Что такое врд двигатель

Гиперфорсированные воздушно-реактивные двигатели

Рассмотрен способ форсирования сверх- и гиперзвуковых воздушно-реактивных двигателей подачей воды на их вход. Способ позволяет расширить диапазон применения воздушно-реактивных двигателей с дозвуковым горением топлива по скорости полета до восьми чисел Маха, по высоте полета до 45 км. При скорости полета более трех–четырех чисел Маха температура торможения воздуха становится выше критической для воды, что делает ее существование невозможным при подаче на вход в двигатель. Образующийся при испарении воды пар является рабочим телом внутреннего термодинамического цикла воздушно-реактивного двигателя, что определяет физическую сущность рассматриваемого способа. Предложены три варианта гиперфорсированных воздушно-реактивных двигателей: гиперфорсированный турбореактивный двигатель, гиперфорсированный прямоточный воздушно-реактивный двигатель и гиперфорсированный турбоэжекторный двигатель. Приведены характеристики гиперфорсированных двигателей. Отмечены их преимущества перед двигателями, у которых гиперфорсаж отсутствует. Предложенный способ представляет интерес для применения в авиационной и ракетно-космической технике, в частности, при создании авиационных ракетно-космических систем. Показано, что использование гиперфорсажа в турбоэжекторном двигателе позволяет повысить скорость полета самолета-разгонщика до семи чисел Маха, а высоту полета — до 40 км, что открывает новые перспективы для освоения космоса.

Литература

[1] Письменный В.Л. Гиперфорсированные воздушно-реактивные двигатели. XLIII Академические чтения по космонавтике. Сб. тез., Москва, 29 января–1 февраля 2019, Москва, Изд-во МГТУ им. Н.Э. Баумана, 2019, т. 2, с. 76–78.

[2] Письменный В.Л. Способ форсирования турбореактивного двигателя. Пат. 2616137 РФ. 2017, бюл. № 11, 10 с.

[3] Письменный В.Л. Прямоточный воздушно-реактивный двигатель. Пат. № 2647919 РФ. 2018, бюл. № 9, 6 с.

[4] Письменный В.Л. Турбоэжекторный двигатель и способ его регулирования. Пат. 2645373 РФ. 2018, бюл. № 6, 16 с.

[5] Письменный В.Л. Внутренние термодинамические циклы. Конверсия в машиностроении, 2006, № 3, с. 5–10.

[6] Бакулев В.И., Голубев В.А., Крылов Б.А., Марчуков Е.Ю., Нечаев Ю.Н., Онищик И.И., Сосунов В.А., Чепкин В.М. Теория, расчет и проектирование авиационных двигателей и энергетических установок. Москва, Изд-во МАИ, 2003. 688 с.

[7] Письменный В.Л. Камера сгорания авиационного газотурбинного двигателя. Пат. 2612449 РФ. 2017, бюл. № 7, 5 с.

[8] Письменный В.Л. Стехиометрические газотурбинные двигатели. Известия высших учебных заведений. Машиностроение, 2018, № 6, с. 78–85.

[9] Скибин В.А., Солонин В.И., ред. Работы ведущих авиадвигателестроительных компаний по созданию перспективных авиационных двигателей (аналитический обзор). Москва, Изд-во ЦИАМ, 2004. 424 с.

[10] Нечаев Ю.Н. Силовые установки гиперзвуковых и воздушно-космических летательных аппаратов. Москва, Академия космонавтики, 1996. 213 с.

[11] Васильев А. Гиперзвуковой SR-72: скорость как залог неуязвимости. URL: https://www.computerra.ru/183143/lockheed-sr-72 (дата обращения 3 ноября 2018).

[12] Кондратюк Е. Исследования, проводимые в США в области создания гиперзвуковых летательных аппаратов. Зарубежное военное обозрение, 2013, № 2, с. 63–69.

[13] Письменный В.Л. Концепция газотурбинного двигателя для гиперзвуковых скоростей полета. Общероссийский научно-технический журнал «Полет», 2009, № 8, с. 19–23.

[14] Письменный В.Л. Газовый эжектор. Пат. 2650913 РФ. 2018, бюл. № 11, 4 с.

[15] Письменный В.Л. Способ форсирования авиационного двигателя. Пат. 2386832 РФ, 2010.

