Что такое тепловой двигатель кратко

Естествознание. 11 класс

Конспект урока

Естествознание, 11 класс

Урок 7. Принцип работы тепловых двигателей

Перечень вопросов, рассматриваемых в теме:

  • Что такое двигатель?
  • Почему невозможен вечный двигатель?
  • Что такое тепловой двигатель?
  • Каковы особенности тепловых двигателей, которые необходимо учитывать для эффективного применения?

Глоссарий по теме:

Двигателем можно назвать любое устройство, способное совершать механическую работу

Коэффициентом полезного действия теплового двигателя (КПД) называется отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя:

Коэффициент полезного действия любого теплового двигателя меньше единицы и выражается в процентах. Невозможность превращения всего количества теплоты, полученного от нагревателя, в механическую работу является платой за необходимость организации циклического процесса и следует из второго закона термодинамики.

В реальных тепловых двигателях КПД определяют по экспериментальной механической мощности N двигателя и сжигаемому за единицу времени количеству топлива. Так, если за время t сожжено топливо массой m и удельной теплотой сгорания q, то:

Для транспортных средств справочной характеристикой часто является объем V сжигаемого топлива на пути s при механической мощности двигателя N и при скорости υ . В этом случае, учитывая плотность r топлива, можно записать формулу для расчета КПД:

Адиабати́ческий, или адиаба́тный процесс (от др.-греч. ἀδιάβατος «непроходимый») — термодинамический процесс в макроскопической системе, при котором система не обменивается теплотой с окружающим пространством.

Циклические тепловые двигатели – тепловые двигатели, работающие по циклу.

Процесс нагрева или охлаждения газа при постоянном объеме называется изохорным.

Процесс нагрева или охлаждения газа при постоянном давлении называется изобарным.

Основная и дополнительная литература по теме урока:

Обязательная литература:

  1. Громов С. В., Родина Н. А.. Физика – М. : Просвещение, 2001.
  2. Дерябин В. М. Законы сохранения в физике. – М.: Просвещение, 1982.
  3. Перельман Я.А. Занимательная физика. Книга 2. М.:Наука, 1982г.

Дополнительные источники:

Теоретический материал для самостоятельного изучения

Естественными двигателями являются любые живые организмы. Но работы мускул человеку всегда было мало, и со временем, еще задолго до появления науки, человек научился использовать средства, заменяющие свои физические усилия. С древних времен человек «приручил» силу ветра, воды, воздуха для передвижения и совершения механической работы. С тех времен до сегодняшних дней человек осуществляет попытки создания вечного двигателя. Возможно ли это?

Идея использования сил природы для совершения работы и увеличения силы человека привлекала с древних времен с создания простейших механизмов. Позже появились ветряные и водяные мельницы (упоминание о первых водяных мельницах относится к началу нашей эры).

В средневековье появляются уже достаточно совершенные водяные двигатели, использующиеся для различных нужд, например, как подъемные устройства (см. Рис. 2).

Рис.2. Подъемные устройства

Усложнение механизмов привело к идее построения вечного двигателя, по-латыни perpetuum mobile. Под таким двигателем понимали некоторое хитроумное устройство, которое без каких-либо внешних воздействий могло бы двигаться и совершать полезную механическую работу сколь угодно долго. Идея вечного двигателя была очень популярна в 17 – 18 веках.

Развитие науки термодинамики и строгие опыты Джоуля показали, что механическое движение никогда не исчезает бесследно. Энергия механического движения переходит в энергию хаотического движения частиц вещества. Закон сохранения энергии, основанный на опытных фактах, запрещает существование вечного двигателя. Любой двигатель является устройством способным совершать упорядоченную макроскопическую работу на основе преобразования энергии из одного вида в другой.

В самых первых двигателях механическая энергия ветра и воды преобразовывалась в механическую энергию вращающегося колеса. Позднее появились тепловые двигатели.

Развитие науки об электричестве привело к появлению электродвигателей, преобразующих энергию электрического поля в механическую энергию и наоборот.

Наконец в 20 веке человек научился преобразовывать в механическую энергию внутреннюю энергию атомных ядер.

Идея использования тепла для совершения механических действий также пришла из глубокой древности. Одно из первых дошедших до нас изобретений принадлежит Герону Александрийскому, жившему приблизительно за 120 лет до нашей эры. Соответствующее устройство, которое он назвал «эолипилом».

