Что такое турбо дизельный двигатель

» ТУРБОНАДДУВ: ВТОРОЕ ДЫХАНИЕ ДЛЯ ВАШЕГО ДВИГАТЕЛЯ

  • Русский
    • American
    • Čeština
    • Deutsch
    • UK
    • Español
    • Français
    • Italiano
    • 简体中文
    • Global Edition

ТУРБОНАДДУВ: ВТОРОЕ ДЫХАНИЕ ДЛЯ ВАШЕГО ДВИГАТЕЛЯ

Приводные системы находятся в центре внимания конструкторов автомобилей, стремящихся улучшить рабочие характеристики дизельных двигателей в ответ на ужесточение требований экологических стандартов стран Европейского Союза и США. SKF принимает активное участие в разработке специальных подшипников качения для сложных систем турбонаддува.

Одним из потенциальныхкандидатов на использование в дизельных двигателях для грузовых автомобилей является привод для системы Turbocompound. Для данного сегмента рынка SKF разработала подшипниковую систему, отвечающую требованиям, предъявляемым к конструкции приводов турбонаддува изельных двигателей.

Системы турбонаддува особенно важны для дизельных двигателей, так как они обеспечивают значительное увеличение мощности двигателя при незначительном увеличении его массы. Данная технология весьма выгодна для владельцев легковых и грузовых машин с точки зрения топливной экономичности, общих характеристик управляемости и экологической безопасности.

Турбокомпрессор вращается за счет энергии потока отработавших газов и повышает мощность двигателя внутреннего сгорания путем увеличения содержания кислорода в потоке воздуха, поступающем в двигатель. Горячие отработавшие газы из выпускного коллектора поступают непосредственно в турбину турбокомпрессора и приводят в движение рабочее колесо. Рабочие колеса турбины и турбокомпрессора соединены общим валом. При вращении рабочего колеса компрессора воздух засасывается, затем сжимается и подается в камеры сгорания двигателя (рис. 1).

Самой распространенной «болезнью» турбокомпрессоров является так называемый «эффект запаздывания турбонаддува», возникающий вследствие инерции ротора турбокомпрессора, которому требуется время прежде, чем он начнет создавать достаточное давление наддува. Поэтому на низких оборотах двигателя увеличение мощности двигателя не происходит.

Для преодоления этой проблемы дизельные двигатели оснащаются турбокомпрессорами с уменьшенным диаметром рабочих колес компрессора и турбины, которые способны раскручиваться при довольно низких оборотах двигателя (примерно 1700 об/мин для двигателей легковых автомобилей и 1400 об/мин для двигателей грузовых автомобилей).

Однако недостатком таких турбокомпрессоров является то, что создаваемый ими наддув недостаточен для развития двигателем полной мощности. Эта проблема решена за счет использования систем многоступенчатого турбонаддува или турбокомпрессоров с изменяемой геометрией сопла турбины (VNT).

Принцип многоступенчатого турбонаддувапредполагает использование нескольких компрессоров. Система двухступенчатого турбонаддува состоит из двух турбокомпрессоров с последовательным соединением и обеспечивает высокое давление наддува без необходимости раскручивания обоих турбокомпрессоров до высоких оборотов. Использование небольшого турбокомпрессора с малой инерцией для первой ступени и большого турбокомпрессора для второй ступени обеспечивает более резкое увеличение мощности двигателя на малых оборотах, а также высокое давление наддува в широком диапазоне режимов работы двигателя.

Технология VNT используется в коммерческих дизельных двигателях. Принцип работы компрессора VNT состоит в изменении направления потока отработанных газов на входе в турбину турбокомпрессора с помощью кольца установки угла лопаток направляющего аппарата или сопла (рис. 2). Когда лопатки направляющего аппарата закрыты, поток направлен по касательной к лопаткам рабочего колеса турбины. При этом турбина получает максимальную энергию потока, и турбокомпрессор вращается с максимальной частотой. И наоборот, когда лопатки открыты, поступающий в турбину поток имеет меньшее отклонение от радиальной оси, за счет чего уменьшается частота вращения турбокомпрессора.

