Датчик оборотов двигателя toyota

Датчиков оборотов на дизельных двигателях с электронным управлением два. Один установлен на блоке двигателя (речь идет о двигателях фирмы «Toyota») в районе третьего цилиндра и срабатывает от выступа на противовесе коленчатого вала. На старых двигателях этот датчик установлен на фланце ТНВД и «считает» обороты зубчатого колеса ТНВД (двигатель в этом случае называется 2L-ТНЕ). Сигнал с этого датчика идет на электронный блок управления, и при его исчезновении (обрыве датчика) двигатель не глохнет, хотя и начинает работать более жестко, т.е. имеет место более ранний впрыск топлива. (РИС.25)

Рис. 25. Датчик положения коленчатого вала расположен между третьим и четвертым цилиндрами. Когда устанавливается блок от обычного 2L-Т, для этого датчика приходится сверлить отверстие. К счастью, там есть для этого прилив. Но когда по какой-то причине его нет, можно к кромке блока шкивов приварить кусочек железа, а рядом закрепить датчик оборотов. Естественно, придется удлинить провода, но данная конструкция, уже проверено на двух машинах, работает.

На щитке приборов в этом случае загорается аварийная лампочка «check» с кодом «14» и двигатель снижает свою мощность. Следует отметить, что снижение мощности происходит не из-за того, что впрыск слишком ранний, а из-за того, что блок управления (компьютер) «увидел» «неправильный» сигнал (отсутствие сигнала) и включил обходную программу управления. Обходная же программа чего-чего, а достижения максимальной мощности уж точно не предусматривает. Таким образом, датчик оборотов коленчатого вала нужен, для управления опережением впрыска и на способность двигателя заводиться не влияет.

Второй датчик оборотов установлен внутри ТНВД и считывает обороты специальной шестерни на валу насоса.

Рис. 24. Если необходимо сместить какую-то регулировку, например, повернуть ТНВД, чтобы скомпенсировать износ его деталей, а заводом это не предусмотрено, можно сделать фигурную шпонку. В углу показаны разрезы обычной (А) и фигурной (Б) шпонок. При установке фигурной шпонки поворот вала уже будет другой. Этот способ нами неоднократно применялся на автомобилях, у которых нет трамблера, а угол опережения зажигания нужно сделать более ранним. Изготовили новую шпонку под шестерню коленчатого вала – проблема тут же исчезала.

При обрыве этого датчика перестает работать тахометр и двигатель глохнет. В память блока управления в этом случае заносится код неисправности «6» или «24», в зависимости от года разработки системы управления. Датчик, как уже говорилось, расположен внутри ТНВД, а провода от него выведены через крышку насоса. Там находится разъем на два провода.

Как уже отмечалось выше, одна из самых распространенных неисправностей, из-за которой не заводится двигатель – это неисправность именно этого датчика оборотов, поэтому необходимо измерить его сопротивление. Если обнаружится обрыв, датчик нужно заменить. Или перемотать. Делается это следующим образом (речь идет о двигателях начала и середины 90-годов; у более «свежих» ТНВД этот датчик в «квадратном» корпусе и неразборный).

  • Снять заливную крышку топливного бака.
  • Разъединить разъем на крышке ТНВД.
  • Ключом открутить гайку разъема датчика.
  • Пальцами вдавить разъем датчика внутрь ТНВД (этому препятствует уплотняющее резиновое кольцо внутри).
  • Отвинтить четыре болта и снять крышку ТНВД.
  • При помощи резиновой груши или пластиковой бутылки с трубкой удалить топливо из ТНВД.
  • Плоской отверткой отогнуть концы стопорной пластинки винтов крепления датчика.
  • Вывинтить два болта крепления датчика и снять стопорную пластинку. Для отвинчивания нужен спецключ «внутренняя звездочка» (torx).
  • Снять пластину фиксации датчика, вынуть датчик.
  • Отпаять датчик от разъема, не обращая внимания на цвет проводов. Если впоследствии вы перепутаете полярность (что достаточно просто сделать, вы же можете ошибиться в направлении намотки), поменять провода на разъеме не сложно, даже уже собрав насос. Двигатель заведется в любом случае, но если вы перепутаете провода датчика, момент впрыска топлива будет более поздним, что легко определить по характеру работы двигателя.
  • С кончика датчика снять пружинную магнитокорректирующую шайбу. Заточенной под долото часовой отверткой удалить всю резиноподобную мастику, отпаять провода от выводов датчика.
  • Маленьким бородком (гвоздем) выровнять фиксирующую вмятинку (хватит и одной) и при помощи той же часовой отвертки удалить магнитопроводную Т-образную пластинку.
  • Вынуть магнит и удалить остатки мастики.
  • Сильным пламенем газовой горелки в течение 5-8 сек нагреть корпус датчика.
  • Затем быстро надавить отверткой на стержень датчика или на выступающую часть каркаса катушки и выдавить этот каркас наружу.