СРАВНЕНИЕ ВОЗДУШНО-РЕАКТИВНЫХ ДВИГАТЕЛЕЙ С МЕДЛЕННЫМ ГОРЕНИЕМ И ГОРЕНИЕМ В ДЕТОНАЦИОННЫХ ВОЛНАХ

Автор: Александр Николаевич Крайко

Организация: Центральный институт авиационного моторостроения имени П.И. Баранова

Выполнено сравнение термических коэффициентов полезного действия и удельных тяг и импульсов прямоточных реактивных двигателей разных типов с медленным («дефлаграционным») горением (МГ) и с горением в движущихся (пульсирующих и вращающихся – «спиновых») и неподвижных детонационных волнах (ДВ). Актуальность такого сравнения обусловлена распространенными, особенно в последнее время, утверждениями о возможном увеличении тяговых характеристик воздушно-реактивных двигателей (ВРД) с горением в ДВ (в первую очередь, в пульсирующих – PDE и вращающихся – RDE ) на десятки процентов в сравнении с прямоточными ВРД (ПВРД) с МГ при постоянном давлении в дозвуковом потоке. Подобные прогнозы, однако, опираются не на прямой расчет тяг этих двигателей, а на сравнение их идеальных термических коэффициентов полезного действия (кпд) – h th и на применимые только к стационарным течениям в инерциальных системах координат формулы, связывающие также идеальные удельные тяги и импульсы с идеальными кпд. Для PDE эти формулы неверны из-за нестационарности течения.

В России утверждения о преимуществах детонационного горения (ДГ) нередко сопровождаются ссылками на заметку Я.Б. Зельдовича [1] 1940 г., переведенную на Западе только в начале XXI века. Для незнакомых с этой заметкой ссылки на столь авторитетного ученого производят требуемый эффект в противоположность тому, что писал сам автор. Хотя Я.Б. Зельдович обнаружил некоторое увеличение термического коэффициента полезного действия (КПД) при ДГ, это не вызвало у него эйфории. Напротив, в той же заметке высказаны только скептические соображения о применении ДГ, например: » . поиски циклов с ДГ в погоне за небольшим увеличением принципиально достижимого кпд бесперспективны» . Ни в этой, ни в других публикациях Я.Б. Зельдовича высказываний в поддержку ДГ нет.

В развитие [1, 2] выполнен термодинамический анализ разных типов ВРД с ДГ и МГ. В исследуемых далее ВРД горению почти всегда предшествует сжатие в воздухозаборнике поступающего из атмосферы со скоростью V воздуха и всегда заканчивается «расчетным» расширением в сопле продуктов сгорания до давления набегающего потока р. В рассматриваемых моделях двигателей предварительное сжатие воздуха в воздухозаборнике и расширение продуктов сгорания в сопле принимаются изэнтропическими и стационарными. По определенным, как в [2], идеальным термическим кпд ( h th ) находится отношение Ve / V , где Ve – скорость на выходе из сопла при расчетном расширении до р. Удельные тяга и импульс пропорциональны разности ( Ve / V – 1). Рассмотренные типы ВРД включают двигатели с МГ при постоянном давлении, как в ПВРД (по циклу Брайтона), и постоянном объеме (по циклу Хэмфри), пульсирующие детонационные двигатели ( PDE ) с горением в ДВ Чепмена — Жуге (ДВ CJ ), ВРД с горением в стационарных ДВ CJ , в том числе, с предварительным торможением сверхзвукового потока ( SDE y ³ 1 , y = Т3, Т и Т3 – температуры холодного воздуха и горючей смеси перед ДВ) и в косой ДВ – SDEOSW (при y = 1).

При фиксированных показателях адиабаты воздуха, горючей смеси и продуктов сгорания идеальные характеристики рассмотренных ВРД, предполагающие, как в [2], отсутствие потерь при торможении воздуха в воздухозаборнике, его смешении с газообразным топливом и истечении продуктов сгорания из реактивного сопла, зависят от двух безразмерных параметров: числа Маха полета М и q ° = q /( cpT ) – безразмерной теплотворной способности горючей смеси (ср – теплоемкость при постоянном давлении). При q ° = 6 и 9 сравнение идеальных кпд h th и рассчитанных по h th с помощью упомянутых выше формул (незаконных для PDE ) идеальных удельных тяг и импульсов всех рассмотренных двигателей выполнено для М от 0.3 до 8. Для этих q ° и М по такой идеальной тяге PDE незначительно превосходит ВРД с горением при постоянном объеме (по циклу Хэмфри), а ПВРД с МГ – намного только при М PDE над идеальными тягами других ВРД за исключением SDEOSW быстро уменьшается. Так, при q ° = 6 и 9 превосходство по идеальной тяге PDE над остальными становится малым при увеличении числа Маха полета М.

