помощью вырабатывается около 80% электроэнергии. Без тепловых двигателей невозможно представить, современный транспорт;

— во-вторых, тепловые двигатели уже изменили мир, что дальше? С чего все началось?

— в-третьих, повсеместное использование тепловых двигателей связано с отрицательным воздействием на окружающую среду.

История создания тепловых двигателей

Появление тепловых двигателей связано с возникновением и развитием промышленного производства в начале XVII в. главным образом в Англии. Копи, в которых добывали руду, нуждались в устройствах для откачки воды. Глубина шахт стала достигать 200 м. Приходилось держать до пятисот лошадей на одном руднике. Эта чисто практическая задача и стала причиной того, что первым тепловым двигателем стала машина для откачки воды.

Первый универсальный тепловой двигатель был создан в России выдающимся изобретателем, механиком Воскресенских заводов на Алтае И.И.Ползуновым. Кроме того, Ползунов внес серьезные усовершенствования в конструкцию рабочих органов двигателя, применил оригинальную систему паро- и водораспределения, и в отличие от машин Ньюкомена ось вала его машины была параллельна плоскости цилиндров. Проект своей машины Ползунов изложил в 1763 г. в записке, адресованной начальнику Колывано-Воскресенского горного округа А. И. Порошину.

Читать еще:  Чтобы холодный двигатель заводился с первого раза

Тепловые двигатели

  • Тепловые двигатели (ТП) — устройства, обеспечивающие превращение химической энергии топлива в механическую работу.

Тепловые двигатели (ТП) — устройства, обеспечивающие превращение химической энергии топлива в механическую работу.

К видам тепловых двигателей относятся

-двигатель внутреннего сгорания,

-паровая и газовая турбины,

Паровая машина

Паровая машина — тепловой двигатель внешнего сгорания, преобразующий энергию нагретого пара в механическую работу возвратно-поступательного движения поршня, а затем во вращательное движение вала.

Газовая турбина

  • Газовая турбина (фр. turbine от лат. turbo вихрь, вращение) — это тепловой двигатель непрерывного действия, в лопаточном аппарате которого энергия сжатого и нагретого газа преобразуется в механическую работу на валу.

Газовая турбина (фр. turbine от лат. turbo вихрь, вращение) — это тепловой двигатель непрерывного действия, в лопаточном аппарате которого энергия сжатого и нагретого газа преобразуется в механическую работу на валу.

Реактивный двигатель

  • Реактивный двигатель — двигатель, создающий необходимую для движения силу тяги посредством преобразования исходной энергии в кинетическую энергию реактивной струи рабочего тела.

Двигатель внутреннего сгорания

Двигатель внутреннего сгорания (сокращённо ДВС) — это тип двигателя, тепловая машина, в которой химическая энергия топлива (обычно применяется жидкое или газообразное углеводородное топливо), сгорающего в рабочей зоне, преобразуется в механическую работу.

Двигатель внутреннего сгорания (сокращённо ДВС) — это тип двигателя, тепловая машина, в которой химическая энергия топлива (обычно применяется жидкое или газообразное углеводородное топливо), сгорающего в рабочей зоне, преобразуется в механическую работу.

Такт первый, впуск . Поршень совершает движение от верхней к нижней мёртвой точке. В это время внутри цилиндра возникает разряжение, открывается впускной клапан и поступает топливно-воздушная смесь. В завершение впуска давление в полости цилиндра составляет в пределах от 0,07 до 0,095 Мпа; температура — от 80 до 120 градусов Цельсия.

Такт второй, сжатие . При движении поршня от нижней к верхней мёртвой точке и закрытых впускном и выпускном клапане происходит сжатие горючей смеси в полости цилиндра. Этот процесс сопровождается повышением давления до 1,2—1,7 Мпа, а температуры — до 300-400 градусов Цельсия.

Такт третий, расширение. Топливно-воздушная смесь воспламеняется. Это сопровождается выделением значительного количества тепловой энергии. Температура в полости цилиндра резко возрастает до 2,5 тысяч градусов по Цельсию. Под давлением поршень быстро движется к своей нижней мёртвой точке. Показатель давления при этом составляет от 4 до 6 Мпа.

Такт четвёртый, выпуск. Во время обратного движения поршня к верхней мёртвой точке открывается выпускной клапан, через который выхлопные газы выталкиваются из цилиндра в выпускной трубопровод, а затем и в окружающую среду. Показатели давление в завершающей стадии цикла составляют 0,1-0,12 Мпа; температуры — 600-900 градусов по Цельсию.

Паровая турбина

  • Паровая турбина представляет собой серию вращающихся дисков, закрепленных на единой оси, называемых ротором турбины, и серию чередующихся с ними неподвижных дисков, закрепленных на основании, называемых статором.

Паровая турбина представляет собой серию вращающихся дисков, закрепленных на единой оси, называемых ротором турбины, и серию чередующихся с ними неподвижных дисков, закрепленных на основании, называемых статором.

