Что является рабочим телом теплового двигателя является

Что является рабочим телом теплового двигателя является

Рабочее тело

Рабо́чее те́ло — в теплотехнике и термодинамике условное несменяемое материальное тело, расширяющееся при подводе к нему теплоты и сжимающееся при охлаждении и выполняющее работу по перемещению рабочего органа тепловой машины. В теоретических разработках рабочее тело обычно обладает свойствами идеального газа.

На практике рабочим телом тепловых двигателей являются продукты сгорания углеводородного топлива (бензина, дизельного топлива и др.), или водяной пар, имеющие высокие термодинамические параметры (начальные: температура, давление, скорость и т. д. )
В холодильных машинах в качестве рабочего тела используются фреоны, аммиак, гелий, водород, азот. (См. Хладагенты)

Электрический ракетный двигатель в качестве рабочего тела использует ионизированное расходуемое вещество.

В лазерной технике рабочим телом называется оптический элемент лазера, в котором происходит формирование когерентного электромагнитного излучения.

См. также

  • Двигатель внутреннего сгорания
  • Двигатель внешнего сгорания

Wikimedia Foundation . 2010 .

  • Керченский горсовет
  • Эмке, Фредерик

Смотреть что такое «Рабочее тело» в других словарях:

РАБОЧЕЕ ТЕЛО — газообразное или жидкое вещество, с помощью которого какая либо энергия преобразуется в механическую работу, холод, теплоту. Наиболее распространенные рабочие тела: водяной пар в паровых турбинах, продукты сгорания органического топлива в… … Большой Энциклопедический словарь

Рабочее тело — вещество, изменение параметров и физико химического состояния которого, происходящее в элементах двигателя (компрессор, камера сгорания, турбина, входное и выходное устройства и др.) и в процессах, составляющих термодинамический цикл двигателя,… … Энциклопедия техники

рабочее тело — Газообразное или жидкое вещество, с помощью которого осуществляется преобразование какой либо энергии при получении холода, тепла или механической работы [ГОСТ 26883 86] Тематики внешние воздействующие факторы Обобщающие термины ВВФ специальных… … Справочник технического переводчика

РАБОЧЕЕ ТЕЛО — газообразное или жидкое вещество, с помощью которого в машинах осуществляются преобразования энергии, получение работы, теплоты или холода. В качестве Р. т. используют: водяной пар в паровых турбинах, воздух в воздушно реактивных двигателях,… … Большая политехническая энциклопедия

Рабочее тело — 38. Рабочее тело Газообразное или жидкое вещество, с помощью которого осуществляется преобразование какой либо энергии при получении холода, тепла или механической работы Источник: ГОСТ 26883 86: Внешние воздействующие факторы. Термины и… … Словарь-справочник терминов нормативно-технической документации

рабочее тело — газообразное или жидкое вещество, с помощью которого какая либо энергия преобразуется в механическую работу, холод, теплоту. Наиболее распространённые рабочие тела: водный пар в паровых турбинах, продукты сгорания органического топлива в… … Энциклопедический словарь

рабочее тело — рабочая среда; рабочее тело Проводящая среда, движущаяся через МГД устройство, в котором она взаимодействует с магнитным полем То из участвующих в термодинамическом процессе тел, посредством которого осуществляется преобразование теплоты в работу … Политехнический терминологический толковый словарь

рабочее тело — darbinė medžiaga statusas T sritis chemija apibrėžtis Skystis arba dujos, naudojami mašinoje vienai energijos rūšiai pakeisti kita. atitikmenys: angl. working medium rus. рабочее тело … Chemijos terminų aiškinamasis žodynas

рабочее тело — darbinė medžiaga statusas T sritis Energetika apibrėžtis Medžiaga, naudojama šiluminei energijai versti mechanine, taikant kūnų šiluminio plėtimosi savybę. atitikmenys: angl. working fluid; working substance vok. Arbeitmittel, n rus. рабочее тело … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

Рабочее тело — газообразное или жидкое вещество, с помощью которого осуществляется преобразование какой либо энергии при получении механической работы (в двигателях (См. Двигатель)), холода (в холодильных машинах (См. Холодильная машина)), теплоты (в… … Большая советская энциклопедия

Тепловой двигатель. Второй закон термодинамики.