В шаре, из которого выходят две г-образные трубки находится вода. При нагревании вода закипает, и образующийся пар, выходя из трубок, вращает сосуд. Каждая трубка при этом работает как реактивный двигатель.

Эолипил Герона являлся игрушкой и не выполнял действительно полезной работы. Подобные игрушки, например, плавающий на реактивной паровой тяге кораблик, несложно сделать самому. Реальный двигатель, работающий на основе реактивной тяги, является неэффективным. В последующих устройствах, в которых тепловая энергия преобразовывалась в механическую, горячий водяной пар толкал поршень в цилиндре, что являлось более эффективным. Далее создаются паровые машины (первая — Ползуновым, дошедшая до наших дней — Уаттом) и циклические тепловые двигатели, работающие продолжительное время и возвращающиеся в исходное состояние (по циклу). Термодинамический цикл Папена сопровождается сменой изобарного и изохорного процессов, основанных на нагревании и охлаждении газа при постоянном объеме или давлении.

Читать еще:  Двигатель ame технические характеристики

Устройство любого теплового двигателя достаточно сложна. Чтобы понять принцип работы тепловых машин, рассмотрим двигатель, состоящий из цилиндра с поршнем, который может перемещаться вдоль цилиндра в определенном диапазоне.

Рис.4 Тепловой двигатель

Данный двигатель состоит из цилиндра с поршнем, который может перемещаться вдоль цилиндра в определенном диапазоне. В объеме цилиндра ограниченного поршнем находится газ. Поднимаясь вверх, цилиндр может поднять некоторое тело, то есть совершить полезную механическую работу.

Пусть в начальном состоянии цилиндр в отсутствие груза находится в нижнем состоянии. Подвесим груз и начнем нагревать газ в цилиндре, для чего подсоединим к цилиндру нагреватель. Сначала газ расширяться не будет, поскольку давление снизу недостаточно для подъема поршня. Процесс нагрева или охлаждения газа при постоянном объеме называется изохорным. Все передаваемое газу тепло идет на нагрев газа, при этом его давление возрастает. Этот процесс и соответствующий ему график изображен на Рис. 5а.

Когда давление под поршнем возрастет достаточно для того, чтобы сила давления уравновесила вес поршня и груза, поршень начнет подниматься (Рис. 5б). Поскольку вес поршня и груза не изменяются, сила давления, а значит, и само давление остаются постоянными. При этом температура и объем газа увеличиваются. Процесс нагрева или охлаждения газа при постоянном давлении называется изобарным. Его график изображен на Рис. 5б. После достижения верхней точки наш двигатель совершит полезную работу. Поднятый груз можно отсоединить. Но, если мы хотим продолжить работу по циклу, необходимо вернуть поршень в нижнее положение.

Для этого газ необходимо охладить, следовательно, нужно убрать нагреватель и привести в тепловой контакт с цилиндром некоторое холодное тело. Тогда сила давления газа будет больше веса поршня. Поэтому первоначально процесс охлаждения газа пойдет без изменения объема (Рис. 5в). Это тоже изохорный процесс, но с уменьшением давления.

После того, как давление газа упадет настолько, что сила давления будет уравновешивать вес поршня, дальнейшее охлаждение газа будет сопровождаться уменьшением его объема. То есть поршень начнет двигаться вниз (Рис. 5г). Так же, как и процесс 2-3 процесс 4-1 будет происходить при постоянном давлении, то есть будет изобарным. Заметим, что соответствующий процесс на диаграмме p-V изобразился в виде замкнутой направленной линии (в данном случае – прямоугольника). Такой термодинамический процесс называется термодинамическим циклом.

Таким образом, для мысленного конструирования теплового двигателя нам потребовался сосуд с газом, (газ называется рабочим телом), нагреватель и холодное тело. Оказывается, что эти принципиальные элементы можно найти в любом тепловом двигателе.

Термодинамические циклы, соответствующие тепловым двигателям могут иметь вид разнообразных замкнутых кривых. В любой конструкции принцип работы двигателя остается неизменным.