Таким образом, возможность изменения угла установки лопаток направляющего аппарата устраняет необходимость использования предохранительного клапана для понижения давления наддува при высоких оборотах двигателя. Это обеспечивает значительную экономию топлива при высоких оборотах двигателя. Кроме того, компрессор VNT мгновенно реагирует на изменение режима работы двигателя, обеспечивая максимальный крутящий момент и максимальную топливную экономичность.

Растущий интерес к приводу для системы Turbocompound объясняется необходимостью дальнейшего уменьшения содержания вредных веществ в выхлопных газах автомобилей в соответствии с директивой 1999/96/EG Европейской комиссии (таблица 1).

Для дизельных двигателей легковых или грузовых автомобилей принцип турбокомпаунирования означает, что ниже по потоку от турбокомпрессора установлена силовая турбина, утилизирующая часть тепловой энергии, которая обычно теряется с выхлопными газами. Механическая энергия, генерируемая силовой турбиной, передается коленчатому валу двигателя через сложный передаточный механизм. Турбина с приводом от выхлопных газов отличается от обычного турбокомпрессора отсутствием ступени компрессора (рис. 3). Установка силовой турбины и силового привода позволяет повысить КПД двигателя до 42-46%.

Ключевым элементом системы Turbocompound является турбина (рис. 4), частота вращения которой достигает 70000 об/мин. Вибрация кручения, возникающая при работе двигателя, умноженная на общее передаточное отношение 30:1, была бы недопустимо велика и привела бы к разрушению турбины. Чтобы уменьшить вибрацию кручения, промежуточный вал системы Тurbocompound снабжен гидромуфтой (типа Föttinger)(рис. 4).

SKF разработала подшипниковый узел, который состоит из фланцевого и уплотненного радиально-упорного шарикоподшипников (рис. 5) и монтируется на вал ротора с помощью зажимного устройства, закрепляемого стопорной гайкой. Профильнаружного кольца выполнен так, что подшипник является опорой ведущей шестерни турбомуфты с одной стороны вала и, одновременно, фиксирует насосное колесо турбомуфты с другой стороны вала. Насосное колесо турбомуфты закреплено неподвижно.

Подшипник должен работать в диапазоне температур от –40 °C до +125 °C. Подшипниковый узел имеет радиальное и осевое нагружение, а также подвержен воздействию опрокидывающих нагрузок из-за геликоидальной шестерни (рис. 6). Гидравлические нагрузки действуют только в осевом направлении. По результатам расчета цикла нагрузки за промежуток рабочего времени ожидается, что холостой ход составит 5% времени, тормозная нагрузка – 10% времени, а два варианта номинальной нагрузки — все оставшееся время (таблица 2). Расчеты показали, что наработка до усталостного разрушения должна составить более 56 000 (при ресурсе двигателя15 000 часов).

Для анализа влияния опрокидывающих сил и оптимизации конструкции подшипников инженеры SKF использовали компьютерную программу SKF Вearing Вeacon. В таблице 2 представлены результаты расчета наработки подшипника до усталостного разрушения.

Однако важно учитывать и другие факторы. Данный подшипник должен иметь повышенную точность вращения (класс допуска P5 для всех компонентов) и продолжительный срок службы смазки (> 15 000 часов). Проведенные ресурсные испытания подшипника показали практически полное отсутствие видимых признаков износа дорожек или тел качения. В целом, данная подшипниковая система способна увеличить КПД цикла Карно с 42% до 46 %.

Мероприятия по оптимизацииконструкции данного подшипникового узла включают:

Дальнейшим совершенствованием конструкции турбомуфты является создание фланцевого подшипникового узла со встроенной шестерней (рис. 7), который обеспечивает уменьшение вращающихся масс, сокращение числа элементов и, следовательно, упрощение логистики, а также уменьшение габаритов, упрощение цепочки «производство-допуски» и улучшение балансировки ротора.

Читать еще:  271 двигатель сколько лошадей

Еще одной интересной областью применения является сам турбокомпрессор. Главная инновация состоит в том, что подшипники скольжения в турбокомпрессоре были заменены шарикоподшипниками (рис. 8). Кассетная конструкция подшипникового узла позволила уменьшить момент трения, повысить частоту и точность вращения турбокомпрессора.

