Что такое уравновешенность двигателя

Мат.часть Уравновешенность двигателей

При работе двигателя возникает два вида сил: уравновешенные и неуравновешенные. К уравновешенным силам относятся силы давления газов и силы трения. К неуравновешенным силам относятся силы, которые передаются на опоры двигателя: вес двигателя, центробежные силы инерции вращающихся масс, силы инерции возвратно-поступательно движущихся масс двигателя, касательные силы инерции вращающихся масс, возникающие при неравномерной угловой скорости вращения коленчатого вала.

Неуравновешенные силы инерции приводят к появлению вибраций, ухудшению комфортабельности, поломке деталей топливо- и маслопроводов, кронштейнов, выходу из ст роя генераторов, стартеров и др. Повышение номинальной частоты вращения коленчатого вала поршневых двигателей, ужесточение требований к комфортабельности автомобилей, их надежности определяет необходимость создания двигателей с улучшенными показателями по уравновешенности и равномерности хода. При движении поршня в результате возникающих ускорений деталей кривошипно-шатунного механизма и вращении коленчатого вала создаются силы инерции от возвратно-поступательно движущихся частей (ВПДЧ) и вращающихся масс. Кроме тою, повышается уровень шума, ухудшается комфортабельность.

У одноцилиндровых двигателей при вращении коленчатого вала и движении поршня и шатуна возникают центробежные сшил и силы инерции первого и второго порядка. Силы инерции первого порядка (Рл) приблизительно пропорциональны массе ВПДЧ, радиусу кривошипа, квадрату угловой скорости коленчатого вала и косинусу его угла поворота. Массу ВПДЧ условно принимают равной массе поршня с кольцами и пальцем плюс масса верхней части шатуна (обычно примерно 30% от его полной массы). В зоне НМТ эта сила достигает максимума и направлена вниз (к коленчатому валу). В зоне ВМТ достигает наибольшей отрицательной величины и наоборот, как бы стремится оторвать поршень от коленчатого вала. При углах поворота 90 и 270 градусов эти силы равны нулю. Силы инерции второго порядка пропорциональны массе ВПДЧ, квадратам угловой скорости и радиуса кривошипа, косинусу удвоенного угла поворота коленчатого вала и обратно пропорциональны расстоянию между осями верхней и нижней головок шатуна (длине шатуна). Таким образом, по мере увеличения длины шатуна, силы инерции второго порядка стремятся к нулю. Но длина шатуна определяет высоту блока цилиндров. а следовательно, массу и габариты всего двигателя, поэтому длину шатуна стремятся делать минимальной, несмотря на увеличение сил инерции второго порядка. У большинства современных автомобильных двигателей отношение радиуса кривошипа к длине шатуна находится в пределах от 1: 3,0 до 1: 3,8.

Силы инерции вращающихся масс пропорциональны сумме масс неуравновешенных частей колена вала и нижней части шатуна (обычно примерно 70% его полной массы) умноженной на радиус кривошипа и квадрат угловой скорости вращения коленчатого вала. Центробежные силы практически при любых схемах коленчатых валов удастся уравновесить противовесами на коленчатом валу.

Для уравновешивания сил инерции первого порядка одноцилиндровых и двухцилиндровых четырехтактных двигателей с рядным расположением цилиндров и шатунными шейками на одной оси необходимо применение двух валов с противовесами, вращающимися в разные стороны с таким же числом оборотов, что и коленчатый вал.

Силы инерции второго порядка уравновешиваются двумя валами с противовесами, вращающимися в разные стороны в два раза быстрее коленчатого вала. Для двигателей дешевых транспортных средств это непозволительная роскошь. Поэтому на некоторых двигателях уравновешиваются только силы инерции первого порядка путем установки двух валов. Иногда для упрощения конструкции эти валы вращаются в одну сторону с той же скоростью (двигатели автомобиля ВАЗ-11113 «Ока»). Для уменьшения сил инерции первого порядка на одноцилиндровых двигателях увеличивается масса противовесов. За счет этого силы инерции первого порядка раскладываются в двух направлениях — в горизонтальной и вертикальной плоскостях, что существенно уменьшает уровень вибраций.