  • Любой двигатель является устройством способным совершать упорядоченную макроскопическую работу на основе преобразования энергии из одного вида в другой.
  • Принцип работы любого циклического теплового двигателя заключается в том, что взятое от горячего тела тепло при выполнении циклического процесса рабочим телом идет на совершение механической работы. При этом часть этого тепла отдается некоторому холодному телу.
  • Тепловой двигатель (паровая машина) сыграл и продолжает играть чрезвычайно важную роль в развитии нашей цивилизации. И, несмотря на то, что с конца XIX столетия во многих случаях паровая машина была заменена электрическим двигателем, она сыграла особую роль в техническом прогрессе человечества, а сотни мастерских конструкций тепловых двигателей представляют собой образцы высокого взлета научно-технической, инженерной мысли и творчества человека во все времена.

Примеры и разбор решения заданий тренировочного модуля:

Задание 1. Вставьте пропущенные слова: «Под двигателем можно понимать ________ устройство, способное совершать ______ работу».

Варианты ответов: любое, реактивное; физическую; паровое; механическую

Правильный вариант: Под двигателем можно понимать любое устройство, способное совершать механическую работу.

Задание 2. Добавьте подпись названий для каждой модели реактивного двигателя.

Паровая машина Уатта

Правильный вариант:

Паровая машина Уатта

Водяная мельница

Эолипил Герона

Тепловой двигатель

Превращение внутренней энергии в работу

Согласно законам молекулярно-кинетической теории, тепло представляет собой энергию движения молекул вещества. Нулевая энергия соответствует абсолютному нулю температуры, чем температура выше, тем средняя энергия молекулы выше.

Запасы внутренней тепловой энергии на Земле огромны. Однако, Второе Начало термодинамики налагает жесткое ограничение на их использование. Действительно, если некоторая часть внутренней энергии будет превращена в энергию движения макроскопических тел, то внутренняя энергия уменьшится, уменьшив температуру молекул. Согласно же Второму Началу термодинамики, тепловая энергия молекул без дополнительных усилий может переходить только от более нагретого тела к менее нагретому. Для передачи энергии от менее нагретого тела к более нагретому, требуется совершить дополнительную работу.

Рис. 1. Второе начало термодинамики.

Таким образом, даже располагая большой внутренней энергией в окружающей среде, превратить ее в работу оказывается далеко не всегда возможно. Ведь при этом должно произойти охлаждение окружающей среды без наличия более холодных тел. А этого не может быть.

Читать еще:  Двигатель 4g15 акпп характеристики

То есть, превращение внутренней энергии вещества в работу возможно только при наличии «потока тепла», который может быть организован только при наличии двух тел с разной температурой. Такие тела в теории тепловых двигателей называются Нагревателем и Холодильником. Тепло от Нагревателя переходит к Холодильнику, при этом совершается полезная работа.

Рабочее тело теплового двигателя

Для совершения полезной работы необходимо создать движение под действием силы. Такое движение в тепловом двигателе совершается при расширении порции газа, называемого рабочим телом. Во всех тепловых двигателях рабочее тело получает тепло от Нагревателя, затем расширяется, совершая работу. При расширении оно охлаждается и отдает тепло Холодильнику.

Для всех применяемых тепловых двигателей Холодильником является окружающая среда. Нагреватели же зависят от типа двигателя. Для парового двигателя Нагревателем является топка парового котла. Для двигателя внутреннего сгорания (ДВС) Нагревателем является само рабочее тело – горючая газовая смесь.

Рис. 2. Схема теплового двигателя.

КПД теплового двигателя

В любом тепловом двигателе рабочее тело разогревается до некоторой высокой температуры $T_1$, а затем совершает работу, охлаждаясь до температуры $T_2

Простейшим примером теплового двигателя является ночной светильник «Лампа с пузырьками» (лавовая лампа). Несмотря на простоту, в этом светильнике есть все части, необходимые для теплового двигателя – Нагреватель (лампа накаливания или спираль), Холодильник (окружающий воздух), рабочее тело (пузырьки парафина). Движение пузырьков в светильнике продолжается до тех пор, пока существует разница температур Нагревателя и Холодильника.

Рис. 3. Светильник Лавовая лампа.

Что мы узнали?

В тепловом двигателе рабочее тело получает тепло от Нагревателя, расширяется, совершая работу и отдавая тепло Холодильнику. Поскольку на совершение полезной работы идет только часть энергии, полученной от Нагревателя, КПД теплового двигателя всегда меньше единицы.