Специальные однорядные гибридные радиально-упорные шарикоподшипники SKF с сепараторами из специального легкого сплава обладают высокими рабочими характеристиками даже в условиях высоких частот вращения и высоких температур. В данном случае, для условий сравнительно высоких частот вращения и величины n×dm до 2 000 000 мм/мин, был выбран модифицированный подшипниковый узел SKF с изготовленными под заказ кольцами с каналами подачи масла.

Расчетная наработка до усталостного разрушения для всех вариантов нагрузки при условии достаточного смазывания и отсутствия загрязнения смазки превышает минимальные требования к расчетному ресурсу 15 000 рабочих часов. Это означает, что уровень чистоты смазки (коэффициент загрязнения ηc) должен быть 0,3 или выше.

Особое внимание должно быть также уделено системе впрыска масла, так как для смазывания контактирующих поверхностей тел качения и сепаратора струя масла должна преодолеть зону турбулентности (завихрений), которая образуется вокруг каждого ряда подшипников. Данная функция должна выполняться при любых нагрузках на двигатель, включая случаи так называемого «обратного просачивания», которые возникают при экстренном торможении автомобиля.

При вращении подшипников с высокой частотой центробежные силы, действующие на шарики, оказывают сильное влияние на силы внутри подшипника (рис. 9). Это влияние особенно важно учитывать в подшипниках с большим углом контакта, поскольку осевые составляющие центробежных сил будут тем больше, чем больше угол контакта, и при этом все они действуют в одном направлении. При парной установке радиально-упорных шарикоподшипников силы, действующие внутри этих двух подшипников, воздействуют друг на друга.

Результаты испытаний данной конструкции SKF позволяют предположить, что подшипники скольжения в турбокомпрессорах могут быть с успехом заменены подшипниками качения. Использование систем многоступенчатого турбонаддува и шарикоподшипников позволило увеличить КПД цикла Карно до 49%.

Скорее всего, уже в ближайшие годы КПД цикла Карно достигнет 50%. Есть основания полагать, что вскоре многие производители дизельных грузовых автомобилей объявят о создании еще более сложных систем турбонаддува с использованием технологии селективного катализа (SCR).

avtoexperts.ru

Прогресс уже давно не стоит на месте: прежние тихоходные, но шумные дизельные моторы стали работать тише, а мощи, и, соответственно, динамики у них прибавилось. Причем, заметный прорыв в этом направлении случился тогда, когда на дизельные силовые установки начали устанавливать турбонаддув. Сегодня множество автомобилей, оснащенных дизельными двигателями, имеют в конструкции турбину. Однако не все владельцы машин с такими агрегатами знают, как правильно эксплуатировать турбодизельный двигатель так, чтобы он прослужил как можно дольше. Мы подготовили восемь простых советов, которые помогут нынешним или потенциальным владельцам машин с подобными агрегатами не допускать просчетов в эксплуатации турбины.

Совет №1. Держите уровень масла под контролем.

Всем двигателям вообще, а рассматриваемому нами турбированному дизельному мотору в частности, не рекомендуется масляное голодание. Ведь масло в таком агрегате играет особую роль, смазывая подшипники скольжения и качения турбокомпрессора. Когда уровень моторного масла падает, подшипники не получают нужного количества смазки, что приводит к их скорому износу и выходу из строя.

Поэтому рекомендуем как можно чаще проверять уровень масла в картере двигателя и при обнаружении дефицита смазки, немедленно доливать нужно количество. Кроме того, необходимо выяснить причину, по которой в системе падает уровень масла (это может быть загрязнение либо не герметичность масляной системы, выход из строя масляного насоса и прочее) и незамедлительно ее устранить.

Совет №2. Используйте только качественное моторное масло.

Раз уж приобрели автомобиль с турбодизельным двигателем, не скупитесь на заправку его качественным и рекомендованным производителем моторным маслом. Тут как в известной поговорке: сэкономите на рыбке, получите плохую юшку. Выше мы уже указали, какую роль играет моторное масло для турбины, поэтому заливать в двигатель абы какое масло – значит, заранее обрекать турбокомпрессор силовой установки своей машины на медленную смерть. Важно помнить: масла, рекомендованные для турбированных агрегатов, отличны по составу от обычных масел ввиду того, что при работе в турбине они подвержены воздействию куда больших температур и нагрузок, чем в атмосферном моторе. Еще один немаловажный аспект: крайне не рекомендуется смешивать разные по коэффициенту вязкости масла, например, доливать в двигатель масло 5w-30, если там уже было залито 10w-40.