Тепловой двигатель (машина)

Тепловой двигатель (машина) – это устройство, которое совершает механическую работу циклически за счет энергии, поступающей к нему в ходе теплопередачи.

Источником поступающего количества теплоты в реальных двигателях могут быть сгорающее органическое топливо, разогретый Солнцем котел, ядерный реактор, геотермальные воды и т.д.

В настоящее время наиболее распространены два типа двигателей: поршневой двигатель внутреннего сгорания (сухопутный и водный транспорт) и паровая или газовая турбина (энергетика).

Первые тепловые двигатели, широко распространившиеся в промышленности, назывались паровыми машинами. К современным тепловым двигателям можно отнести ракетные и авиационные двигатели.

Модель теплового двигателя и ее составные части

В теоретической модели теплового двигателя рассматриваются три тела: нагреватель, рабочее тело и холодильник.

Нагреватель – тепловой резервуар (большое тело), температура которого постоянна.

В каждом цикле работы двигателя рабочее тело получает некоторое количество теплоты от нагревателя, расширяется и совершает механическую работу. Передача части энергии, полученной от нагревателя, холодильнику необходима для возвращения рабочего тела в исходное состояние.

Читать еще:  Характеристика двигателя миг 31

Так как в модели предполагается, что температура нагревателя и холодильника не меняется в ходе работы теплового двигателя, то при завершении цикла: нагревание-расширение-остывание-сжатие рабочего тела считается, что машина возвращается в исходное состояние.

Для каждого цикла на основании первого закона термодинамики можно записать, что количество теплоты Qнагр, полученное от нагревателя, количество теплоты |Qхол|, отданное холодильнику, и совершенная рабочим телом работа А связаны между собой соотношением:

В реальных технических устройствах, которые называются тепловыми машинами, рабочее тело нагревается за счет тепла, выделяющегося при сгорании топлива. Так, в паровой турбине электростанции нагревателем является топка с горячим углем. В двигателе внутреннего сгорания (ДВС) продукты сгорания можно считать нагревателем, а избыток воздуха – рабочим телом. В качестве холодильника в них используется воздух атмосферы или вода природных источников.

КПД теплового двигателя (машины)

Коэффициентом полезного действия теплового двигателя (КПД) называется отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя:

Коэффициент полезного действия любого теплового двигателя меньше единицы и выражается в процентах. Невозможность превращения всего количества теплоты, полученного от нагревателя, в механическую работу является платой за необходимость организации циклического процесса и следует из второго закона термодинамики.

В реальных тепловых двигателях КПД определяют по экспериментальной механической мощности N двигателя и сжигаемому за единицу времени количеству топлива. Так, если за время t сожжено топливо массой m и удельной теплотой сгорания q, то

Для транспортных средств справочной характеристикой часто является объем V сжигаемого топлива на пути s при механической мощности двигателя N и при скорости . В этом случае, учитывая плотность r топлива, можно записать формулу для расчета КПД:

Второй закон термодинамики

Существует несколько формулировок второго закона термодинамики. Одна из них гласит, что невозможен тепловой двигатель, который совершал бы работу только за счет источника теплоты, т.е. без холодильника. Мировой океан мог бы служить для него, практически, неисчерпаемым источником внутренней энергии (Вильгельм Фридрих Оствальд, 1901).

Другие формулировки второго закона термодинамики эквивалентны данной.

Формулировка Клаузиуса (1850): невозможен процесс, при котором тепло самопроизвольно переходило бы от тел менее нагретых к телам более нагретым.

Формулировка Томсона (1851): невозможен круговой процесс, единственным результатом которого было бы производство работы за счет уменьшения внутренней энергии теплового резервуара.

Формулировка Клаузиуса (1865): все самопроизвольные процессы в замкнутой неравновесной системе происходят в таком направлении, при котором энтропия системы возрастает; в состоянии теплового равновесия она максимальна и постоянна.

Формулировка Больцмана (1877): замкнутая система многих частиц самопроизвольно переходит из более упорядоченного состояния в менее упорядоченное. Невозможен самопроизвольный выход системы из положения равновесия. Больцман ввел количественную меру беспорядка в системе, состоящей из многих тел – энтропию.

