Что явилось причиной заклинивания двигателя

Что такое гидроудар? Каковы его признаки и последствия?

Привет, автолюбитель!) Наткнулся на интересную и «хорошоразжёванную» тему о гидроударе и решил поделиться для всеобщего развития)

Внимание! Объёмный текст! Если ты не любитель читать, то просто поставь лайк за мои труды!)

Что такое гидроудар?

Гидроударом называется резкое возрастание давления в одном из цилиндров двигателя (многократно превышающее допустимое), происходящее в результате попадания в него значительного количества жидкости, которая в отличие от подготовленной топливной смеси практически не сжимается. Причем для дизельных двигателей (а они в сравнении с бензиновыми имеют меньшую камеру сгорания и существенно более высокую компрессию) для возникновения гидроудара нужно наличие гораздо меньшего количества воды, попавшей в цилиндр двигателя.

Последствия гидроудара:

В цилиндре с жидкостью при движении поршня вверх давление нарастает очень стремительно. Максимальное давление при этом многократно превышает допустимое. Сила давления, приложенная к поршню, воздействует через палец на шатун, вызывая в нем большие напряжения сжатия. С другой стороны, инерция вращающихся частей двигателя (а при включенной передаче и инерция движущегося автомобиля) дополнительно пытается провернуть коленвал, еще больше увеличивая нагрузку на шатун.

Если силы инерции, действующие на детали двигателя, невелики, то шатун, поршень и палец могут выдержать приложенную нагрузку(это бывает крайне редко). Но чаще всего стержень шатуна сжимается и изгибается(теряет устойчивость). Вследствие чего расстояние меду центрами верхней и нижней головок шатуна уменьшается, то есть шатун укорачивается. Если силы инерции значительны, то и шатун деформируется сильно. При этом поршень проходит через верхнюю мертвую точку, коленчатый вал продолжает вращаться и поршень начинает двигаться вниз. Если шатун изогнулся очень сильно, то он может упереться в стенку цилиндра — и двигатель заклинит. Случай не самый страшный — достаточно будет заменить шатун, поршень и палец. Гораздо хуже, если при сильно сокращенном расстоянии между отверстиями головок шатуна двигатель продолжает вращаться. В таком случае при приближении к нижней мертвой точке поршень своей юбкой садится на противовесы коленчатого вала. Далее следует разрушение поршня, а возможно, и обрыв шатуна(его обломок может пробить боковую стенку цилиндра).

Гидроудар сказывается и на других деталях двигателя. Так, под действием высокого давления деформируется головка блока цилиндров(очень редко). В момент резкой остановки двигателя за счет инерции газораспределительного механизма страдает цепь или ремень привода. При этом значительные нагрузки испытывает и натяжитель цепи(ремня). Посему все вышеперечисленные детали и узлы тоже могут потребовать замены.

Коленчатый вал, напротив, страдает довольно редко. И только при очень больших масштабах разрушения других деталей он может деформироваться или ломаться. Кстати, при разборке двигателя очень легко определить, что явилось причиной поломки шатуна и заклинивания коленчатого вала — гидроудар или масляное голодание. При масляном голодании разрушение шатуна происходит в результате перегрева и «прихватывания» вкладышей коленчатого вала. В этом случае на нижней головке шатуна хорошо видны «цвета побежалости» и задиры. При гидроударе же нижняя головка шатуна остается совершенно нормальной.

Что делать при остановке двигателя?

Так как же быть, если при пересечении лужи, брода, болота двигатель вдруг резко остановился? Ни в коем случае не стоит пытаться сразу же запустить двигатель.
Для начала следует:
1. Открыть крышку воздушного фильтра. Если под крышкой обнаружится вода, то практически со стопроцентной уверенностью можно говорить о том, что причиной остановки двигателя стал гидроудар.
2. Необходимо вывернуть свечи и попробовать вручную провернуть двигатель. Допустим, вам удается сделать полный оборот коленчатого вала двигателя и вы чувствуете, что поршень не касается противовесов коленчатого вала. Это значит, что шатун не деформирован или деформирован незначительно.
3. Теперь можно попробовать прокрутить двигатель стартером. Но внимание! Если слышен стук — немедленно остановите двигатель и прекратите все попытки его запустить. Ведь если находящийся в аварийном состоянии двигатель запустится, то даже после непродолжительной работы за счет больших нагрузок, возникающих от касания поршнем противовесов, произойдет их разрушение, ведущее к гораздо более тяжелым последствиям.
4. Если же стука нет, то, продув цилиндры, можно заворачивать свечи и пытаться запустить двигатель. Но поскольку существует вероятность деформации головки двигателя, то «тянуть на базу» следует с крайней осторожностью, тщательно контролируя температуру охлаждающей жидкости и давление масла. В дальнейшем двигатель следует подвергнуть частичной разборке для контроля деталей: вероятнее всего, потребуется замена шатуна и поршня, а также фрезеровка плоскости головки блока цилиндров.