Пусть PDE имеет n цилиндрических, синхронно работающих групп детонационных камер (ДК) с мгновенно открывающимися и закрывающимися клапанами (входными силовыми стенками). При открытых клапанах в ДК поступает идеально перемешанная горючая смесь. Период работы одной ДК PDE можно разбить на несколько этапов: 1. Открытие клапана, заполнение ДК горючей смесью, мгновенные закрытие клапана и инициирование ДВ волны у входного конца ДК; 2. Приход ДВ на правый конец ДК – сечение входа в идеально регулируемое реактивное сопло; 3. ДВ отражается от правого частично открытого сечения ДК (сужения сопла) как ударная волна (УВ), которая движется к закрытому входному сечению ДК. Далее нестационарные ударные волны, двигаясь по ДК, могут несколько раз отразиться от ее концов. Несмотря на затухание, отражающиеся УВ – не учитываемый при определении идеальных характеристик PDE источник роста энтропии. Клапан мгновенно открывается, когда среднее давление продуктов сгорания в ДК становится меньше давления заторможенного воздуха и идеально перемешанного с ним топлива в объеме перед клапаном.

Читать еще:  Главное реле системы управления двигателем что это

Истечение продуктов сгорания происходит на протяжении всего цикла работы PDE . Течение в расширяющейся части сопла квазистационарное и изэнтропическое, площадь выходного сечения сопла идеально регулируемая. Расчёты проводились в рамках одномерной задачи в приближении уравнений Эйлера. Система уравнений одномерной нестационарной газовой динамики численно решалась с помощью явной монотонной распадной разностной схемы второго порядка (для гладких решений) по пространственной координате х и по времени t . Второй порядок по времени обеспечивался привлечением схемы Рунге — Кутты. При заданных f ° (отношении площади критического сечения сопла к площади поперечного сечения ДК), М и q ° в течении периода работы ДК PDE отношение скоростей Ve / V получается как функция времени. Его интегрирование по периоду дает средние значения Ve / V и тяговые характеристики с учетом нестационарности и неизэнтропичности течения продуктов сгорания в детонационной камере.

На рисунке приведены кривые отношений Ve / V для ПВРД (цикл Брайтона, от времени не зависит) и для PDE : посчитанных по идеальному термическому кпд ( PDEth ) и для нескольких значений f °, найденных в рамках описанной выше нестационарной модели. Видно, что в типичных ситуациях ПВРД лучше многокамерных PDE с вращающимся клапаном (для f ° = 0.3 и 0.1 – при М ³ 2 и М ³ 3). Согласно [3] тяговые характеристики ПВРД заведомо лучше тяговых характеристик и однокамерного PDE , предложенного в [4]. По этим характеристикам уступают ПВРД и все рассмотренные выше ВРД с горением в стационарных ДВ. Из еще не рассмотренных «детонационных» ВРД в последнее время особое внимание уделяется двигателям с вращающейся или спиновой ДВ ( RDE ). Одно из объяснений такого внимания – переход к стационарному течению во вращающейся со скоростью ДВ системе координат и последующие рассуждения с сохраняющейся в стационарных потоках полной энтальпией. При этом, правда, забывают, что в координатах, вращающихся с угловой скоростью w , вдоль линий тока сохраняется не «обычная» полная энтальпия H , а разность H ° = H – ( w r ) 2 /2. В кольцевой камере сгорания RDE произведение w r равно скорости детонационной волны. Поэтому величина w так велика, что любые изменения радиальной координаты r при истечении продуктов сгорания заведомо исключают возможность определения отношения Ve / V через h th ВРД с ДГ. В противоположность этому, в силу сохранения H удельный импульс Isp RDE с сужающимся центральным телом и цилиндрической «внешней» образующей сопла заметно уменьшится. То что это так, подтверждают низкие значения Isp , рассчитанные в [5] для четырех вариантов RDE , летящих с М = 5 в однородной стехиометрической смеси водорода и воздуха с параметрами атмосферы Земли на высоте 20 км. Эти значения Isp = 1990, 2350, 2300 и 2250 с «традиционно» для авторов [5] (см. [3]) завышены: определяя Isp , они почему-то не учитывают сопротивления наветренной части центрального тела воздухозаборника. Исправленные значения Isp близки к 1420, 1830, 1780 и 1720 с, однако даже завышенные величины Isp заметно меньше Isp ПВРД, который при тех же условиях по оценке авторов [3] равен 3500 ¸ 3900 с. Дополнительное возрастание энтропии в RDE также имеет место – в УВ, примыкающей к ДВ на границе свежей горючей смеси и продуктов сгорания. Правда, интенсивность этой УВ невелика.