КПД теплового двигателя с идеальным газом в качестве рабочего тела

Если задана модель рабочего тела в тепловом двигателе (например, идеальный газ), то можно рассчитать изменение термодинамических параметров рабочего тела в ходе расширения и сжатия. Это позволяет вычислить КПД теплового двигателя на основании законов термодинамики.

На рисунке показаны циклы, для которых можно рассчитать КПД, если рабочим телом является идеальный газ и заданы параметры в точках перехода одного термодинамического процесса в другой.

Изобарно-изохорный

Изохорно-адиабатный

Изобарно-адиабатный

Изобарно-изохорно-изотермический

Изобарно-изохорно-линейный

Цикл Карно. КПД идеального теплового двигателя

Наибольшим КПД при заданных температурах нагревателя Tнагр и холодильника Tхол обладает тепловой двигатель, где рабочее тело расширяется и сжимается по циклу Карно (рис. 2), график которого состоит из двух изотерм (2–3 и 4–1) и двух адиабат (3–4 и 1–2).

Теорема Карно доказывает, что КПД такого двигателя не зависит от используемого рабочего тела, поэтому его можно вычислить, используя соотношения термодинамики для идеального газа:

Экологические последствия работы тепловых двигателей

Интенсивное использование тепловых машин на транспорте и в энергетике (тепловые и атомные электростанции) ощутимо влияет на биосферу Земли. Хотя о механизмах влияния жизнедеятельности человека на климат Земли идут научные споры, многие ученые отмечают факторы, благодаря которым может происходить такое влияние:

  1. Парниковый эффект – повышение концентрации углекислого газа (продукт сгорания в нагревателях тепловых машин) в атмосфере. Углекислый газ пропускает видимое и ультрафиолетовое излучение Солнца, но поглощает инфракрасное излучение, идущее в космос от Земли. Это приводит к повышению температуры нижних слоев атмосферы, усилению ураганных ветров и глобальному таянию льдов.
  2. Прямое влияние ядовитых выхлопных газов на живую природу (канцерогены, смог, кислотные дожди от побочных продуктов сгорания).
  3. Разрушение озонового слоя при полетах самолетов и запусках ракет. Озон верхних слоев атмосферы защищает все живое на Земле от избыточного ультрафиолетового излучения Солнца.
Читать еще:  Характеристика топлива реактивного двигателя

Выход из создающегося экологического кризиса лежит в повышении КПД тепловых двигателей (КПД современных тепловых машин редко превышает 30%); использовании исправных двигателей и нейтрализаторов вредных выхлопных газов; использовании альтернативных источников энергии (солнечные батареи и обогреватели) и альтернативных средств транспорта (велосипеды и др.).

Кпд тепловых двигателей находят по формуле. Тепловой двигатель

Чтобы двигатель совершал работу, необходима разность давлений по обе стороны поршня двигателя или лопастей турбины. Во всех тепловых двигателях эта разность давлений достигается за счет повышения температуры рабочего тела на сотни градусов по сравнению с температурой окружающей среды. Такое повышение температуры происходит при сгорании топлива.

Рабочим телом у всех тепловых двигателей является газ (см. § 3.11), который совершает работу при расширении. Обозначим начальную температуру рабочего тела (газа) через Т 1 . Эту температуру в паровых турбинах или машинах приобретает пар в паровом котле. В двигателях внутреннего сгорания и газовых турбинах повышение температуры происходит при сгорании топлива внутри самого двигателя. Температуру Т 1 называют температурой нагревателя.

Роль холодильника

По мере совершения работы газ теряет энергию и неизбежно охлаждается до некоторой температуры Т 2 . Эта температура не может быть ниже температуры окружающей среды, так как в противном случае давление газа станет меньше атмосферного и двигатель не сможет работать. Обычно температура Т 2 несколько больше температуры окружающей среды. Ее называют температурой холодильника. Холодильником являются атмосфера или специальные устройства для охлаждения и конденсации отработанного пара — конденсаторы. В последнем случае температура холодильника может быть несколько ниже температуры атмосферы.