А вот с дизельным двигателем все гораздо сложнее. Из-за отсутствия быстро снимаемых свечей зажигания продуть цилиндр от воды довольно трудно. Да и страдает дизель, как правило, гораздо сильнее. Поэтому, сняв крышку фильтра и убедившись в наличии под ней воды, незадачливому «подводнику» остается только буксировать автомобиль в сервисный центр.

Ремонт двигателя, пережившего гидроудар, мало отличается от обычного капитального ремонта. Хуже, если оборванный шатун пробьет блок цилиндров, но и в этом случае, как показывает опыт, блок также может быть отремонтирован.

Большое значение имеет и то, сколько времени простоял автомобиль после гидроудара. Ведь под действием воды в цилиндрах двигателя начинается интенсивная коррозия, и уже через месяц может потребоваться расточка блока.

Шноркелем изначально называлась трубка, используемая ныряльщиками для того, чтобы осуществлять дыхание под водой. В автомобиль эта деталь перекочевала после проведения тестовых испытаний в армейской технике (использовалась для движения бронетехники по дну рек или например для скрытного движения подводных лодок на небольшой глубине). Используется для того, чтобы значительно увеличить глубину преодолеваемых водных преград (стандартный заборник на «сухопутных крейсерах» расположен под передним крылом на высоте примерно 80 см — 1 м в зависимости от размера колес). Шноркеля выпускаются тюнинговыми фирмами, народными умельцами, а также, в редких случаях, производителями автомобилей.

Если БЖ был тебе интересен и понравилась форма отчёта, то не ленись, а подпишись и поставь лайк Симпатяге!;) Будет весело, но это не точно)

Лайкоприёмник и кнопка «Подписаться» здесь

Двигатель пошел вразнос: причины и следствие!

Высокий уровень масла в двигателе Мерседес Sprinter, пошел в разнос двигатель.