Значительно лучше уравновешены двухцилиндровые двигатели с оппозитным расположением цилиндров, у которых сил инерции нет, центробежные силы уравновешиваются противовесами и остаются только неуравновешенными моменты от сил инерции первого и второго порядка

В трех цилиндровых рядных двигателях с расположением кривошипов под углом 120 градусов силы инерции первого и второго порядков уравновешены. Неуравновешенными остаются только моменты от сил инерции первого и второго порядков.

У четырехцилиндровых рядных двигателей не уравновешены силы инерции второго порядка. Как правило, эти двигатели с рабочим объемом до 2,3 л не имеют уравновешивающих валов, т.к. абсолютные величины неуравновешенных сил инерции невелики. При большом рабочем объеме приходится устанавливать уравновешивающие валы.

Хорошей уравновешенности для четырехтактных четырехцилиндровых двигателей удастся добиться при оппозитном расположении цилиндров (автомобили Subaru, Porsche, Volkswagen с воздушным охлаждением). Правда, при этом остаются неуравновешенными моменты от сил инерции второго порядка.

У пяти цилиндровых рядных двигателей с расположением шатунных шеек коленчатого вала под углом 144 градуса положения коленчатого вала силы инерции первого и второго порядков уравновешены. Неуравновешенными остаются моменты от сил инерции первого и второго порядков.

Кроме уравновешенности важным требованием к двигателю является равномерное протекание пиковых значений крутящего момент а, т.е. в 2-х цилиндровом двигателе рабочий ход должен быть через 360 градусов, в 3-х цилиндровом — через 240 градусов, в 4-х цилиндровом — через 180 градусов и. т. д. В двухцилиндровых двигателях с рядным расположением цилиндров и коленчатым валом с шатунными шейками под углом 180 градусов неуравновешенными остаются только силы инерции второго порядка и момент от сил инерции первого порядка. Но в данном варианте вступает в действие другое наиболее важное требование: равномерное чередование сил от давления газов. Поэт ому двигатели с таким расположением шатунных шеек применяются только на двухтактных двигателях. В шестицилиндровых двигателях с V-образным расположением цилиндров под углом 60 градусов и шестью кривошипами под углом 60 градусов при равномерном чередовании вспышек через 120 градусов равнодействующие силы инерции первого и вт орою порядков и центробежных сил равны нулю. Уравновешивание моментов сил инерции первого порядка осуществляется с помощью противовесов, устанавливаемых на продолжении двух крайних щек коленчатого вала. Для уравновешивания моментов от сил инерции второго порядка требуется установка двух валов с противовесами, вращающимися с удвоенной скоростью по отношению к коленчатому валу. При угле развала между цилиндрами 90 градусов и угле между шейками кривошипа 120 градусов углы между вспышками неравномерные (90 и 150 градусов). Остаются и моменты от сил инерции первого и второго порядков.(С)

Читать еще:  Вибрация двигателя на холостом ходу кия

Уравновешивание и неравномерность хода двигателей

Двигатель называется уравновешенным, если во время установившегося режима работы на его опоры передаются постоянные по величине и направлению усилия.

У неуравновешенного двигателя давление на опоры непрерывно изменяется и вызывает вибрацию подмоторной рамы и автомобиля в целом, что сопровождается ослаблением болтовых соединений, перегрузкой отдельных деталей, увеличением их износа и другими нежелательными явлениями.

отдельных цилиндров частично уравновешиваются, но в совокупности могут вызвать появление неуравновешенных свободных сил инерции и моментов от них.

. Суммарный крутящий момент является периодической функцией угла поворота коленчатого вала, поэтому возможно меньшее изменение реакций опор достигается увеличением числа цилиндров и соблюдением равенства интервалов между рабочими ходами, что обеспечивает большую равномерность суммарного крутящего момента.

Полностью уравновешенным поршневой двигатель быть не может, так как неизбежная неравномерность крутящего момента всегда вызывает периодическое изменение нагрузки па опоры. Поэтому, говоря об уравновешенности двигателя, обычно имеют в виду соблюдение допустимой степени неуравновешенности в результате предпринятых конструктивных или производственных мероприятий, способствующих устранению в той или иной мере причин, вызывающих неуравновешенность.