Итак, утверждения о возможном увеличении тяговых характеристик ВРД на десятки процентов благодаря использованию ДГ необоснованны. Даже для дозвуковых и малых сверхзвуковых чисел Маха полета, на которых ВРД с МГ может по тяговым характеристикам уступать PDE , последние заведомо уступают ТРД с МГ. Поэтому преимущества ВРД с ДГ, если и возможно, то не по тяговым характеристикам, а по простоте конструкции (как при малых М по сравнению с ТРД) или по меньшей теплонапряженности тракта двигателя (напротив, при больших сверхзвуковых числах Маха М > 5 в сравнении c пульсирующим детонационно-дефлаграционным двигателем [6]).

Работа выполнена при поддержке РФФИ (проект 17-01-00126).

Рисунок: кривые Ve / V ПВРД (цикл Брайтона) и PDE , рассчитанные по идеальному кпд ( PDEth ) и по нестационарной модели

1. Зельдович Я.Б. К вопросу об энергетическом использовании детонационного горения // ЖТФ. 1940. Т. 10. Вып. 17. С. 1453-1461.

2. Heiser W.H., Pratt D.T. Thermodynamic Cycle Analysis of Pulse Detonation Engines // J. of Propulsion and Power. 2002. V. 18. No. 1. P. 68-76.

3. Егорян А.Д., Крайко А.Н., Пьянков К.С., Тишин А.П. О расчете характеристик импульсного детонационного двигателя и их сравнении с характеристиками ПВРД // Теплофизика и аэромеханика. 2016. Т . 23. № 2. С . 307-310.

4. Remeev N.Kh., Vlasenko V.V., Khakimov R.A. Analysis of operation process and possible performance of the supersonic ramjet-type pulse detonation engine // Pulse and continuous detonation propulsion / Eds. G. Roy, S. Frolov. Moskow: TORUS PRESS, 2006. P . 235-250.

5. Дубровский А.В., Иванов В.С., Зангиев А.Э., Фролов С.М. Трехмерное численное моделирование характеристик прямоточной воздушно-реактивной силовой установки с непрерывно-детонационной камерой сгорания в условиях сверхзвукового полета // Химическая физика. 2016. Т. 35. № 6. С. 49-63.

6. Крайко А.Н., Александров В.Ю., Александров В.Г. и др. Способ организации горения топлива и детонационно-дефлаграционный пульсирующий прямоточный воздушно-реактивный двигатель. 2016. Патент РФ № 2585328.

Прямоточный воздушно-реактивный двигатель

Одним из наиболее простых по конструкции силовых агрегатов семейства воздушно-реактивных двигателей является прямоточный воздушно-реактивный двигатель (ПВРД). Как и у всех других ВРД, его тяга обеспечивается сгоранием топлива и образованием реактивного потока, но при этом он имеет и ряд принципиальных отличий.

Устройство ПВРД

Конструкция ПВРД, как было отмечено выше, отличается лаконичностью и минимальным количеством составляющих элементов. В упрощенном варианте он состоит из диффузора, камеры сгорания и сопла, а также вспомогательных систем подачи топлива и зажигания, которые в некоторых моделях могут и отсутствовать. На первый взгляд может показаться, что собрать такой двигатель можно и самостоятельно, ведь в нем нет ничего сложного, но на самом деле это не совсем так. Эффективность работы ПВРД зависит от множества мелких нюансов, в том числе и от формы, геометрии и размеров диффузора и сопла. Эти параметры определяют тип ПВРД, его мощность и сферу применения.

Принцип работы

Работа ПВРД, как и практически всех реактивных двигателей (кроме пульсирующих ВРД), нециклична, то есть беспрерывна. Встречный поток воздуха через входное устройство попадает в диффузор, где снижает свою скорость и сжимается, превращая кинетическую энергию движения во внутреннюю. Сжатый и нагретый воздух с пониженной скоростью попадает в камеру сгорания, перемешивается с впрыснутым форсунками топливом и образует топливный заряд. Полученная горючая смесь воспламеняется от искры или при контакте с горячими стенками двигателя, в результате чего образуются продукты сгорания – газы с большим зарядом энергии. Поток расширяющихся газов проходит через сопло и выходит наружу со скоростью большей, чем скорость полета, образуя реактивную тягу.

В некоторых моделях ПВРД жидкое топливо заменяется твердым, расположенным в камере сгорания, что значительно упрощает его конструкцию. В этом случае система подачи топлива отсутствует, а само топливо представляет собой измельченный порошок бериллия, алюминия или магния, который нагревается и под влиянием температуры и кислорода постепенно окисляется.

Как легко заметить, ПВРД имеет один недостаток: он не может работать при низких скоростях или в неподвижном состоянии. Для его запуска и стабильной работы необходим достаточно мощный встречный воздушный поток, который может обеспечиваться только дополнительным ускорителем.