Как то мы уже писали на тему увеличения уровня масла в дизельном двигателе (по ссылке), оснащенном сажевым фильтром с системой его очистки методом «прожига» (что реализуется путем подачи излишнего количества топлива основными форсунками топливоподачи, через цилиндры двигателя, в момент выпуска отработанных газов из цилиндра в выпускной коллектор) — пришлось поднять данную тему еще раз, так как это явилось причиной произошедшего с нашим клиентом неприятного инцидента.
Вспомним о том, какого качества дизельное топливо нам приходится приобретать на АЗС и, соответственно, становиться понятно, что процессы его сгорания в двигателе происходят немного не так, как задумано производителем. Следствие этого — повышенные количества выбросов сажи; система EGR при этом вносит свою «лепту» — хлопья сажи попадают во впускной коллектор, оседают на клапане EGR и стенках коллектора, патрубках и клапанах, и в некоторых случаях сильно ограничивая поступление воздуха в двигатель.
Такая же история происходит и в сажевом фильтре — ячейки-уловители сажи постепенно забиваются, возрастает сопротивление и режим работы фильтра; ЭБУ решает произвести очистку фильтра методом «прожига» его высокой температурой. Подавая дополнительные порции топлива «вдогонку» выхлопным газам, вылетающим из цилиндров, блок управления рассчитывает поднять температуру фильтра до физического выгорания набившейся в него сажи. Но не все идет так, как рассчитано. Проведя процедуру очистки фильтра, ЭБУ продолжает контролировать его пропускную способность; оценивает его состояние как недостаточно чистое и запускает процедуру вновь. И так много раз подряд.
Вспомним бензиновые двигатели — бывали случаи, особенно зимой, когда, пытаясь запустить двигатель, заливали свечи, но все равно упорно «крутили» его стартером. При этом в цилиндры мотора подавалось повышенное (для холодного запуска) количество топлива, которое не воспламенялось, а оседало на стенках и сливалось по ним в картер, попадая в масло. При этом полностью смывалась масляная пленка со стенок цилиндров и пропадала компрессия, шансы запустить мотор уменьшались на глазах и при этом, так же на глазах, увеличивался уровень масла в двигателе. Если мотор удавалось запустить, то небольшое количество бензина по мере прогрева двигателя испарялось и удалялось из мотора через вентиляцию; большое количество топлива, испаряющееся через систему вентиляции при прогреве двигателя, могло вызвать чрезмерное обогащение воздуха на впуске, а иногда даже оканчивалось хорошим взрывом — клапанная крышка и маслозаливная горловина разлетались под капотом на куски. Ну и еще один фактор — снижение смазочной способности разбавленного топливом масла. Владельцы, вовремя заметившие неожиданное увеличение уровня масла срочно обращались в сервис и производили внеплановую замену масла и фильтра.
К чему это отступление? Да, собственно, к тому, что процесс непрерывного прожига сажевого фильтра напоминает описанную выше ситуацию с бензиновым мотором — в цилиндры двигателя попадает соляра, разбавляя собой масло. И чем дольше мы ездим с неисправным (или удаленным, но не «выписанным» из системы управления) сажевым фильтром, заставляя ЭБУ постоянно предпринимать попытки «очистить» его, тем больше дизельного топлива оказывается в масле, соответственно растет его уровень. В отличие от бензина, который может выпариться при нагреве масла, у дизтоплива такого не происходит. до момента, пока поднятое в состояние масляного тумана масло в смеси с солярой не пошло через вентиляцию во впуск, что воспримется двигателем как топливо для работы. А вот далее как раз и произошел случай, явившийся причиной написания данной статьи: На автомобиле Мерседес Спринтер 2015 года выпуска (соответственно, с дизельным двигателем), случилась беда — неожиданно двигатель «пошел вразнос» — обороты увеличились до максимально возможных, двигатель не реагировал на выключение зажигания, огромные обороты не давали возможность включить передачу и попытаться сцеплением остановить мотор. Заглушить его удалось только открыв капот, оторвать шланг подачи воздуха в коллектор и заткнув коллектор куском того же шланга.
Сколько времени потребовалось для этого — сказать трудно — может быть минута, может три. Когда двигатель был заглушен, машину отбуксировали в сервис.
Проверка двигателя не обнадежила — повышенный уровень масла, затрудненное вращение коленчатого вала при попытке проворота, посторонние звуки при вращении со снятыми топливными форсунками. Двигатель сняли и разобрали. Провели дефектовку.
По результатам дефектовки мотора выяснилась причина ситуации: повышенный уровень масла в моторе был вызван разбавлением его топливом, попавшим в мотор по причине, описанной в начале статьи. В результате, произошло вспенивание смеси масла и топлива, выброс его через систему вентиляции во впускной тракт. Именно эта взвесь в качестве топлива начала гореть в цилиндрах двигателя, повышая его обороты до максимально (технически) возможных и не реагируя на отключение системы управления, так как смесь поступала независимо от управляемых ЭБУ форсунок. В результате превышения оборотов коленчатого вала произошло «схватывание» материала 3-го и 4-го коренных вкладышей коленчатого вала с поверхностью его шеек и проворот вкладышей в своих постелях. В следствии проворота нарушилась возможность поступления смазки как на вкладыши коренные указанных шеек (проворот корпуса вкладыша перекрыл сверление масло подающего канала), так и на пару шатунных вкладышей 3-го цилиндра — подача смазки на которые осуществлялось транзитом через 4-ю коренную шейку.
Высоко нагруженная шатунная шейка, оставшись без смазки, практически моментально перегрелась, разрушившийся вкладыш намертво приплавился к шейке коленвала, но, если при небольших оборотах это вызвало бы остановку (заклинивание) коленчатого вала, то работающий «вразнос» двигатель на огромных оборотах продолжал всухую перемалывать металл вкладыша «в труху». После принудительной остановки мотора путем перекрытия поступления воздуха на впуск все плохое уже произошло — двигатель вышел из строя и требовал ремонта.

Читать еще:  Шум гур на холодном двигателе

Итог. Двигатель в переборку, коленчатый вал отправлять на проверку к специалистам, для определения геометрии и возможности произвести расточку под ремонтные вкладыши. Масляный насос и расходники подлежат замене, желательно приобретать запчасти достойных производителей. Система рециркуляции отработавших газов и система очистки газов, есть два пути решения на выбор владельцу. Первый вариант восстановить работоспособность как положено с завода, не бюджетный вариант. Второй вариант ликвидировать данные системы как класс путем механического и программного удаления. Моторы Мерседес серии «ОМ» надежны, но при наших условиях эксплуатации, практика показывает, есть варианты не характерные для Европы и других стран.