Сравнительный анализ тепловых двигателей

Сравнительный анализ тепловых двигателей

Расчет коэффициента полезного действия

  • КПД паровой турбины:

 = Q1  Q2= 18900  32400  100 %=0,58  100 %= 58%

  • Вывод: в тепловых двигателях не вся внутренняя энергия пара или газа превращается в механическую энергию.
  • Тепловой двигатель состоит из: нагревателя, рабочего тела (газ, пар) и холодильника. Важно знать, какую часть энергии, выделяемой топливом, тепловой двигатель превращает в полезную работу, т.е. в ту работу, ради которой он создан. Чем больше эта часть энергии, тем двигатель экономичнее.

Результатом исследования является:

  • 1. Очень интересна история создания двигателей. Оказывается, долгие годы тепловые механизмы были лишь развлечением.
  • 2. Более глубокое понимание работы тепловых двигателей. При изучении работы двигателей мы убедились, что свойства их настолько разнообразны, что мы смогли исследовать лишь некоторые из них: паровая турбина и ДВС.
  • 3. Мы попробовали сконструировать простейшие модели тепловых двигателей, работающие на пару и ДВС.
Читать еще:  Что означает надпись на двигателе донс

Результатом исследования является:

1. Очень интересна история создания двигателей. Оказывается, долгие годы тепловые механизмы были лишь развлечением.

2. Более глубокое понимание работы тепловых двигателей. При изучении работы двигателей мы убедились, что свойства их настолько разнообразны, что мы смогли исследовать лишь некоторые из них: паровая турбина и ДВС.

3. Мы попробовали сконструировать простейшие модели тепловых двигателей, работающие на пару и ДВС.

Тест по физике Тепловые двигатели для 8 класса

Тест по физике Тепловые двигатели для 8 класса с ответами. Тест включает в себя 2 варианта, в каждом варианте 7 заданий с выбором ответа.

1 вариант

A1. Тепловыми двигателями называют машины, в которых

1) внутренняя энергия топлива превращается в тепло окружающей среды
2) механическая энергия превращается в энергию топлива
3) тепло окружающей среды превращается в механи­ческую энергию
4) внутренняя энергия топлива превращается в ме­ханическую энергию

А2. Цикл двигателя внутреннего сгорания состоит из

1) впуска, выпуска
2) нагревания, рабочего хода
3) впуска, сжатия, рабочего хода, выпуска
4) впуска, нагревания, рабочего хода, выпуска

А3. В состав теплового двигателя не входит

1) нагреватель
2) рабочее тело
3) холодильник
4) турбина

А4. В тепловом двигателе нагреватель

1) отдаёт часть энергии рабочему телу, часть энергии холодильнику
2) получает всю энергию от рабочего тела
3) получает часть энергии рабочего тела
4) отдаёт всю энергию холодильнику

А5. Коэффициент полезного действия теплового двигате­ля определяется

1) только величинами полезной работы и энергии, полученной нагревателем
2) количеством теплоты, полученной от нагревателя
3) только количеством теплоты, отданной холодильнику
4) только величиной полезной работы

А6. Тепловой двигатель получает от нагревателя энергию, равную 7 кДж и отдаёт холодильнику 4,5 кДж. КПД такого двигателя равен

А7. КПД теплового двигателя равен 30%. Двигатель по­лучает от нагревателя количество теплоты 10 кДж и совершает работу, равную

1) 7 кДж
2) 300 кДж
3) 3 кДж
4) 5 кДж

2 вариант

A1. В двигателе внутреннего сгорания

1) энергия твёрдого топлива преобразуется в механи­ческую энергию снаружи двигателя
2) механическая энергия преобразуется в энергию топлива внутри двигателя
3) энергия жидкого и газообразного топлива преобразу­ется в механическую энергию внутри самого двигателя
4) механическая энергия поршня преобразуется в энергию топлива снаружи двигателя

А2. Тепловой двигатель состоит

1) из нагревателя и холодильника
2) из нагревателя, рабочего тела и холодильника
3) из впуска, сжатия, рабочего хода, выпуска
4) из зажигания и рабочего тела

А3. К тепловым двигателям не относится

1) двигатель внутреннего сгорания
2) паровая турбина
3) реактивный двигатель
4) ядерный ускоритель

А4. В тепловом двигателе холодильник

1) получает всю энергию, переданную нагревателем, и передаёт часть её рабочему телу
2) получает часть энергии нагревателя и передаёт всю её рабочему телу
3) получает часть энергии, переданной нагревателем рабочему телу
4) отдаёт всю энергию нагревателю

А5. Коэффициент полезного действия теплового двигате­ля равен отношению

1) затраченной работы к энергии, полученной от нагревателя
2) энергии, полученной от нагревателя, к полезной работе
3) полезной работы к постоянной теплового двигателя
4) полезной работы к энергии, полученной от нагревателя

А6. КПД теплового двигателя равен 40%. Двигатель по­лучает от нагревателя количество теплоты 10 кДж и совершает работу, равную

1) 75 кДж
2) 40 кДж
3) 2,5 кДж
4) 4 кДж

А7. Тепловой двигатель получает от нагревателя количе­ство теплоты 1,5 кДж и отдаёт холодильнику количе­ство теплоты 0,5 кДж. КПД данного теплового двига­теля равен

Ответы на тест по физике Тепловые двигатели для 8 класса
1 вариант
А1-4
А2-3
А3-4
А4-1
А5-1
А6-3
А7-3
2 вариант
А1-3
А2-2
А3-4
А4-3
А5-4
А6-4
А7-2

Ссылка на основную публикацию
Adblock
detector