История создания

Конструкция и принцип работы ПВРД были разработаны и запатентованы французом Рене Лореном в 1913 году. Многих авиаконструкторов того времени привлекла простота устройства этого двигателя, возможность его использования при полетах со сверхзвуковыми скоростями и в разреженных слоях атмосферы. Первые рабочие модели были получены во Франции, США и СССР уже в 30-х годах. Начало Второй мировой войны остановило многие научные работы, но уже в конце 40-х – начале 50-х годов ученые вновь вернулись к ПВРД. Первой ракетой, оснащенной этим двигателем, стала французская Leduc 010, за которой последовали Leduc 021 и Leduc 022. Со временем эксперименты с ПВРД прекратились, а их признали бесперспективными, потому как появились более удобные в использовании и эффективные ТРД.

Читать еще:  Двигатель d4dd тех характеристики

Среди отечественных разработок стоит отметить межконтинентальную ракету «Буря», над созданием которой работали советские конструкторы. В 1957 году она прошла первые испытания, которые выявили ряд ее недостатков, таких как проблемы с точностью поражения целей. Из современных ракет ПВРД оснащаются П-270 «Москит» и П-800 «Оникс».

Типы ПВРД

В зависимости от скорости, которую они могут развивать, ПВРД делятся на три типа:

  • дозвуковые;
  • сверхзвуковые;
  • гиперзвуковые.

Дозвуковые ПВРД используются для полетов со скоростью, не превышающей звуковой. Они имеют наиболее простую конструкцию, описанную выше, и отличаются довольно низким КПД, что объясняется низкой степенью сжатия воздуха в диффузоре. Диапазон их скоростей находится в пределах 0,5-1М (М – число Маха), если скорость ниже, двигатель перестает работать. Низкий КПД, ограничение по скорости, необходимость первоначального разгона – все это делает дозвуковые ПВРД малоэффективными, поэтому они практически не используются.

Сверхзвуковые ПВРД развивают скорость в пределах от 1 до 5М. Их легко узнать по характерному конусу, который выступает в передней части и предназначен для скачкообразного торможения воздушного потока. Такие конусы называются центральным телом и обеспечивают внешнее сжатие. При движении на сверхзвуковых скоростях поток воздуха попадает на конусную поверхность и тормозится, причем торможение происходит в виде резкого скачка в несколько этапов (обычно не более 4-х скачков). Скорость при этом остается сверхзвуковой. Далее воздушный поток попадает в диффузор, где продолжает сжиматься и тормозиться до дозвуковой скорости.

Конусы могут заменяться плоскими входными устройствами двухмерного течения без центрального тела. Скачкообразное повышение давления в этом случае обеспечивается сложной формой внутреннего канала. Именно сверхзвуковые ПВРД нашли широкое применение в военной авиации. По своим характеристикам они сравнимы с другими типами ВРД, что в сочетании с простой конструкцией делает их незаменимыми в определенной сфере. Степень сжатия воздуха в таких двигателях сравнима со степенью сжатия в компрессорах ТРД. Правда, диапазон скоростей, на которых они достигают наибольшей эффективности, находится в узких пределах от 3 до 5М.

Гиперзвуковые ПВРД – это пока только научные разработки авиаконструкторов. На сегодняшний день еще нет ни одного экспериментального рабочего образца этих двигателей, диапазон скоростей которых должен быть выше 5М. Его принципиальное отличие от двух предыдущих типов заключается в том, что поток воздуха проходит через диффузор и камеру сгорания со сверхзвуковой скоростью. Сечение всего тракта двигателя постоянно расширяется; поток, проходя по нему, тормозится лишь частично, а при сгорании топлива дополнительно ускоряется, так что его скорость на выходе больше, чем на входе. Основной проблемой при разработке таких двигателей является организация сгорания топлива в условиях сверхзвукового воздушного потока.

Основные отличия ПВРД от других типов двигателей:

  • отсутствие компрессора, как такового. Роль компрессора играет либо диффузор, либо входное устройство;
  • невозможность запуска при нулевой скорости, необходимость внешнего дополнительного ускорителя;
  • эффективная работа только в узких скоростных диапазонах в зависимости от типа ПВРД.

Если сравнивать рабочие характеристики ПВРД и других типов реактивных двигателей, можно сделать вывод, что дозвуковые ПВРД полностью проигрывают своим ближайшим «родственникам» по мощности и КПД. А вот сверхзвуковые модели вполне конкурентоспособные: их термический КПД выше, чем у других реактивных моторов.