С уважением РСВ Сервис! Всем удачи на дорогах! Следите за маслом в двигателе!

Что явилось причиной заклинивания двигателя

Государственный комитет судебных экспертиз
Республики Беларусь

Объективность. Честь. Отечество.

  1. Главная
  2. Управление по Витебской области

Со стороны может показаться, что экспертиза, особенно затрагивающая технические аспекты, — дело нудное, скучное и сложное для понимания. А уж чего стоит развернутое изложение проведенного исследования в заключении, которое и читать-то неподготовленному человеку сложно! И все же только тщательный анализ всех мелочей и научный подход при их оценке могут стать убедительным доказательством в споре. А когда на кону вопросы профессионализма и репутации с одной стороны и больших денег — с другой, скучно быть не может!

Две тысячи отдали, а машина не едет

Эта история начиналась вполне обыденно и стандартно: служебный автомобиль одной из организаций Витебска потребовал ремонта двигателя. За ремонтом организация обратилась на одну из местных СТО. Первый раз отремонтировать двигатель не удалось — проблема вернулась после совершенно небольшого пробега. Повторное обращение усугубило ситуацию: спустя еще неприлично малый километраж двигатель попросту пришел в негодность. Стоимость двух обращений на СТО приблизилась примерно к 2000 долларам, но автомобиль это не спасло.

Далее между СТО и организацией начал развиваться конфликт, который в досудебном порядке разрешить не удалось, — каждая из сторон была уверена в своей правоте. Так, СТО настаивала на неправильной эксплуатации двигателя, организация, которой принадлежал автомобиль, была уверена именно в некачественном ремонте. Чтобы доказать свою правоту, организация обратилась в управление Государственного комитета судебных экспертиз Республики Беларусь по Витебской области для проведения экспертизы по выполненным работам. Подробности отношений между организацией и СТО раскрывать не будем — сосредоточимся на самой экспертизе.

Перед экспертами поставили два основных вопроса:

  1. Имеются ли следы механического повреждения рабочей поверхности четвертого цилиндра и четвертого поршня двигателя?
  2. Если механические повреждения имеются в четвертом цилиндре и четвертом поршне двигателя, то что явилось причиной его возникновения:
  • неправильная эксплуатация, то есть перегрев двигателя;
  • нарушение технологического процесса по ремонту и восстановлению данного двигателя;
  • применение некачественных запасных частей при ремонте двигателя.

Цилиндры и поршни: какими они стали?

В распоряжении экспертов оказались документы, выданные СТО, а также пострадавший двигатель в разобранном виде. Дальше — дело техники.

Для начала определяется самое главное. Маркировка двигателя — 21126, маркировка размерных классов цилиндров — В В В В. Это означает, что действительный диаметр гильз цилиндров находится в пределах 82,01-82,02 мм.

После этого настал черед изучить непосредственно цилиндры. Приводить подробный текст из заключения экспертизы не будем, передадим лишь основную суть: на рабочей поверхности цилиндров были обнаружены следы износа в виде трасс, а также локальное истирание хона с характерным зеркальным блеском.

Рабочая поверхность первого цилиндра с нагруженной и с противоположной сторон

Рабочая поверхность второго цилиндра с нагруженной и с противоположной сторон

Рабочая поверхность третьего цилиндра с нагруженной и с противоположной сторон

Рабочая поверхность четвертого цилиндра с нагруженной и с противоположной сторон

Теперь — поршни. При их детальном осмотре установлено, что на боковой поверхности поршней имеются следы износа в виде продольных трасс темного и светлого цвета, задиры и истертый металл.

Вид поршня первого цилиндра с нагруженной и противоположной сторон

Вид поршня второго цилиндра с нагруженной и противоположной сторон

Вид поршня третьего цилиндра с нагруженной и противоположной сторон

Боковая поверхность поршня четвертого цилиндра с нагруженной стороны имеет повреждения по всей высоте в виде продольных трасс, царапин, борозд, задиров, истираний, с перемещением материала в пояс поршневых колец и заклиниванием последних в канавках. В правой части повреждения на выступающих частях имеется металлический блеск, в левой части — потемнения материала. С обратной стороны имеются следы износа материала в виде трасс темного и светлого цвета, расположенные по диагонали (в средней части слева и в нижней части справа).