Поэтому советуем: заливайте масло одного коэффициента вязкости и желательно одной и той же марки.

Совет №3. Следите за качеством дизельного топлива.

Турбина дизельного двигателя чувствительна не только к качеству моторного масла, но и к качеству топлива, которым вы «кормите» свой автомобиль. При использовании горючего низкого качества вероятно засорение топливной системы двигателя, что, в свою очередь, сказывается на потере мощности двигателя, из-за чего турбина, чтобы восполнить этот пробел в оборотах, вынуждена работать на пределе мощности. А это может привести к сокращению срока ее эксплуатации.

Поэтому рекомендуем по возможности заправляться только на проверенных АЗС. Если не уверены в качестве горючего, его лучше дополнительно отфильтровать.

Совет №4. Избегайте перегазовок в момент запуска турбированного двигателя.

Следовать этому совету нужно, прежде всего, тем владельцам машин, у которых не установлена система запуска/остановки двигателя Start&Stop. Дело в том, что при запуске двигателя масляные каналы еще не заполнены моторным маслом, при нажатии на педаль акселератора вы даете нагрузку на турбину, которая вращается практически без масла, вследствие чего быстро изнашиваются ее узлы (бронзо-графитовые подшипники скольжения и качения), что в конечном итоге приводит к выходу из строя турбокомпрессора.

Поэтому настоятельно рекомендуем подавать газ плавно, и некоторое время (в течение 5 минут максимум) после запуска дать двигателю поработать на холостых оборотах, а затем начать движение на низких оборотах, постепенно увеличивая нагрузку. Оговоримся, что это важно для двигателей, не оснащенных системой Start&Stop.

Совет №5. Держите при езде средние обороты.

Турбина двигателя – это агрегат, постоянно работающий при высоких нагрузках, поэтому ездить на автомобиле с таким агрегатом длительное время на низких оборотах нельзя. Вообще же рекомендуется несколько раз в неделю давать турбине мотора поработать на предельно высоких оборотах: таким образом, вы активируете процесс очистки системы наддува турбокомпрессора, что в дальнейшем поможет продлить срок эксплуатации агрегата. Важно избегать «перекручивания» турбины, то есть длительной езды на высоких оборотах. При этом ротор турбокомпрессора испытывает повышенные нагрузки, что приводит к дисбалансу в его работе и, как следствие, выходу из строя его узлов.

Читать еще:  Шелест на холодном двигателе приоры

Поэтому при езде на автомобиле с подобным типом мотора лучше всего придерживаться средних оборотов.

Совет №6. Не глушите двигатель сразу после остановки автомобиля.

Этот совет особенно важен для автолюбителей, чьи турбодизельные моторы не оснащены системой Start&Stop. Дело в том, что при незамедлительной остановке двигателя крыльчатки турбины еще продолжают вращаться, но масла, которые смазывает их, уже недостаточно, что приводит к перегреву узлов турбокомпрессора (ротора и подшипников). А это, в свою очередь, ведет к повышенному износу указанных частей турбины.

Поэтому после остановки дайте поработать двигателю на холостых оборотах короткое (не более 5 минут) время. За это время турбина охладится и ее можно деактивировать.

Совет №7. Избегайте длительной работы мотора на холостых оборотах.

Для турбированного двигателя работа на холостых оборотах в течение 20-30 минут – смерти подобна. Дело в том, что при таком режиме работы двигателя может произойти закоксовка (проще говоря, засорение) турбины, а именно маслоотводящей трубки, привода изменения геометрии турбины. Также при длительной работе на холостых оборотах возможен подсос моторного масла в цилиндры двигателя, что может привести к выходу из строя компонентов цилиндропоршневой группы.

Если вы все же держите мотор длительное время на холостом ходу, то советуем вам держать частоту вращения коленвала на 1200-1600 об./мин.