Таким образом, в двигателе рабочее тело при расширении не может отдать всю свою внутреннюю энергию на совершение работы. Часть энергии неизбежно передается атмосфере (холодильнику) вместе с отработанным паром или выхлопными газами двигателей внутреннего сгорания и газовых турбин. Эта часть внутренней энергии безвозвратно теряется. Именно об этом и говорит второй закон термодинамики в формулировке Кельвина.

Принципиальная схема теплового двигателя изображена на рисунке 5.15. Рабочее тело двигателя получает при сгорании топлива количество теплоты Q 1 , совершает работу А» и передает холодильнику количество теплоты |Q 2 | 4.2 . Всего получено оценок: 293.

Энциклопедичный YouTube

Математически определение КПД может быть записано в виде:

η = A Q , >,>

где А — полезная работа (энергия), а Q — затраченная энергия.

Если КПД выражается в процентах, то он вычисляется по формуле:

где Q X >> — тепло, отбираемое от холодного конца (в холодильных машинах холодопроизводительность); A

Для тепловых насосов используют термин коэффициент трансформации

где Q Γ > — тепло конденсации, передаваемое теплоносителю; A — затрачиваемая на этот процесс работа (или электроэнергия).

В идеальной машине Q Γ = Q X + A =Q_ >+A> , отсюда для идеальной машины ε Γ = ε X + 1 =varepsilon _ >+1>

Наилучшими показателями производительности для холодильных машин обладает обратный цикл Карно : в нём холодильный коэффициент

ε = T X T Γ − T X > over -T_ >>>> , поскольку, кроме принимаемой в расчёт энергии A (напр., электрической), в тепло Q идёт и энергия, отбираемая от холодного источника.

Что является рабочим телом теплового двигателя является

Тепловой двигатель – устройство преобразующее внутреннюю энергию топлива в механическую энергию. Основные части теплового двигателя: нагреватель, рабочее тело и холодильник. Чтобы получить полезную работу, необходимо сделать работу сжатия газа меньше работы расширения. Для этого нужно, чтобы каждому объёму при сжатии соответствовало меньшее давление, чем при расширении. Поэтому газ перед сжатием должен быть охлажден.
Для того чтобы двигатель совершал работу, необходима разность давлений по обе стороны поршня двигателя или лопастей турбины. Во всех тепловых двигателях эта разность давлений достигается за счет повышения температуры рабочего тела (газа) на сотни или тысячи градусов по сравнению с температурой окружающей среды. Такое повышение температуры происходит при сгорании топлива.
Одна из основных частей двигателя — сосуд, наполненный газом, с подвижным поршнем. Рабочим телом у всех тепловых двигателей является газ, который совершает работу при расширении. Обозначим начальную температуру рабочего тела (газа) через T1. Эту температуру в паровых турбинах или машинах приобретает пар в паровом котле. В двигателях внутреннего сгорания и газовых турбинах повышение температуры происходит при сгорании топлива внутри самого двигателя. Температуру T1 температурой нагревателя.’

Рассмотрим это на примере идеальной тепловой машины.

Любая тепловая машина состоит из трех частей: теплоотдатчика, рабочего тела и теплоприемника. Теплоотдатчик имеет температуру Т1 и отдает некоторое количество теплоты Q1 рабочему телу. Рабочее тело (газ, пар, нагретая жидкость) совершает работу. Причем, не вся теплота Q1 превращается в работу, а только некоторая ее часть

Читать еще:  Шевроле лачетти возможные неисправности двигателя

Другая часть теплоты Q2 передается телу с более низкой температурой (Т2) – теплоприемнику. Таким образом, сущность работы тепловой машины заключается не только в получении теплоты Q1 от теплоотдатчика и совершении работы А, но и передаче некоторого количества теплоты Q2теплоприемнику, температура которого ниже чем температура теплоотдатчика (Т1 > Т2). Вечный двигатель второго рода состоит из первых двух частей, то есть, теплота Q1 полностью переходит в работу А, а это невозможно. Там, где нет перепада температур (Т1 = Т2), невозможно превратить теплоту в работу.