Читать еще:  Громко работает двигатель после капиталки

Вид поршня четвертого цилиндра с нагруженной и противоположной сторон

Поршни первого, второго и третьего цилиндров повреждений на головке и днище поршня не имеют, компрессионные и маслосъемные кольца подвижны в канавках и не повреждены. На поверхности пальцев следов задиров, цветов побежалости обнаружено не было.

На боковой поверхности всех поршней нанесена маркировка «21126». На днище всех поршней имеется маркировка «82.0 Е Sp 0,03 →». Это означает, что размерный класс поршней — «Е», то есть по технической документации их действительный размер должен находиться в пределах 82,005-82,015 мм.

При детальном исследовании повреждений поршня первого цилиндра выяснилось, что повреждения на «юбке» расположены диаметрально противоположно, — это означает, что работа происходила при недостаточном тепловом зазоре. То есть масляная пленка была попросту «разорвана» расширенным при нагреве до рабочей температуры поршнем. Итог — работа «на сухую» с последующим возникновением задиров.

Поверхности «юбок» поршней второго и третьего цилиндров следов, характерных для сухого трения, не имеют. А вот поршень четвертого цилиндра имеет значительные повреждения в виде задиров только с нагруженной стороны.

Откуда возникло трение «на сухую»?

Данные повреждения характерны для работы в условиях сухого трения. А поскольку на противоположной стороне «юбки» поршня аналогичные повреждения отсутствуют, то причины повреждений в результате перегрева и недостаточного зазора следует исключить.

С целью определения теплового зазора между поршнем и цилиндром нутромером был произведен замер диаметра цилиндров, а микрометром измерен действительный размер поршней. На основании проведенных измерений установлено, что тепловой зазор первого, второго и третьего цилиндров с учетом имеющегося износа не превышает 0,02 мм, тепловой зазор четвертого цилиндра с учетом повреждений составляет 0,09 мм.

По технической документации на исследуемый двигатель величина расчетного теплового зазора для новых деталей составляет от 0,025 до 0,045 мм. В предоставленном двигателе при его капитальном ремонте в цилиндры размерной группы B (82,01-82,02 мм) установлены поршни размерной группы E (82,005-82,015), что не обеспечивает расчетный тепловой зазор, поскольку при данных размерах зазор не превышает 0,015 мм.

Таким образом, размерная группа установленных при ремонте поршней попросту не соответствует размерной группе гильз блока цилиндров. Необеспеченный при ремонте тепловой зазор как раз и стал причиной образования повреждений на поверхности гильзы и «юбке» поршня первого цилиндра.

Далее была исследована система смазки. Особое внимание было уделено редукционному клапану масляного насоса. Для это были проведены эксперименты в условиях нормальной температуры, а также в условиях температуры, близкой к рабочей.

При проведении экспериментов в качестве рабочей жидкости использовалось предоставленное на исследование моторное масло, с которым эксплуатировался автомобиль. Было установлено, что давление срабатывания редукционного клапана при нормальной температуре рабочей жидкости составило 4,4 кг/см2, а при температуре масла, близкой к рабочей, — 3,9 кг/см2.

После проведенных испытаний масляный насос был разобран. Из элементов, которые не соответствуют технической документации, обнаружился стержень редукционного клапана, чей диаметр составил 11,97 мм, что меньше требуемой величины.

Рабочие поверхности элементов масляного насоса оказались в порядке, за исключением крышки. Там обнаружились царапины и борозды, что также не соответствует предъявляемым техническим требованиям и свидетельствуют о длительном периоде эксплуатации насоса.

В результате исследований был сделан вывод, что исследуемый масляный насос находится в неисправном состоянии по причине несоответствия диаметра стержня редукционного клапана и рабочей поверхности крышки масляного насоса предъявляемым требованиям, что должно было быть устранено при ремонте.

Несмотря на то что насос хотя и обеспечивал подачу масла, давление и расход масла были отличными от тех, что должны быть в случае полностью исправного насоса. Однако определить точную степень влияния этих неисправностей на эффективность работы масляной системы в целом в рамках исследования не удалось, поскольку это можно определить только на полностью собранном двигателе. Масляные каналы повреждений не имели.

Настал черед изучить масляные форсунки, предназначенные для охлаждения поршней и смазки цилиндров. Форсунки, предоставленные на исследование, повреждений не имели.