Совет №8. Вовремя проводите техническое обслуживание автомобиля.

Придерживайтесь рекомендованных производителем сроков замены моторного масла и фильтров, как масляного, так и воздушного. Помните, что для турбированного двигателя сроки прохождения ТО, как правило, короче, чем для атмосферного, так как турбина работает при более высоких нагрузках, чем обычный дизельный агрегат, и, следовательно, чаще нуждается в свежем масле и фильтрах.

Следование этим простым советам избавит владельцев автомобилей от дорогостоящего ремонта турбины.

ОСНОВНЫЕ ПРАВИЛА ЭКСПЛУАТАЦИИ ВСЕХ ТУРБОДИЗЕЛЕЙ !

Практически за 2 неполных года эксплуатации своего автомобиля VW Golf 2 1986 года выпуска (1.6TD/JR—75ps) я в основном подтвердил своё хорошее мнение о турбодизеле, как таковом.
Однако, в процессе эксплуатации Гольфа с данным турбодизелем было «набито немало шишек». Оказывается есть основные правила, ЧАСТЬ которых я не знал! Уважаемые читатели данной темы! Чтобы в будущем и в дальнейшем времени ваш турбодизельный товарищь не «выкидывал» вам «неприятных сюрпризов», очень советую придерживаться данного перечня ПРАВИЛ ! :

—Масло! Всегда контролируйте уровень масла в вашем двигателе!

—Солярка! Очень хорошо отфильтровывайте нашу российскую «солярку» (язык не поворачивается назвать эту адскую смесь «соляркой»)

—Запуская двигатель с турбонаддувом, ни в коем случае не подгазовывайте сильно!
Этим самым вы убьёте бронзо-графитовые подшипники скольжения-(втулки) в вашей турбине с поразительной быстротой!

—После окончания каждой поездки, дайте поработать двигателю на холостом ходу от 2 до 5 минут (в зависимости от режима езды, которая была перед глушением двигателя)

—Доливая масло в двигатель (по какой-либо причине), ни в коем случае НЕ СМЕШИВАЙТЕ ВЯЗКОСТЬ ! ! ! Даже если доливаемое масло содержит те же допуск и марку, что и на упаковке масла уже, залитого в двигатель.Всё это приводит к преждевременному выходу турбокомпрессора из строя! Пример : «Zic 5w-30» и «Zic 10w-40», оба виды данного моторного масла имеют, интересующий меня допуск : «VW 502 00 / 505 00», что в свою очередь означает возможность залива как «Zic 5w-30», так и «Zic 10w-40».Однако СМЕШИВАТЬ (доливать) одно масло в другое НЕЛЬЗЯ! И не верьте никаким убеждениям «знакомых» и многих других «горе- специалистов». Данная мера сохранит «вес» вашего кошелька!

—(это будет звучать немного необычно, тем не менее):Ни в коем случае не ездийте на турбодизеле «тихонько», «не торопясь» долгое время.Турбодизель этого просто не переносит!
Этот двигатель сделан с рассчётом на постоянные «нагрузки» (неважно что это: быстрое ускорение, или езда с загруженным весом авто) В любом случае, надо давать двигателю (раза 2-3 в неделю, при езде в городских условиях) «Прочихаться» (Но есть и другой синоним=)

—Никогда не давайте работать двигателю на ХОЛОСТЫХ ОБОРОТАХ БОЛЕЕ 25-30 минут.Это негативно сказывается на турбокомпрессоре! Есть разные «безобидные» по большому счёту, исходы несоблюдения этого правила— закоксовка маслоотводящей («сливной трубки») турбины. Как итог: течь масла прямо из выхлопной трубы=) (сам столкнулся с этим)

Ну и последнее, что хочется сказать всем владельцам турбодизельных автомобилей:
Если однажды вы, меняя воздушный фильтр вашего автомобиля, вдруг обнаружили в патрубке воздушного фильтра масло, не пугайтесь, это нормальное явление.Такова основа конструкции турбины, что масло, по всем соображениям, там и ДОЛЖНО БЫТЬ! Если кто-то вдруг начнёт вам рассказывать легенды про «умирающую турбину» —просто улыбнитесь этому «эксперту» и скажите : «Ладно, мне пора!;-)»