Вынуть стержень датчика, снова удалить остатки мастики и смотать обмотку (провод диаметром 0,08-0,10). Очистить каркас и при помощи электродрели намотать новую обмотку. Если каркас поврежден, нужно изготовить новый из картона или оргстекла. (РИС.26)

Рис. 26. Эскиз каркаса для круглого датчика оборотов у ТНВД первой половины 90-х годов. У более новых машин датчик оборотов не круглый, а квадратный.

Заготовку каркаса, изображенную на рисунке, доработайте напильником до формы оригинала. Нужно еще оформить выводы обмотки, для этого еще до намотки провода ножовочным полотном делаем пропилы в каркасе и эпоксидным клеем фиксируем в них две проволочки. После этого концы обмоток припаиваем к этим проволочкам (желательно сверху, чтобы при подпайке гибких выводов не произошло обрыва обмотки), на всякий случай обматываем тонкой пластиковой изолентой и помещаем в корпус датчика. В качестве проволочек мы используем выводы обычных сопротивлений МЛТ, которые есть у каждого радиолюбителя.

Установить сердечник в каркас и проверить его ориентацию (кончик его должен быть параллелен зубьям шестерни, над которой стоит датчик), установить магнит и Т-образную пластинку. Легким молотком и бородком нужно восстановить фиксирующую выемку (чтобы Т-образная пластина была зажата). В заключение проверяем сопротивление обмотки (оно должно быть около 200 Ом) и убеждаемся в отсутствии замыканий на корпус.

К выводам датчика подпаиваем два гибких провода и, еще раз проверив целостность обмотки, заполняем свободное пространство корпуса датчика маслостойким герметиком. Учтите, что при эксплуатации этот герметик немного разбухнет, поэтому слишком много его не должно быть. Только вровень с корпусом датчика или даже чуть меньше. Использовать в качестве герметика эпоксидные (и им подобные) клеи не рекомендуем, поскольку при полимеризации возникнут механические напряжения, которые могут вызвать обрыв обмотки датчика. Не стоит использовать капрон, поскольку он может просто расплавиться (температура внутри ТНВД около 100 0С). Время высыхания герметика до установки датчика около суток.

Припаять провода датчика к разъему. Установить датчик на место. Вставить разъем в крышку ТНВД и установить ее на место. С помощью ручного подкачивающего насоса заполнить ТНВД дизельным топливом. Проверить сопротивление датчика. Подсоединить разъем датчика и запустить двигатель. Если он не запустится, или запустится, но будет работать неправильно, поменять местами контакты в разъеме (в «маме»).

Азбука впрыска: датчик холостого хода

Ранее мы познакомились с системой регулирования холостого хода. Напомним, что задачей данной системы является поддержание оборотов двигателя на холостом ходу в заданном диапазоне, который зависит от температуры охлаждающей жидкости. Благодаря работе этой системы включение мощных энергопотребителей (таких как электровентилятор системы охлаждения, кондиционер, дальний свет и др.) практически не сказывается на работе двигателя. Владельцам впрысковых автомобилей нередко приходится сталкиваться с проблемами, которые вызваны неисправностями системы регулирования холостого хода. Например, двигатель запускается только с нажатием на педаль акселератора и глохнет при ее отпускании, двигатель глохнет при выжимании сцепления в момент переключения передачи. Возможны ситуации, когда на холостом ходу обороты двигателя нестабильны или лежат в диапазоне от 1500 до 3000 об/мин вместо привычных 800 — 1000 об/мин. Попытаемся выяснить, чем вызвано вышеописанные особенности в поведении двигателя.