С помощью стендовых испытаний было установлено, что давление открытия форсунок как при нормальной температуре, так и при температуре, близкой к рабочей, находится в пределах 3,2-3,6 кг/см2. Из технических характеристик двигателя известно, что давление в системе смазки при рабочей температуре двигателя 85-105°С и номинальных оборотах (5600 об/мин) находится в диапазоне 2,5-3,5 кг/см2.

То есть предоставленные форсунки могут обеспечить подачу масла к цилиндрам только на оборотах выше средних. При оборотах, рекомендуемых при обкатке двигателя (средних и низких), необходимая интенсивность смазки не обеспечивается. Сведения о характеристиках работы данных форсунок в технологических картах, а также в открытых источниках отсутствуют, что привело к необходимости обратиться производителю. Как следует из ответа АвтоВАЗа, форсунки должны открываться даже на холостом ходу, причем чем выше обороты, тем больше величина открытия.

В рассматриваемом двигателе гильзы цилиндров помимо форсунок смазываются путем попадания масла на стенку цилиндра при разбрызгивании его вращающимися деталями в результате вытеснения масла через торцевые зазоры шатунных и коренных подшипников скольжения коленчатого вала.

Об эффективности смазки цилиндров в данном двигателе можно судить по состоянию компрессионных колец. На поршнях установлено второе компрессионное кольцо трапециевидного сечения, которое в свою очередь устанавливается в соответствии с маркировкой TOP c верхней стороны кольца. При микроскопическом исследовании выяснилось, что участок приработки данных колец от первого к третьему цилиндру увеличивается, а на четвертом цилиндре занимает всю торцевую поверхность кольца. То есть чем дальше цилиндр находится от масляного насоса, тем меньше смазки в него поступает.

Фрагменты кольцевых поясов первого и второго цилиндров. Прямоугольниками отмечены участки приработки

Фрагменты кольцевых поясов третьего и четвертого цилиндров. Прямоугольниками отмечены участки приработки

В результате еще одного исследования было выяснено, что двигатель не имеет повреждений, которые были бы характерными для него в случае перегрева. Выходит, что повреждения поршня и гильзы четвертого цилиндра образовались из-за недостаточной смазки на оборотах, рекомендованных при обкатке двигателя, «благодаря» установленным форсункам вкупе с повреждениями масляного насоса.

Итоги

Таким образом, в результате исследований были обнаружены механические повреждения поршней и гильз первого и четвертого цилиндров, а также повреждения масляного насоса.

Механические повреждения поршня и гильзы первого цилиндра образовались в результате недостаточного теплового зазора по причине несоответствия размерной группы поршней размерной группе гильз блока цилиндров.

Механические повреждения масляного насоса объясняются длительной эксплуатацией до производимого ремонта. Состояние деталей и узлов масляного насоса не соответствуют необходимым требованиям. Данное несоответствие должно было быть устранено при проведении ремонта двигателя в соответствии с технической документацией.

С имеющимися неисправностями насос обеспечивает подачу масла в систему смазки. Однако неисправности снижают давление и расход рабочей жидкости. Механические повреждения поршня и гильзы четвертого цилиндра образовались по причине нарушения условий смазки вследствие низкой эффективности установленных при ремонте форсунок охлаждения поршня при имеющихся неисправностях масляного насоса.

В результате проведенной экспертизы можно сделать вывод, что виновником выхода двигателя из строя является СТО. Именно ошибки в ходе ремонта привели к «кончине» двигателя, в чем организация была уверена изначально и оказалась права.

Если вы заметили ошибку на сайте, пожалуйста, выделите её и нажмите Ctrl + Enter

При использовании материалов Государственного комитета судебных экспертиз Республики Беларусь ссылка на сайт ОБЯЗАТЕЛЬНА!
© Государственный комитет судебных экспертиз Республики Беларусь

Восстановление данных с жёсткого диска при заклинивании подшипника двигателя

Суть проблемы

Данная неисправность представляет собой повреждение подшипника двигателя HDD, в результате чего накопитель перестаёт раскручиваться. Как следствие, диск перестаёт определяться в системе и данные пользователя оказываются недоступными. В подавляющем большинстве случаев подшипник клинит в результате падения диска. Этот вид неисправности HDD считается наиболее сложным и трудоёмким в востановлении т.к. необходимо переставлять не только блок магнитных головок, но и все магнитные пластины на новый подшипник без их смещения друг относительно друга.