).

Для получения конструктивно предусмотренной уравновешенности двигателя ряд требований предъявляется также к производству отдельных деталей двигателя в отношении соблюдения допусков на массы и размеры.

Установление этих допусков обусловливается необходимостью выполнения в большей или меньшей степени условий:

1) равенства масс поршневых групп;

2) равенства масс шатунов и одинакового расположения их центров тяжести;

3) динамической уравновешенности коленчатого вала, достигаемой его балансировкой.

Уравновешивания сил инерции вращающихся масс кривоншпно-шатунного механизма двигателя достигают таким размещением вращающихся масс кривошипов или масс противовесов, при котором соблюдаются два условия:

1) центр тяжести приведенной системы вала находится на оси вращения;

2) сумма моментов центробежных сил инерции вращающихся масс относительно любой точки оси вала равняется нулю.

Соблюдение первого условия обусловливает так называемую статическую уравновешенность, так как уравновешенность в этом случае проверяют путем статической балансировки вала на призмах. Аналитически это условие уравновешенности выражается равенством нулю результирующей всех центробежных сил инерции.

Выполнение второго условия (при одновременном соблюдении первого) обеспечивает так называемую динамическую уравновешенность, которую проверяют при вращении вала на балансировочном станке.

Выполнение обоих условий уравновешенности соответствует вращению вала вокруг его главной центральной оси инерции.

В одноколейном валу сумма центробежных сил, развиваемых двумя противовесами, должна быть равна и противоположна по направлению центробежной силе KR (рис. 227, а):

Следовательно, масса каждого противовеса

Многоколенные симметричные валы многоцилиндровых двигателей обычно уравновешивают в целом без установки противовесов. Несмотря на это, их часто снабжают противовесами, чтобы уменьшить моменты, изгибающие вал, и разгрузить его коренные подшипники. Противовесы способствуют, кроме того, более равномерному распределению давления по окружности коренной шейки.

диаграммы (рис. 228)

лежащего с ним в одной плоскости.

Ниже рассматриваются способы уравновешивания двигателей различных видов.

порядка могут быть уравновешены только с помощью системы добавочных противовесов (рис. 229).

, равный углу поворота колена вала. (В двигателе со смещенным кривошипно-шатунным механизмом этот угол

). При этом горизонтальные составляющие центробежных сил инерции этих противовесов равны по величине и направлены в разные стороны и, следовательно, взаимно уравновешены.

то равнодействующая вертикальных составляющих центробежных сил инерции добавочных противовесов будет уравновешивать силу инерции первого порядка.

уравновешивает силу инерции второго порядка, если масса каждого добавочного противовеса выбрана из условия

. В результате этого так называемого избыточного уравновешивания удается уменьшить абсолютную величину вертикальной составляющей неуравновешенной силы инерции первого порядка (при одновременном появлении неуравновешенной горизонтальной составляющей центробежной силы противовесов).

Однорядный двухцилиндровый двигатель. Коленчатый вал этого двигателя (рис. 230, а) имеет колена, расположенные под углом 180°, уравновешенные противовесами.

Силы инерции первого порядка для первого и второго цилиндров уравновешиваются:

равны, одинаково направлены и имеют равнодействующую

Двухцилиндровый четырехтактный двигатель с противолежащими цилиндрами. В таком двигателе применяется двухколенный вал с углом между коленами 180°, уравновешенный противовесами (рис. 230, б).

Силы инерции первого и второго порядков для первого цилиндра равны соответствующим силам инерции второго цилиндра, но направлены всегда в противоположную сторону. Следовательно, результирующие их равны нулю. Так как оси цилиндров параллельны, то силы дают пару, действующую в плоскости осей цилиндров, момент которой не уравновешен:

Однорядный четырехцилиндровый четырехтактный двигатель.

а для второго и третьего цилиндров

Читать еще:  Что такое диапазон регулирования частоты вращения двигателя

а для второго и третьего цилиндров

Следовательно, все эти силы равны и всегда направлены одинаково. Их равнодействующая

для третьего и четвертого цилиндров

Равнодействующая сила инерции первого порядка для всех цилиндров

Двухцилиндровый V-образный двигатель с углом развала 90°.