Дизельный двигатель с турбонаддувом

История создания дизельных двигателей с турбонаддувом

Турбокомпрессоры применялись для повышения мощности двигателей внутреннего сгорания еще на этапе развития этого вида технологий. Запатентованный американцем Альфредом Бюхи в 1911 году турбокомпрессор на заре своего развития сыграл значительную роль в военной авиации – турбированные бензиновые двигатели ставились на истребители и бомбардировщики для повышения их высотности. Свое применение в автомобильном дизелестироении технология нашла относительно недавно. Первым серийным автомобилем с турбированным дизелем был появившийся в 1978 г. Mercedes-Benz 300 SD, а в 1981 г. за ним последовал VW Turbodiesel.

Устройство и принцип работы дизельного двигателя с турбонаддувом

Принцип работы турбированного дизельного двигателя основан на использовании энергии выхлопных газов. Покинув цилиндр, отработавшие газы попадают на крыльчатку турбины, вращая ее и закрепленную с ней на одном валу турбину компрессора, встроенного в систему подачи воздуха в цилиндры.

Таким образом, в отличие от атмосферных дизелей, в турбокомпрессорных агрегатах воздух в цилиндры подается принудительно под более высоким давлением. В итоге объем воздуха, попадающего в цилиндр за один цикл, возрастает. В сочетании с увеличением объема сгорающего топлива (пропорции топливно-воздушной смеси остаются неизменными) это дает прирост мощности до 25%.

Читать еще:  Ваз 2110 работает не ровно двигатель дергается в чем причина

Для еще большего повышения объема поступающего в цилиндры воздуха дополнительно применяют интеркулер – специальное устройство, охлаждающее атмосферный воздух перед нагнетанием в двигатель. Из школьного курса физики известно, что холодный воздух занимает меньше места, чем теплый. Таким образом, при охлаждении можно «затолкать» в цилиндр больше воздуха за цикл.

В результате у турбодизеля меньше удельный эффективный расход топлива (в граммах на киловатт-час) и выше объемная мощность (количество лошадиных сил на литр объема двигателя). Все это обеспечивает возможность существенно подрастить суммарную мощность мотора без значительного увеличения его габаритов и числа оборотов.

Плюсы и минусы дизельного двигателя с турбонаддувом

Обратная сторона повышения мощности мотора при сохранении общих характеристик, то есть форсирования, – более интенсивный износ узлов, как следствие, снижение ресурса силовой установки. Кроме того, турбины требуют применения специальных сортов моторных масел и строгого соблюдения рекомендуемых изготовителем сроков обслуживания. Еще более требователен к вниманию владельца воздушный фильтр. Также в работе двигателей с турбинами низкого давления может присутствовать эффект «турбоямы», выражающийся в заметном «проседании» на низких и средних оборотах двигателя.

Турбированные моторы менее экономичны, чем атмосферные дизели, потребляя на 20 – 50% больше топлива при том же объеме. Еще один явный недостаток системы турбонаддува – она очень чувствительна к износу поршневой группы. Возрастание давления картерных газов ощутимо снижает ресурс турбины. При продолжительной работе в таких условиях наступает «масляное голодание» и поломка турбокомпрессора. Причем повреждение этого агрегата вполне может привести к выходу из строя всего двигателя, а турбированные дизели еще менее ремонтопригодны, чем их атмосферные братья.

Да и вообще, наличие технически сложного турбокомпрессора, нуждающегося в дополнительных устройствах стабилизации давления, аварийного его сброса и так далее делает силовую установку автомобиля более замысловатой, увеличивая число деталей, а значит, снижая общую надежность. К тому же, ресурс самого турбокомпрессора значительно меньше, чем аналогичный показатель двигателя в целом.

Современные технологии усовершенствования дизельных двигателей

Значительную популярность сегодня приобрела система повышения эффективности и гибкости режимов дизеля под названием «Common-Rail». Если в традиционном дизельном двигателе каждая секция насоса высокого давления подает топливо в отдельный топливопровод, замкнутый на одну форсунку. Даже несмотря на изрядную толщину стенок топливопроводов при подаче в них жидкости под давлением в 1500-2000 атмосфер они незначительно, но «раздуваются». В результате попадающая в цилиндр порция топлива отличается от расчетной. «Довесок», сгорая, увеличивает расход горючего, повышает дымность и снижает полноту сгорания топливно-воздушной смеси.