Читать еще:  Что такое битурбовый двигатель

Причины возникновения неисправности:

  • различные механические воздействия на накопитель, удары, падения;
  • брак при изготовлении или сборке подшипника двигателя на заводе производителя;
  • физический износ подшипника двигателя, вызванный длительной работой 24/7;
  • перегрев накопителя вследствие работы без охлаждения.

Симптомы неисправности:

  • жёсткий диск не крутится вообще, либо не набирает необходимые 5400 или 7200 оборотов и останавливается;
  • диск издаёт тихий периодически повторяющийся жужжащий звук;
  • HDD не определяется, либо определяется неправильной моделью, объёмом и серийным номером;
  • возможна небольшая периодическая вибрация при попытках раскрутки двигателя.

Влияние проблемы на файлы пользователя

Данная проблема сама по себе не затрагивает пользовательские файлы и папки, т.к. клин подшипника не наносит повреждений пластинам. Но нужно учитывать, что клин подшипника двигателя появляется обычно в результате механических воздействий на диск, ударов и падений. А вот уже непосредственно причины повреждения подшипника (удары, падения) могут привести также и к повреждению блока магнитных головок, который в результате этих механических воздействий может удариться о поверхность магнитных пластин и поцарапать их. Что с высокой вероятностью приведёт к серьёзным повреждениям хранящейся на диске пользовательской информации и значительно усложнит процесс её восстановления с повреждённого накопителя.

Виды повреждения подшипника двигателя жёсткого диска

1) Деформация оси двигателя внутри втулки подшипника. Данная проблема возникает исключительно из-за механических воздействий на диск, ударов и падений. В подавляющем случае проявляется только на дисках 3.5″ с количеством пластин 3 и более. Это связано с тем, что пластины жёсткого диска довольно тяжёлые, на современных 3.5″ дисках они сделаны из алюминия с нанесением магнитного покрытия. Если пластин несколько, то под их весом в момент удара происходит деформация оси двигателя, т. е., проще говоря, вал двигателя гнётся внутри втулки подшипника и перестаёт вращаться. Данная неисправность практически не встречается на дисках 2.5″, т.к. на них обычно установлены одна или две пластины, которые изготовлены из специального закалённого стекла с нанесённым магнитным покрытием. Если на диск оказывается внешнее физическое воздействие, то веса даже двух тонких стеклянных пластин малого диаметра не достаточно для возникновения деформации вала двигателя внутри подшипника.

2) Задиры на поверхности опорной шайбы подшипника в результате высыхания смазки. Обычно, предпосылкой возникновения данной проблемы является высыхание, изменение свойств или недостаточное количество смазки в подшипнике двигателя HDD. В результате чего вал двигателя начинает при вращении тереться торцом об опорную шайбу подшипника. Из-за этого подшипник нагревается и на поверхности опорной шайбы образуется кольцевой задир, при этом двигатель либо перестаёт крутиться полностью, либо, из-за наличия дополнительного трения в месте задира, не может раскрутить пластины до необходимых для распарковки головок 5400 или 7200 оборотов.

Методики восстановления информации при данной неисправности

Для восстановления данных с жёсткого диска, у которого повреждён подшипник двигателя применяются четыре методики.

Первая методика заключается в переносе всего пакета магнитных пластин в другой гермоблок от точно такого же жёсткого диска с одинаковой моделью и объёмом. Это наиболее сложный и трудоёмкий вариант, но и наиболее эффективный. Применяется в случаях, когда произошла деформация оси двигателя внутри втулки подшипника. Выправить изогнутый вал двигателя невозможно, поэтому необходимо с помощью специальных инструментов жёстко зажать все пластины, открутить крепёжные винты и переставить пластины в другой гермоблок с исправным подшипником. Основная сложность данной процедуры заключается в том, что нельзя переставлять пластины HDD по одной, т.к. в этом случае невозможно будет сохранить точное положение пластин друг относительно друга, что приведёт к полной потере возможности считать данные с этих пластин.

Специализированные инструменты, используемые для перестановки магнитных пластин

При реализации первой методики, для захвата и перемещения пакета магнитных пластин с неисправного подшипника в другой гермоблок применяется специальный набор инструментов Hard Drive Platter Replacement Tool от компании Salvation Data. Он позволяет жёстко зафиксировать пластины друг относительно друга и переставить в новый гермоблок с исправным подшипником. Плюсами данного метода являются поддержка любых моделей HDD и высокая скорость выполнения таких работ.