Достоинства и недостатки ПВРД

К достоинствам прямоточного ВРД несомненно стоит отнести простоту конструкции и минимальное количество составляющих элементов, а значит, и сравнительно низкую себестоимость. Кроме этого:

  • возможность использования двигателя при полетах на большой высоте в разреженных слоях атмосферы;
  • возможность использования твердого топлива, что упрощает конструкцию;
  • высокий показатель термического КПД у сверхзвуковых ПВРД, достигающий значения порядка 60%, что выше, чем у других реактивных двигателей.

Недостатки:

  • двигатель не может работать при нулевой и при низкой скорости; для его работы необходимо наличие встречного воздушного потока;
  • наиболее перспективные сверхзвуковые ПВРД эффективно работают только в узких скоростных диапазонах (3-5М).

Сфера применения

Использование ПВРД на пилотируемых самолетах нецелесообразно, ведь для их запуска нужны дополнительные двигатели. Намного проще сразу установить, например, ТРД. Именно поэтому их применение сводится к установке на крылатые ракеты, летающие мишени и непилотируемые самолеты, летающие со скоростью в пределах от 2 до 5М. В основном это «одноразовые» двигатели, что вполне логично, учитывая их невысокую стоимость и простую конструкцию. Запуск аппаратов с ПВРД осуществляется за счет их разгона до рабочей скорости с помощью самолетов-носителей или ракетных ускорителей.

Гиперзвуковые ПВРД планируется использовать на космических аппаратах, но пока это только теория.

Несмотря на то, что использование ПВРД в настоящее время ограничено, постоянно ведутся работы по улучшению их рабочих характеристик и созданию новых моделей.

Последняя разработка является двигатель Sabre частной фирмы Reaction Engines.

Суть данного двигателя в том, что традиционные двигатели, которые сегодня применяются в авиации, для полета на гипер скоростях требуют спецрезервуаров с жидким кислородом, если самолет развивает в полете скорость более 3000 км/ч. Обыкновенный воздух на таких скоростях нагревается до очень высоких температур, порядка 1000 градусов по Цельсию, что резко понижает термическое КПД. Особенность двигателя Sabre в том, что позволяет применять атмосферный воздух вместо жидкого кислорода. Когда воздух проходит сквозь двигатель, он сжимается и разогревается, в это время он попадает в холодильник, который оснащен целой системой трубок, которые наполняются гелием эти трубки, гелий охлаждает воздух до необходимой температуры. У двигателя Sabre есть одна особенность. Он в состоянии работать в 2-х режимах: как реактивный двигатель и как ракетный двигатель. Устанавливаться он будет на самолете Skylon. Данная аппарат сможет разогнаться в атмосфере в 5 раз быстрее скорости звука и в 25 раз в открытом космическом пространстве.

Skylon готовиться как космический самолет, способный выводить спутники на низкую орбиту. При этом это будет очень выгодная технология. По словам Алана Бонда, являющегося основателем компании, суммы, которые требуются для запуска спутников и других похожих миссий, могут уменьшиться сразу на 95% в том случае, если будет налажено коммерческое производство двигателей Sabre.

ПУЛЬСИРУЮЩИЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ

Изобретение относится к технике, преимущественно военной, а именно к двигателям летательных аппаратов, и может быть использовано, вероятнее всего, в качестве двигателя небольших беспилотных летательных аппаратов, таких как зенитные, авиационные и тактические ракеты, беспилотные разведчики, летающие мишени, а также в качестве сбрасываемых дополнительных двигателей. Пульсирующий воздушно-реактивный двигатель содержит, в частности, камеру сгорания, резонаторную трубу, впускные трубы, сопло подачи газа, змеевик нагрева газа и запальную свечу. Впускная труба пульсирующего воздушно-реактивного двигателя выполнена конической с установкой конусного вытеснителя. Стенка камеры сгорания с расположенным на ней змеевиком нагрева газа выполнена параллельной кольцевому коническому течению газа, выходящему из кольцевой щели между стенкой впускной трубы пульсирующего воздушно-реактивного двигателя и конического вытеснителя. Изобретение направлено на повышение термодинамического КПД путем увеличения амплитуды пульсаций давления. 1 ил.

Пульсирующий воздушно-реактивный двигатель (ПуВРД), содержащий, в частности, камеру сгорания, резонаторную трубу, впускные трубы, сопло подачи газа, змеевик нагрева газа и запальную свечу, отличающийся тем, что впускная труба ПуВРД выполнена конической с установкой конусного вытеснителя, а стенка камеры сгорания с расположенным на ней змеевиком нагрева газа выполнена параллельной кольцевому коническому течению газа, выходящему из кольцевой щели между стенкой впускной трубы ПуВРД и конического вытеснителя.