Удачное инженерное решение этой проблемы разработали одновременно сразу несколько автопроизводителей. В новой системе топливный насос высокого давления подает горючее в общий трубопровод — топливную рампу, которая, помимо прочего, играет роль ресивера, то есть стабилизатора давления в контуре. В рампе все время присутствует постоянный объем топлива, находящегося не под пульсирующим давлением, а под постоянным.

К тому же, развитие интеллектуальных технологий позволило оснастить форсунки электронными системами открытия (в традиционных дизелях регулировка циклов впрыска происходит гидромеханическим способом при повышении давления в трубопроводе). Электронный блок, управляющий работой форсунок, учитывает информацию о положении педали акселератора, давлении в рампе, температурном режиме двигателя, его нагрузке и т.д. На основе этих данных рассчитывается размер порции топлива и момент его подачи.

Еще одно новшество, появившееся благодаря развитию автомобильной электроники – двухэтапная подача топлива в камеру сгорания. Сначала впрыскивается «разгонная» (около миллиграмма) порция. При сгорании она дополнительно к эффекту сжатия повышает температуру в камере, и основная доза, впрыскиваемая следом, сгорает более плавно, также плавно наращивая давление в цилиндре. В результате двигатель работает мягче и менее шумно, а расход топлива сокращается примерно на 20% при одновременном возрастании крутящего момента на малых оборотах на 25%. Что немаловажно — уменьшается содержание в выхлопе сажи.

Среди новых разработок, призванных улучшить экологические характеристики дизелей одновременно с оптимизацией их экономичности, наиболее перспективной считается система BlueTec, разработанная специалистами концерна Daimler AG. Основная ее составляющая – инновационная методика каталитической нейтрализации выхлопных газов.

Каталитические нейтрализаторы современных автомобилей работают за счет керамических или металлических «сот», покрытых слоем химически активных веществ — катализаторов. Катализаторы окисляют или восстанавливают токсичные соединения CO, CH и NOx до углекислого газа, простого азота и воды.

Однако особенности дизельного топлива, а также процессов образования и сгорания топливно-воздушной смеси в дизеле таковы, что выхлоп содержит не только вредные химические компоненты, но большое количество сажи. Причем если начать уменьшать долю сажи возрастает содержание NOx, и наоборот. Таким образом, для комплексной очистки дизельного выхлопа нужна многокомпонентная химико-механическая система, усложняющая конструкцию автомобиля и, как следствие, снижающая рентабельность производства.

Технология BlueTec построена на сочетании традиционных и новых решений. Сначала отработавшие газы проходят имеющийся на большинстве дизельных автомашин противосажевый фильтр и катализатор, «истребляющий» соединения углерода. Далее в выпускной тракт впрыскивается активный реагент AdВlue на основе мочевины (раствора аммиака в воде). Получившаяся смесь попадает в специальный нейтрализатор избирательного действия (SCR), в котором аммиак из AdBlue под влиянием катализа при температуре 250–300°С вступает в химическую реакцию с окислами азота, «разбирая» их на азот и воду. Здесь же «дожигаются» остальные вредные компоненты.

При очевидных плюсах BlueTec имеет не менее очевидные минусы. Хранение запаса компонента AdВlue требует отдельной емкости. Сама система осложняется за счет присутствия дополнительных узлов и магистралей. К тому же, система еще более прихотлива к качеству топлива и может работать только на солярке с минимальным содержанием серы.

Еще одна весьма актуальная для России проблема — раствор AdВlue замерзает при минус 11,5 градусов. Поэтому инженеры BlueTec сейчас активно работают над совершенствованием систем без использования мочевины. Сегодня проходят опробование и доработку комплексы из противосажевого фильтра, платинового каталитического нейтрализатора и двух SCR-катализаторов, «заряженных» исключительно на борьбу с оксидами азота. В настоящее время система позволяет обеспечить содержание NOx в выхлопе дизелей примерно на уровне Евро-5.

Ссылка на основную публикацию