Почему диск с переставленными пластинами нельзя будет в дальнейшем использовать

При перестановке пластин с клиненного двигателя в новый гермоблок также необходимо заменить и блок магнитных головок, который обычно тоже выходит из строя при механических воздействиях на диск, ударах и падениях. Всё это приводит к изменению заводского положения многих деталей диска. А точность позиционирования головок по трекам у современных HDD настолько высока, что даже минимальные микросмещения узлов и деталей диска относительно заводской сборки гермоблока, приводят к серьезному снижению скорости работы. Во многих случаях жёсткие диски после перестановки пластин могут читать хранящиеся на них данные только в технологическом режиме на программно-аппаратном комплексе PC3000. Поэтому дальнейшее использование такого диска в большинстве случаев не только нежелательно, но и вообще невозможно.

Что нельзя делать при повреждении подшипника двигателя HDD:

  • нельзя стучать по клиненному подшипнику, нагревать его либо охлаждать. Это повредит магнитные пластины и головки диска;
  • бессмысленно пытаться самостоятельно расклинить повреждённый диск, т.к. без специальных инструментов это невозможно;
  • нельзя вскрывать гермоблок жёсткого диска т.к. туда попадёт пыль которая может привести к повреждению магнитных пластин;
  • крайне не рекомендуется отдавать клиненный диск системным администраторам или знакомым компьютерщикам, которые не имеют узкой специализации по ремонту жёстких дисков, т.к. это часто приводит к увеличению сложности работ и даже изменению типа неисправности вследствие неквалифицированного вмешательства.

Звуки издаваемые дисками с клиненным двигателем

Стук в двигателе Discovery 3

Стук двигателя, остановка двигателя во время движения, заклинивание двигателя.

Причины заклинивания двигателя

К великому сожалению, иногда происходит неприятное событие и двигатель автомобиля заклинивает. Это может быть вызвано разными факторами от отсутствия должного обслуживания, до гидравлического удара полученного вследствие преодоления глубокого (более 700 мм глубиной) брода и попадания воды в цилиндры двигателя.

Если у вас есть вопросы, закажите обратный звонок

Ремонт двигателя в сервисе LR Family

190 000 ₽
210 000 ₽

28 Июня — 31 Августа

В настоящий момент на рынке появилось большое количество коленчатых валов разных производителей для двигателей TD V6 2.7 и SD V6. Китай, Турция, Англия, оригинал (только 3,0), ремонтный оригинал. Также цены на сопутствующие материалы растут, ремонт, зачастую, получается очень дорогим.

В процессе ремонта мы заметили, что приходится менять хорошие детали (с ресурсом) на новые, что однозначно увеличивает стоимость ремонта.

Предлагаем вам следующее решение

  • подъем кузова,
  • снятие двс,
  • разборка двс до шорт блока,
  • притирка клапанов,
  • замена м/с колпачков,
  • разборка,
  • дефектовка,
  • сборка шорт блока,
  • сборка в обратной последовательности.

Полный список необходимых деталей мы скажем после разборки и согласуем его с вами, исходя из ваших требований.

Гарантия на все работы без ограничения пробега

Статьи по теме

Довольно распространенной неисправностью Дискавери 3, является системы отказ парктроников.

При пробегах от 60 000 км до 100 000 км владелец может отметить такие явления, как потеря эластичности подвески и ее энергоемкости.

Владельцы Дискавери 3 часто встречаются с такой неисправностью, как течь масла АКПП. В этом случае не стоит затягивать с визитов в сервис.

Не работает ручник на Дискавери 3, на приборной панели горит ошибка.

При неисправности системы Вебасто Дискавери 3 долго прогревается в зимнее время.

Наиболее вероятной причиной долгого запуска Дискавери 3 является неисправность свечей накаливания.

Зачастую владельцы отмечают, что сильный, низкий по частоте гул или вой, раздается прямо из-под центральной части автомобиля.

Гул, который сначала не очень заметен, а затем проявляется все сильнее и сильнее при движении на скоростях выше 80-90 км/ч.

Гул при работе двигателя издают его агрегаты, которые приводятся во вращение приводным ремнем двигателя.

Владельцы Дискавери 3 с двигателем 2.7 TDV6 могут столкнуться с такой проблемой, как проворот вкладышей коленвала или поломкой коленвала.

Наш менеджер позвонит и ответит на все вопросы

Наши мастера ответят на все вопросы, рассчитают стоимость и подготовят для вас индивидуальное предложение

Заполните форму обратной связи или позвоните +7 495 532-68-98

Ссылка на основную публикацию
Adblock
detector