Реферат: Тепловые двигатели

Доклад по физике

Подготовил ученик Проверила

Тепловой двигатель .

Ещё в давние времена люди старались использовать энер­гию топлива для превращения её в механическую. В XVIIв. был изобретён тепловой двигатель, который в последующие годы был усовершенствован, но идея осталась той же. Во всех двига­телях энергия топлива переходит сначала в энергию газа или пара, а газ (пар) расширяясь, совершает работу и охлаждается, а часть его внутренней энергии при этом превращается в механическую энергию. К сожалению, коэффициент полезного действия не высок.

К тепловым двигателям относятся: паровая машина, двигатель внутреннего сгорания, паровая и газовая турбины, реактивный двигатель. Их топливом является твёрдое и жидкое топливо, солнечная и атомная энергии.

Двигатель внутреннего сгорания.

В наше время чаще встречается автомобильный транспорт, который работает на тепловом двигателе внутреннего сгорания, работающем на жидком топливе. Рабочий цикл в двигателе происходит за четыре хода поршня, за четыре такта. Поэтому такой двигатель и называется четырёхтактным. Цикл двигателя состоит из следующих четырёх тактов: 1.впуск, 2.сжатие, 3.рабочий ход, 4.выпуск.

Для усиления мощности и лучшей системы обеспеченности равномерности вращения вала, используют 4,8 и более цилиндровых двигателей. Особенно мощные двигатели на теплоходах, тепловозах и др.

Паровая турбина.

В современной технике так же широко применяют и другой тип теплового двигателя. В нём пар или нагретый до высокой температуры газ вращает вал двигателя без помощи поршня, шатуна и коленчатого вала. Такие двигатели называют турбинами.

В современных турбинах, для увеличения мощности применяют не один, а несколько дисков, насажанных на общий вал. Турбины применяют на тепловых электростанциях и на кораблях.

Наибольшее значение имеет использование тепловых двигателей на тепловых электростанциях, где они приводят в движение роторы генераторов электрического тока.

Тепловые двигатели — паровые турбины — устанавливают также на всех АЭС для получения пара высокой температуры. На всех основных видах современного транспорта преимущественно используются тепловые двигатели: на автомобильном — поршневые двигатели внутреннего сгорания; на водном — ДВС и паровые турбины; на ж/д. тепловозы с дизельными установками; в авиации — поршневые, турбореактивные и реактивные двигатели. Без тепловых двигателей современная цивилизация немыслима. Мы не имели бы в изобилии дешевую электроэнергию и были бы лишены всех двигателей скоростного транспорта.

Отрицательное влияние тепловых машин на окружающую среду связано с действием различных факторов.

Во-первых, при сжигании топлива используется кислород из атмосферы, вследствие чего содержание кислорода в воздухе постепенно уменьшается.

Во-вторых, сжигание топлива сопровождается выделением в атмосферу углекислого газа.

В третьих, при сжигании угля и нефти атмосфера загрязняется азотными и серными соединениями, вредными для здоровья человека. А автомобильные двигатели ежегодно выбрасывают в атмосферу две-три тонны — свинца.

Один из путей уменьшения загрязнения окружающей среды — использованием в автомобилях вместо карбюраторных бензиновых двигателей дизелей, в топливо которых не добавляют соединения свинца. Перспективными являются разработки автомобилей, в которых вместо бензиновых двигателей применяются электродвигатели или двигатели, использующие в качестве топлива водород.

Читать еще:  Чем вредит супротек двигателю

Выбросы вредных веществ в атмосферу — не единственная сторона воздействия энергетики на природу. Согласно законам термодинамики производство электрической и механической энергии в принципе не может быть осуществлено без отвода в окружающую среду значительных количеств теплоты. Это не может не приводить к постепенному повышению средней температуры на земле. Одно из направлений, связанное с охраной окружающей среды, это увеличение эффективности использования энергии, борьба за её экономию.

Во владимирской области в 2001 году суммарные выбросы загрязняющих веществ в атмосферу, определённые на основании информации природопользователей об охране атмосферного воздуха по стационарным и передвижным источникам составили 115.295 тыс. т. в год, в том числе твёрдые 7.1% (8.192 тыс. т.) газообразные и жидкие 92.9%(107.103 тыс. т.)

Валовые выбросы от автотранспорта за 1996 – 2001 года представлена в таблице 1.