Датчик холостого хода — он же регулятор холостого хода

Основным исполнительным механизмом данной системы является датчик холостого хода, представляющий собой реверсивный шаговый электродвигатель. Он установлен на корпусе дроссельного патрубка. При перемещении конусного наконечника регулятора изменяется проходное сечение байпасного канала, через который в двигатель поступает воздух (следует отметить, что через закрытую дроссельную заслонку в двигатель также поступает воздух, но его количество невелико, около трех-четырех килограмм в час).

Встречаются следующие виды неисправностей, связанных с датчиком холостого хода:

  • неисправности электрических цепей управления регулятором (чаще всего обрывы или неодетая колодка);
  • неисправность самого регулятора (неисправность электродвигателя или неисправность червячного механизма);
  • неисправность выходных цепей контроллера (встречается достаточно редко);
  • загрязнение канала холостого хода. Встречаются случаи, когда регулятор холостого хода полностью перекрывает байпасный канал (например, при выполнении процедуры парковки), а вот открыть его уже не в силах из-за подклинивания конусного наконечника.

Проверить работоспособность регулятора холостого хода можно с помощью диагностического тестера, выбрав в меню режим управления исполнительными механизмами. Тут существуют два варианта: с помощью тестера можно задавать желаемые обороты холостого хода либо желаемое положение (в шагах) регулятора. По реакции двигателя на команды тестера можно судить об исправности исполнительного механизма.

Во многих комплектациях (но не во всех) бортовая диагностика способна оценить целостность электрических цепей управления регулятором холостого хода. Для этих неисправностей зарезервированы коды Р1513, Р1514. В том случае, если подобная диагностика не реализована в контроллере вашего автомобиля, проверки цепей приходится выполнять вручную с помощью омметра.

Если на холостом ходу реальные обороты двигателя отличаются от желаемых, и при этом контроллеру не удается привести их в соответствие, добавляя или уменьшая количество воздуха через регулятор холостого хода, через некоторое время в памяти ошибок контроллера могут быть зафиксированы коды:

  • Р0506 — регулятор холостого хода заблокирован, низкие обороты двигателя;
  • Р0507 — регулятор холостого хода заблокирован, высокие обороты холостого хода.

Датчик положения дроссельной заслонки

Для определения режима холостого хода используется датчик положения дроссельной заслонки (ДПДЗ). Если он показывает, что дроссельная заслонка закрыта, то система управления двигателем переходит в режим поддержания оборотов холостого хода. К сожалению, на сегодняшний день датчик положения дроссельной заслонки нельзя отнести к надежным компонентам системы управления. Одно из проявлений неисправности датчика — изменение напряжения при полностью закрытой дроссельной заслонки. При этом могут наступать моменты, когда датчик показывает открытие дроссельной заслонки, и система управления переходит на режим частичных нагрузок, что приводит к «зависанию» оборотов двигателя в диапазоне от 1500 до 3000 об/мин. Характеристику ДПДЗ можно проверить с помощью диагностического прибора, плавно нажимая на педаль газа и отслеживая по прибору изменения сигнала датчика.

Еще одна возможная неисправность датчика — подклинивание ротора.

Привод дроссельной заслонки

К зависанию оборотов двигателя может приводить также подклинивание самой дроссельной заслонки в приоткрытом состоянии. В этом случае датчик холостого хода не способен контролировать избыточное количество воздуха, поступающего в двигатель. Если осмотр дроссельного патрубка показывает, что заслонка надежно закрывается с помощью возвратной пружины, необходимо проверить правильность регулировки натяжения тросика, идущего к педали газа.

Факторы, влияющие на нестабильность работы двигателя в режиме холостого хода.

Ниже мы коротко упомянем неисправности, не относящиеся к системе поддержания холостого хода, но способные приводить к повышенной нестабильности оборотов двигателя на холостом ходу.

Патрубок дроссельный в сборе

На автомобилях с кондиционерами моментом включения муфты компрессора управляет контроллер системы управления двигателем. Нажимая на кнопку включения кондиционера, мы всего лишь даем знать контроллеру о своем желании. Получив запрос, контроллер проверяет возможность включения кондиционера в данный момент и только после этого подает управляющий сигнал на реле кондиционера. Если двигатель работал на холостом ходу, то перед включением кондиционера с помощью регулятора холостого хода будет увеличено количество воздуха, поступающего в цилиндры. Такой подход позволяет сгладить резкое изменение нагрузки на валу двигателя.