Коленчатый вал этого двигателя имеет одно колено, с которым сочленяются шатуны обоих цилиндров, расположенных в одной плоскости (рис. 233).

, которая уравновешивается двумя противовесами, устанавливаемыми

на продолжение щек колена вала.

Силы инерции первого порядка:

для первого цилиндра

для второго цилиндра

Эти силы взаимно перпендикулярны, поэтому их равнодействующая

Рис. 233. Схема двухцилиндрового двигателя с V-образным расположением цилиндров и углом между осями 90°:

постоянна по величине и всегда направлена по радиусу кривошипа. Очевидно, она может быть уравновешена просто путем увеличения массы противовесов, устанавливаемых на продолжении щек колена вала для уравновешивания центробежных сил вращающихся масс. Добавочная масса для каждого противовеса определяется по уравнению

для второго цилиндра

Равнодействующая этих сил

Угол, образуемый равнодействующей сил инерции второго порядка с осью первого цилиндра, находится пз выражения

т. е. в горизонтальном направлении.

При других углах развала цилиндров, не равных 90°, выражения для сил инерции усложняются.

Результирующий момент (рис. 234, в) получают геометрическим сложением этих моментов:

Плоскость действия результирующего момента определяется углом ф между нею и плоскостью первого колена:

Результирующий момент может быть уравновешен как противовесами, устанавливаемыми на каждом кривошипе, так и двумя противовесами, размещенными на концах коленчатого вала в плоскости действия момента.

В последнем случае массу каждого противовеса определяют из условия равенства моментов:

при этом также равен нулю.

Двухрядный двенадцатицилиндровый четырехтактный двигатель. Двенадцатицилиндровый двухрядный двигатель можно рассматривать как совокупность двух однорядных шестицилиндровых двигателей, работающих на один шестиколенный вал. В каждом шестицилиндровом двигателе силы инерции первого и второго порядков и их моменты уравновешены, следовательно, это справедливо и для двенадцатицилиндрового двухрядного двигателя независимо от величины угла между рядами цилиндров.

Для соблюдения равенства угловых интервалов между рабочими ходами отдельных цилиндров угол между рядами цилиндров должен быть кратным 60°. Однако в некоторых случаях, чтобы уменьшить габаритные размеры, несколько поступаются равномерностью крутящего момента, и угол между рядами принимают с отклонением от указанного выше условия. Тогда рабочие ходы в различных цилиндрах осуществляются через неодинаковые промежутки времени.

Что такое уравновешенность двигателя

При работе поршневых двигателей в результате действия в них периодических неуравновешенных сил возникает вибрация.

К пе­риодическим неуравновешенным силам относятся силы инерции поступательно-движущихся частей и вращающихся масс двига­теля. Вибрации подвергаются сам двигатель, машинный фундамент и корпус судна. Вибрация ухудшает эксплуатацию, ослабляет прочность конструкций и приводит к их разрушению.

В результате ускорения движущихся частей возникают силы инерции прямолинейно-движущихся и вращающихся масс.

Рассмотрим силы инерции, возникающие в одноцилиндровом двигателе (рис. 225). Так как ускорение в данный момент направ­лено вниз, то сила инерции поступательно-движущихся масс Р и направлена вверх. К прямолинейно-движущимся массам относятся массы поршня, ползуна, штока и 40% массы шатуна. Центробеж­ная сила J ц вращающихся масс направлена от центра вала по кри­вошипу и может быть заменена составляющими: вертикальной J в и горизонтальной J г силами.

К неуравновешенным вращающимся массам относятся массы шейки мотыля, эксцентричной части щек и 60% массы шатуна. Вдоль оси цилиндра будет действовать сила R = J п + J в . Эта сила стремится оторвать двигатель вместе с фундаментной рамой с места, а сила J г —«сдвинуть» двигатель в горизонтальной плоскости. Так как обе силы знакопеременные, то это вызывает вибрацию фундамента и корпуса судна.