Читать еще:  Я установил контрактный двигатель как его поставить на учет

Изобретение относится к технике, преимущественно военной, а именно к двигателям летательных аппаратов, и может быть использовано, вероятнее всего, в качестве двигателя небольших беспилотных летательных аппаратов, таких как беспилотные разведчики, летающие мишени и т.п., а также в качестве сбрасываемых дополнительных двигателей.

Известен пульсирующий воздушно-реактивный двигатель (далее ПуВРД) немецкой крылатой ракеты времен Второй мировой войны Фау-1 (см. Г.Б.Синярев, М.В.Добровольский. Жидкостные ракетные двигатели. — Оборонгиз, 1957, с.19, 20). Он представляет собой открытый с обоих торцов канал круглого поперечного сечения, включающий последовательно расположенные входной диффузор, клапанную решетку, камеру сгорания и выходное устройство, состоящее из конфузора и выхлопной трубы, а также систему топливоподачи и систему зажигания с электрозапалом, установленным в камере сгорания. В общем случае входное и выходное устройства двигателя могут иметь форму, отличную от прототипа, поэтому в дальнейшем будем называть их принятыми терминами воздухозаборник и сопло.

Клапанная решетка представляет собой конструкцию из несущих элементов — поперечных стержней, подвижных элементов — плоских упругих пластин постоянной толщины, прикрепленных к боковым граням стержней попарно параллельно друг другу на расстоянии, равном толщине стержня, и опорных проставок, размещенных посредине между парами пластин параллельно им. В каждой паре между пластинами имеется глухой зазор, обращенный назад. Пластины и проставки образуют продольные каналы для прохода воздуха.

Набегающий на двигатель поток проходит через воздухозаборник и клапанную решетку в камеру сгорания. Туда же подается легкоиспаряющееся топливо, после чего топливовоздушная смесь воспламеняется искрой электрозапала. Быстро расширяющиеся во все стороны продукты сгорания, попадая в глухой зазор между пластинами, тормозятся, в результате чего давление там возрастает. Это вызывает изгиб пластин в стороны до контакта с опорными проставками или боковыми стенками. Воздушные каналы клапанной решетки оказываются перекрытыми. Продукты сгорания истекают через сопло в атмосферу, а их давление на закрытую клапанную решетку создает импульс тяги двигателя.

После падения давления пластины клапанной решетки под действием своей упругости, а также разрежения, создаваемого в камере инерцией истекающих газов, возвращаются в исходное положение. В камеру поступает очередная порция воздуха, и цикл повторяется.

Клапанная решетка служит основным, но не единственным элементом узла, создающего тягу пульсирующего двигателя и включающего также боковые стенки, детали крепления и др. Кроме того, функцию создания тяги в таком двигателе могут выполнять и другие устройства. Поэтому в дальнейшем будем пользоваться общим термином «тяговый узел» (как часть двигателя) и конкретным — клапанная решетка тягового узла.

Достоинствами ПуВРД с механическими клапанными решетками являются простота и дешевизна, небольшой вес, надежность. Их недостатки — плохие тяговые характеристики, а именно низкая удельная и лобовая тяга, высокий удельный расход топлива, импульсный характер тяги, но главное — низкий ресурс клапанов.

Так же известны конструкции ПуВРД, использующие аэродинамические клапаны, «Нестационарное распространение пламени», под ред. Дж. Г.Маркштейна, М.: МИР, 1968, с.401-407. Кроме того, ПуВРД, в которых осуществлена замена механических клапанов на аэродинамические, описаны в патентах США №2796735, 1957; №2796734, 1957; №2746529, 1956; №2822037, 1958; 2812635, 1957; 3093962, 1963.

К недостаткам таких ПуВРД следует отнести низкую амплитуду пульсаций давления и, соответственно, низкий термодинамический КПД (коэффициент полезного действия).

Повысить удельную и лобовую тягу и снизить удельный расход топлива можно путем увеличения амплитуды пульсаций давления, которое достигается путем увеличения скорости сгорания топливо-воздушной смеси в камере сгорания ПуВРД. Увеличение же амплитуды пульсаций приводит к росту термодинамического КПД и соответственно к снижению удельного расхода топлива.

Техническим результатом изобретения является повышение термодинамического КПД путем увеличения амплитуды пульсаций давления.

Поставленная техническая задача решается за счет интенсификации процесса массопереноса в камере сгорания, приводящего к росту скорости квазидетонационного горения и соответствующих изменений конструкции ПуВРД и его тягового узла. При этом под «квазидетонационном» горением подразумевается горение с повышенными скоростями продвижения фронта пламени, составляющими в случае ПуВРД 50-100 м/сек. Организация такого режима горения происходит за счет интенсивного массопереноса в камере сгорания. Скорость фронта пламени пропорциональна скорости массопереноса.