В момент некорректного включения кондиционера (напрямую, минуя контроллер) двигатель может заглохнуть.

Переобедненная топливо-воздушная смесь.

Переобедненная топливо-воздушная смесь способна вызвать повышенную нестабильность оборотов двигателя на холостом ходу, которая не может быть компенсирована системой поддержания холостого хода. К переобеднению топливо-воздушной смеси могут приводить:

  • неисправности топливной системы;
  • подсосы воздуха во впускной системе;
  • неправильное подключение шлангов, подводящих картерные газы и пары из адсорбера к дроссельному патрубку;
  • неисправный датчик кислорода;
  • датчик температуры охлаждающей жидкости с неверной характеристикой (например, на холодном двигателе, показывающий высокую температуру охлаждающей жидкости);
  • датчик массового расхода воздуха с неверной характеристикой;
  • не отрегулированное СО (в системах без датчика кислорода).

Переобогащенная топливо-воздушная смесь.

Переобогащенная топливо-воздушная смесь может также стать причиной нестабильного холостого хода. Здесь необходимо выделить следующие причины переобогащения:

  • неисправности топливной системы;
  • неисправный датчик кислорода;
  • датчик температуры охлаждающей жидкости с неверной характеристикой;
  • датчик массового расхода воздуха с неверной характеристикой или плохое заземление датчика;
  • не отрегулированное СО (в системах без датчика кислорода).

Пропуски воспламенения.

Подробно о причинах возникновения пропусков воспламенения мы говорили в прошлом выпуске.

Воздушный фильтр. Загрязнение воздушного фильтра может снижать пропускную способность системы впуска двигателя и, как следствие, стать причиной неустойчивого холостого хода или глушения двигателя.

Датчик скорости. В некоторых комплектациях системы управления двигателем выход из строя датчика скорости может стать причиной глушения двигателя при выжимании сцепления.

Тюнинг двигателя. Любые изменения конструкции двигателя, так или иначе связанные с рабочими процессами (изменение объема двигателя, компрессии, фаз газораспределения и т. д.), без соответствующих изменений калибровочных данных контроллера в большинстве случаев приводят к нестабильной работе двигателя на холостом ходу.

Как видно из представленной выше информации, поиск причин нестабильной работы двигателя на холостом ходу может оказаться очень трудоемким. Большую помощь здесь оказывает личный опыт. За подробными рекомендациями по поиску неисправностей следует обращаться к руководствам по техническому обслуживанию систем управления двигателем автомобилей ВАЗ.

Датчик положения коленвала (ДПКВ)

Здесь Вы найдете полезные основные сведения и важные советы о датчике коленчатого вала для автомобилей.

Датчик коленчатого вала – это один из наиболее важных источников информации для управления двигателем. Он определяет частоту вращения и положение коленчатого вала и передает эти данные на блок управления двигателем в виде электрического сигнала. На этой странице мы расскажем Вам, как работают датчики коленчатого вала и на что следует обращать внимание при их проверке, чтобы избежать повреждений.

Важное указание по технике безопасности
Следующая информация и практические советы были составлены HELLA для профессиональной помощи автомастерским. Информация, предоставленная на этом веб-сайте, должна применяться только соответствующим образом подготовленными специалистами.

Принцип действия датчика коленчатого вала

Неисправность датчика коленчатого вала

Причины неисправности датчиков коленчатого вала

Проверка датчика коленчатого вала

ПРИНЦИП РАБОТЫ ДАТЧИКА ПОЛОЖЕНИЯ КОЛЕНЧАТОГО ВАЛА : ПРИНЦИП ДЕЙСТВИЯ

Датчики коленчатого вала предназначены для определения частоты вращения и положения коленчатого вала. Чаще всего их устанавливают в непосредственной близости от зубчатого венца маховика. Существует две конструкции: индуктивные датчики и датчики Холла. Перед проверкой датчика коленчатого вала необходимо определить его тип.