Для многоцилиндрового двигателя в каждом цилиндре дейст­вуют силы R и J г : они стремятся вращать двигатель вокруг его центра тяжести. Полностью уравновешенным считается двигатель, у которого все силы инерции и моменты от сил инерции поступа­тельно-движущихся и вращающихся масс равны нулю.

Для уравновешивания двигателей применяют противовесы и соответствующее расположение кривошипов коленчатого вала. Уве­личение числа цилиндров двигателя и правильный выбор элемен­тов движения улучшают уравновешенность двигателя. В многоци­линдровом двигателе угол между кривошипами последовательно работающих цилиндров выбирается из условия равномерности вспышек и рабочих ходов, что выравнивает крутящий и опрокиды­вающие моменты. Противовесы размещают либо на щеках колен­чатого вала, либо в двух шестернях, установленных в остове двига­теля и вращающихся в разные стороны (динамический проти­вовес).

Расчет уравновешенности двигателей производится аналитиче­ским или графическим методом. В первом случае исходят из того, что центробежная сила инерции от неуравновешенных масс J ц = т ц R? 2 , где т ц — эксцентрично вращающиеся массы, приведен­ные к радиусу кривошипа, кг; R — радиус кривошипа, м; ? — угло­вая скорость, 1 / сек.

Для уравновешивания центробежной силы инерции J ц закреп­ляют на продолжении щек кривошипа два равных противовеса (рис. 226) с массой

где r — расстояние от центра тяжести противовеса до оси вала.

Для прямолинейно-движущихся масс неуравновешенные силы инерции

где т п —масса поступательно-движущихся частей, кг;

а — ускорение, м/сек 2 .

Подставив значение ускорения а из формулы (172) , получаем

где — m п R? 2 cos ? = P и I —сила инерции первого порядка;

— m п R? 2 cos 2? = P и I I — сила инерции второго порядка.

Силы инерции первого и второго порядков изменяются, как и ускорения, по закону косинусоиды, причем сила инерции первого порядка достигает наибольшей абсолютной величины два раза за один оборот коленчатого вала, а второго порядка — четыре раза. Силу инерции первого порядка, действующую по оси цилиндра, уравновешивают с помощью противовеса массой т, центр тяжести которого отстоит от оси вала на расстоянии r = m п R / 2 m .Для уравновешивания сил второго порядка используют динамические проти­вовесы, вращающиеся с удвоенной угловой скоростью. Такие про­тивовесы усложняют конструкцию двигателя, а поэтому их редко применяют в судовых двигателях.

Читать еще:  Двигатель бмв м60 технические характеристики

Графический метод исследования неуравновешенности заклю­чается в построении многоугольников сил и моментов. Многоуголь­ники строят из произвольной точки О . В принятом масштабе от­кладывают векторы сил и моментов, соответствующие направле­нию сил в данный момент. Замыкающие стороны соответствующих многоугольников будут равны неуравновешенным силам или их моментам. В замкнутых многоугольниках силы и моменты будут уравновешены. Графический метод уравновешивания пятицилиндрового двухтактного двигателя приведен на рис. 227.

Исходные данные: число цилиндров — пять, отношение ?=R / L = 0,22, частота вращения 2,03 об/сек, радиус кривошипа R = 0,6 м; масса поступательно-движущихся частей т п = 7500 кг; масса вра­щающихся частей т ц =4500 кг; величина R? 2 =10; расстояние от оси i -го цилиндра к середине коленчатого вала h i .

Для удобства расчет действующих сил инерции и моментов от этих сил сводим в табл. XIII. Как видно из рисунка, силы инерции вращающихся масс J ц , силы инерции поступательно-движущихся масс первого порядка Р п I и второго порядка Р п II и полностью урав­новешены— многоугольники замкнуты. Моменты M ц , М и I , М II — неуравновешены.

Исследование уравновешивания многоцилиндровых двигателей дает возможность сделать следующие выводы:

  1. Зеркальное расположение кривошипов позволяет полностью уравновесить моменты первого и второго порядков при числе ци­линдров ?6.