Загрязняющие вещества. 1996 1997 1998 1999 2000 2001
Всего тыс./год 47.07 500.08 500.777 54.038 59.21 61.977
В том числе
Оксид углерода 35.63 37.56 38.063 40.744 44.791 46.954
Оксиды азота 5.05 5.644 5.687 6.002 6.5 6.72
Углевода 5.85 6.26 6.451 6.625 7.196 7.567
Сажа 0.051 0.06 0.051 0.062 0.067 0.065
Диоксида серы 0.46 0.53 0.498 0.528 0.63 0.644
Соединения свинца 0.029 0.026 0.027 0.023 0.026 0.027

Рост 20001 году числа автомобилей, находящихся в личной собственности населения, составляет 7.5% (13715 единиц) по отношению к 2001 году, причём количество грузовых автомобилей увеличилось на 17.1%, автобусов на 8.5%специальных на 25.5% и легковых автомобилей на 6.8% что послужило причиной увеличения выбросов от передвижных источников.

В 2001 году произошло увеличение выбросов свинца от передвижных источников примерно на 0.002 тыс. т. (7.4%) что объясняется общим увеличением количества единиц автотранспорта. Причём при расчёте выбросов принято так – же как и в предыдущем году, что применение этиленового бензина составило 20%.

Что такое тепловой двигатель кратко

КПД существующих типов тепловых двигателей достигло предела, при котором дальнейшая разработка их, с целью увеличения КПД, становится экономически не оправданной. Затраты на разработку, высокая стоимость применяемых материалов и технологий не оправдывает те доли процента, на которые увеличивается КПД двигателей. Идеальный тепловой двигатель считается тот, в котором кинетическая энергия продуктов сгорания с температурой достигающей 2700 °К непосредственно преобразуется в электрическую энергию. Разработка данного двигателя, называемого МГД–генератор, велась в двадцатом веке, но закончилась безрезультатно.

Для резкого повышения КПД теплового двигателя применим в его схеме суперэжектор (способ безударного сложения потоков газа). Применяя суперэжектор в схеме газотурбинной установки, можно повысить её КПД до максимально возможного уровня, сопоставимого с КПД теоретического МГД–генератора. В известном термическом цикле газотурбинной установки температура продуктов сгорания ограничена материалом ротора турбины и в современных турбинах может достигать 1000 °С. Дальнейшее повышение температуры может привести к снижению моторесурсов турбины или разрушению её ротора. Защитить вращающийся ротор турбины от высокой температуры сложно и не эффективно. Эффективно можно защитить только неподвижные детали устройств, например такие как камеры сгорания и газоходы. Повысить КПД двигателя можно только убрав из цикла газотурбинной установки слабое звено — турбину и заменить её суперэжектором, который не имеет движущихся деталей и может быть эффективно защищен от высокой температуры общеизвестными методами. Рассмотрим новый цикла, назовем его газо- суперэжекторным. Компрессор нагнетает сжатый воздух в камеру сгорания с давлением превосходящим давление на обычных газотурбинных установках. В камеру сгорания подается топливо, при сгорании которого температура продуктов сгорания может достигать 2700 °К, как и в МГД – генераторе. Высокоэнергетические продукты горения направляются в суперэжектор, где их работа преобразуется в работу сжатого атмосферного воздуха. Получен результат — работа запредельных параметров термического цикла аккумулирована в потенциальна работа сжатого воздуха, которая в дальнейшем может быть преобразована в механическую работу в той же турбине.

Сравним с МГД-генератором.

Предположим, что исходные параметры продуктов сгорания равны на выходе с камеры сгорания и достигают 2700 °К , как для МГД — генераторе, так и для предложенного способа, поэтому и срабатываемые теплоперепады их будут равны. Если предположить, что потери энергии при преобразовании равны, то получим и равное количество полезной энергии – электрической энергии и энергии сжатого воздуха.

Получен новый тепловой двигатель, КПД которого будет превосходить все существующие типы тепловых двигателей и сопоставим с прямым преобразованием кинетической энергии в электрическую энергию. При необходимости можно полученный сжатый воздух с температурой, позволяющей применять обычные стали, направить в турбогенератор, где его энергия будет преобразована в электроэнергию.

Ссылка на основную публикацию
Adblock
detector