Указанный технический результат при осуществлении изобретения достигается тем, что в известном ПуВРД, содержащем, в частности, камеру сгорания, резонаторную трубу, впускные трубы, сопло подачи газа, змеевик нагрева газа и запальную свечу, впускная труба ПуВРД выполнена конической с установкой конусного вытеснителя, а стенка камеры сгорания с расположенным на ней змеевиком нагрева газа выполнена параллельной кольцевому коническому течению газа, выходящему из кольцевой щели между стенкой впускной трубы ПуВРД и конического вытеснителя.

Сравнение научно-технической и патентной документации на дату приоритета в основной и смежной рубриках МКИ показывает, что совокупность существенных признаков заявленного решения ранее не была известна, следовательно, оно соответствует условию патентоспособности «новизна».

Анализ известных технических решений в данной области техники показал, что предложенное устройство имеет признаки, которые отсутствуют в известных технических решениях, а использование их в заявленной совокупности признаков дает возможность получить новый технический результат, следовательно, предложенное техническое решение имеет изобретательский уровень по сравнению с существующим уровнем техники.

Предложенное техническое решение промышленно применимо, т.к. может быть изготовлено промышленным способом, работоспособно, осуществимо и воспроизводимо, следовательно, соответствует условию патентоспособности «промышленная применимость».

Другие особенности и преимущества заявляемого изобретения станут понятны из следующего детального описания, приведенного исключительно в форме не ограничивающего примера и со ссылкой на прилагаемый чертеж, иллюстрирующий предпочтительный вариант реализации, на котором показана схема предлагаемого ПуВРД.

Позициями на чертеже показаны:

1 — сопло подачи газа,

2 — первая впускная труба,

3 — вторая впускная труба,

4 — впускная труба ПуВРД,

5 — конический вытеснитель,

6 — камера сгорания,

7 — змеевик нагрева газа,

8 — задняя торцевая стенка,

9 — резонаторная труба,

10 — запальная свеча,

12 — топливный бак (с жидким пропаном),

13 — газовая магистраль,

стрелка 14 — кольцевое коническое течение 14 воздушно-газовой смеси,

ПуВРД, представленный на чертеже, содержит сопло 1 подачи газа с соосно закрепленными первой впускной трубой 2, второй впускной трубой 3 и впускной трубой 4 ПуВРД. Внутри впускной трубы ПуВРД 4 жестко закреплен конический вытеснитель 5. К торцу впускной трубы ПуВРД 4 закреплена камера сгорания 6 с змеевиком 7 нагрева газа. Стенки камеры сгорания 6 и змеевик 7 нагрева газа выполнены коническими. К задней торцовой стенке 8 камеры сгорания 6 закреплена резонаторная труба 9 с запальной свечей 10. Змеевик 7 нагрева газа через дроссель 11 соединяется с топливным баком 12, в кототром находится жидкий пропан, и через газовую магистраль 13 — с соплом 1.

При частичном открытии дросселя 11 и подачи искры на запальную свечу 10 происходит воспламенение газа и горение внутри камеры сгорания 6. Через некоторое время змеевик 7 нагрева газа и стенки камеры сгорания 6 разогреваются и дальнейшее открытие дросселя 11 приводит к осуществлению рабочего цикла ПуВРД. Он осуществляется следующим образом. Подаваемый газ через сопло 1 подачи газа эжектирует воздух во впускные трубы 2, 3 и 4. Далее течение воздушно-газовой смеси разделяется на коническом вытеснителе 5 на кольцевое коническое течение 14, выходящее в камеру сгорания 6 и натекающее на перпендикулярную его направляющую заднюю торцовую стенку 8 камеры сгорания 6. В случае правильной настройки впускной системы на режим 3/4 — волнового резонатора, как это представлено на прилагаемом чертеже, ПуВРД начинает работать в пульсирующем режиме с частотой до 400 Гц. При этом каждый цилиндрический проход газовой смеси до задней торцовой стенки 8 осуществляется вдоль змеевика 7 нагрева газа, аналогично «Спирали Щепкина», турбулизирующего течение и ускоряющего процесс горения. Ускорение процесса горения внутри камеры сгорания 6 позволит увеличить термодинамический КПД ПуВРД и уменьшить длину резонаторной трубы 9.

Разумеется, изобретение не ограничивается описанным примером его осуществления, показанным на прилагаемой фигуре. Остаются возможными изменения различных элементов либо замена их технически эквивалентными, не выходящие за пределы объема настоящего изобретения.

Ссылка на основную публикацию
Adblock
detector