Чтобы получить математическое выражение второго начала термодинамики, рассматривают действие идеальной тепловой машины. Идеальной называют машину, которая работает без трения и потерь тепла. В ней рабочим телом является идеальный газ. Работа машины основана на принципе обратимого термодинамического цикла, называемого циклом Карно.

Цикл Карно состоит из четырех последовательно совершаемых процессов: изотермического расширения, адиабатического расширения, изотермического сжатия, адиабатического сжатия газа. Все процессы проводят обратимо, в результате чего газ возвращается в исходное положение.

В результате математических преобразований получают

(Q1 – Q2)/Q1 = (Т1 – Т2)/Т1 (4.9)

или h = А/Q1; h = (Т1 – Т2)/Т1 (4.10)

где h – коэффициент полезного действия (КПД) тепловой машины.

Установленный на валу ротор жестко соединён с зубчатым колесом, которое входит в зацепление с неподвижной шестерней. Ротор с зубчатым колесом как бы обкатывается вокруг шестерни. Его грани при этом скользят по эпитрохоидальной поверхности цилиндра и отсекают переменные объёмы камер в цилиндре.

Такая конструкция позволяет осуществить 4-тактный цикл без применения специального механизма газораспределения. Герметизация камер обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаемыми к цилиндру центробежными силами, давлением газа и ленточными пружинами.

Смесеобразование, зажигание, смазка, охлаждение, запуск принципиально такие же, как и у обычного поршневого двигателя внутреннего сгорания.

Практическое применение получили двигатели с трёхгранными роторами, с отношением радиусов шестерни и зубчатого колеса: r: R = 2: 3, которые устанавливают на автомобилях, лодках и т.п. Масса и габариты двигателя Ванкеля в 2-3 раза меньше соответствующих им по мощности двигателей внутреннего сгорания обычной схемы.

Воздух сначала поступает в цилиндр, сжимается и нагревается до высокой температуры. В раскаленный воздух с помощью форсунки впрыскивается самовоспламеняющееся и быстро сгорающее топливо, за счет чего мотор и начинает работать. Для таких двигателей необходимо специальное дизельное топливо. Из уроков физики все мы знаем, что тепловая энергия может преобразовываться в механическую. Именно это и происходит, когда в цилиндре двигателя сгорает топливо. Тепло, превращаясь в механическую работу, начинает двигать поршень, который в цилиндре двигается возвратно-поступательно. Коленчатый вал, связанный с поршнем при помощи шатуна, вращается.

Во время работы, поршень то приближается, то удаляется от коленчатого вала. Когда эти две детали сближаются, то в цилиндр поступает горючая смесь. При движении цилиндра в обратную сторону, в нем увеличивается давление. Сжатая горючая смесь в этот момент готова к сгоранию, едва стоит вспыхнуть искре, как смесь легко воспламеняется и выделяет газы, которые нужны для того, чтобы привести мотор в движение. Цилиндр соединен с трубопроводом, через который из двигателя выбрасываются отработанные газы.

Одно движение поршня к коленчатому валу или обратно называется ходом. Если за четыре хода поршня вал сделает два оборота вокруг своей оси, значит, закончился так называемый рабочий цикл. Двигатель, рабочий цикл которого совершается за два оборота коленчатого вала, называется четырехкратным. Существуют также и двукратные двигатели. Рабочий цикл у них совершается за два хода поршня и за один оборот коленчатого вала. В автомобильных моторах такие двигатели практически не применяются, зато их широко используют для мотоциклов.

Чем сильнее будет давление на поршень при сгорании горючей смеси, тем больше мощность двигателя. Поэтому выгодно увеличивать степень сжатия в двигателе. В этом случае из той же порции топлива получается больше полезной работы. Многие автолюбители пытаются самостоятельно отрегулировать двигатель так, чтобы расходовать меньше топлива, но при этом не терять мощности. Но увлекаться этим не следует, поскольку при сильном увеличении степени сжатия горючая смесь сгорает слишком быстро (этот процесс называется детонация), что вызывает неустойчивую работу двигателя. При этом в работающем двигателе слышен стук, мощность значительно снижается, а из глушителя идет черный дым.

Ссылка на основную публикацию
Adblock
detector