2. Моменты сил инерции первого и второго порядков полностью уравновесить при незеркальном расположении кривошипов нельзя.

3. С увеличением числа цилиндров качество уравновешивания двигателя улучшается.

Уравновешенность двигателей

Неуравновешенные силы инерции приводят к появлению вибраций, ухудшению комфортабельности, поломке деталей топливо- и маслопроводов, кронштейнов, выходу из ст роя генераторов, стартеров и др. Повышение номинальной частоты вращения коленчатого вала поршневых двигателей, ужесточение требований к комфортабельности автомобилей, их надежности определяет необходимость создания двигателей с улучшенными показателями по уравновешенности и равномерности хода. При движении поршня в результате возникающих ускорений деталей кривошипно-шатунного механизма и вращении коленчатого вала создаются силы инерции от возвратно-поступательно движущихся частей (ВПДЧ) и вращающихся масс. Кроме тою, повышается уровень шума, ухудшается комфортабельность.

У одноцилиндровых двигателей при вращении коленчатого вала и движении поршня и шатуна возникают центробежные сшил и силы инерции первого и второго порядка. Силы инерции первого порядка (Рл) приблизительно пропорциональны массе ВПДЧ, радиусу кривошипа, квадрату угловой скорости коленчатого вала и косинусу его угла поворота. Массу ВПДЧ условно принимают равной массе поршня с кольцами и пальцем плюс масса верхней части шатуна (обычно примерно 30% от его полной массы). В зоне НМТ эта сила достигает максимума и направлена вниз (к коленчатому валу). В зоне ВМТ достигает наибольшей отрицательной величины и наоборот, как бы стремится оторвать поршень от коленчатого вала. При углах поворота 90 и 270 градусов эти силы равны нулю. Силы инерции второго порядка пропорциональны массе ВПДЧ, квадратам угловой скорости и радиуса кривошипа, косинусу удвоенного угла поворота коленчатого вала и обратно пропорциональны расстоянию между осями верхней и нижней головок шатуна (длине шатуна). Таким образом, по мере увеличения длины шатуна, силы инерции второго порядка стремятся к нулю. Но длина шатуна определяет высоту блока цилиндров. а следовательно, массу и габариты всего двигателя, поэтому длину шатуна стремятся делать минимальной, несмотря на увеличение сил инерции второго порядка. У большинства современных автомобильных двигателей отношение радиуса кривошипа к длине шатуна находится в пределах от 1: 3,0 до 1: 3,8.

Силы инерции вращающихся масс пропорциональны сумме масс неуравновешенных частей колена вала и нижней части шатуна (обычно примерно 70% его полной массы) умноженной на радиус кривошипа и квадрат угловой скорости вращения коленчатого вала. Центробежные силы практически при любых схемах коленчатых валов удастся уравновесить противовесами на коленчатом валу.

Для уравновешивания сил инерции первого порядка одноцилиндровых и двухцилиндровых четырехтактных двигателей с рядным расположением цилиндров и шатунными шейками на одной оси необходимо применение двух валов с противовесами, вращающимися в разные стороны с таким же числом оборотов, что и коленчатый вал.

Силы инерции второго порядка уравновешиваются двумя валами с противовесами, вращающимися в разные стороны в два раза быстрее коленчатого вала. Для двигателей дешевых транспортных средств это непозволительная роскошь. Поэтому на некоторых двигателях уравновешиваются только силы инерции первого порядка путем установки двух валов. Иногда для упрощения конструкции эти валы вращаются в одну сторону с той же скоростью (двигатели автомобиля ВАЗ-11113 «Ока»). Для уменьшения сил инерции первого порядка на одноцилиндровых двигателях увеличивается масса противовесов. За счет этого силы инерции первого порядка раскладываются в двух направлениях — в горизонтальной и вертикальной плоскостях, что существенно уменьшает уровень вибраций.

Значительно лучше уравновешены двухцилиндровые двигатели с оппозитным расположением цилиндров, у которых сил инерции нет, центробежные силы уравновешиваются противовесами и остаются только неуравновешенными моменты от сил инерции первого и второго порядка. Читать далее >>>

Ссылка на основную публикацию
Adblock
detector