Вращение зубчатого обода вызывает изменения магнитного поля. Они формируют в датчике коленчатого вала различные сигналы напряжения, передаваемые на блок управления. На основании полученных сигналов блок управления рассчитывает частоту вращения и положение коленвала, чтобы получить важные основные данные для расчета впрыска и регулирования зажигания.

Датчик коленчатого вала

НЕИСПРАВНОСТЬ ДАТЧИКА КОЛЕНВАЛА : ПРИЗНАКИ

При выходе датчика коленчатого вала из строя могут проявляться следующие признаки неисправности:

  • отключение двигателя,
  • остановка двигателя
  • проблемы с пуском,
  • сохранение кода ошибки.

ПРИЧИНЫ НЕИСПРАВНОСТЕЙ ДАТЧИКА ПОЛОЖЕНИЯ КОЛЕНЧАТОГО ВАЛА : ПРИЧИНА ВЫХОДА ИЗ СТРОЯ

Выход из строя может быть обусловлен следующими причинами:

  • внутренние короткие замыкания,
  • обрывы кабелей,
  • короткое замыкание кабеля,
  • механические повреждения зубчатого диска,
  • загрязнения в результате истирания металла.

ПРОВЕРКА ДПКВ : ПОИСК НЕИСПРАВНОСТЕЙ

Поиск неисправностей:
Для поиска и устранения неисправностей рекомендуется выполнить следующие действия:

  1. Считывание памяти неисправностей
  2. Проверка кабелей датчика, штекера и датчика на правильность электрических соединений, наличие обрывов и коррозии
  3. Проверка на наличие загрязнений и повреждений

Непосредственный контроль датчика коленчатого вала может быть затруднен, если мастер не знает точную конструкцию датчика. Перед проверкой необходимо выяснить, является ли он индуктивным датчиком или датчиком Холла. Эти варианты не всегда можно отличить друг от друга визуально. При трех контактах штекера точно определить соответствующий тип датчика невозможно. Здесь могут помочь конкретные данные изготовителя и информация из каталога запасных частей.

Пока тип конструкции не будет четко определен, использовать омметр для проверки запрещено. Напряжение, используемое измерительным прибором для измерения сопротивления, может повредить датчик Холла!

Если датчик имеет 2-полюсный штекер, то скорее всего это индуктивный датчик. На нем можно определить внутреннее сопротивление, возможное замыкание на землю и сигнал. Для этого отсоедините штекерное соединение и проверьте внутреннее сопротивление датчика. Если оно составляет от 200 до 1 000 Ом (в зависимости от заданного значения), то датчик в порядке. При 0 Ом имеет место короткое замыкание, а при M Ом – обрыв. Проверка замыкания на землю выполняется с помощью омметра от клеммы до заземления автомобиля. Значение сопротивления должно стремиться к бесконечности. При проверке с помощью осциллографа должен возникать синусоидальный сигнал достаточной мощности. С помощью датчика Холла можно проверить только напряжение прямоугольного сигнала и напряжение питания. Прямоугольный сигнал должен возникать в зависимости от частоты вращения двигателя.

Мы хотели бы еще раз подчеркнуть: при использовании омметра датчик Холла может быть поврежден.

Шесть датчиков, поломка которых приведет к странному поведению машины

Заняться проверкой работоспособности датчиков не сразу догадается даже специалист автосервиса. Есть шесть устройств, на которые стоит обратить внимание при возникших странностях в работе автомобиля.

Первый — это датчик положения дроссельной заслонки. Благодаря его данным рассчитываются впрыск топлива, угол опережения зажигания и режим работы холостого хода.

На автомобилях отечественного производства сенсорный элемент этого датчика сделан из полимерной пленки с графитовым напылением, по которому скользит ползунок, пишет aif.ru. Поверхность может разрушаться, сопротивление — искажаться, в этом случае показания будут передаваться неправильные.

На основании искаженных данных электронный блок управления начнет готовить горючую смесь. Автомобиль станет дергаться, во время разгона могут ощущаться провалы, холостой ход также будет неровным. Обороты двигателя в ряде случаев из-за поломки датчика не будут падать ниже 1500. Если вы заметили у своего двигателя похожие симптомы, то следует отправляться в автосервис в максимально щадящем режиме эксплуатации.

Второй важный датчик отвечает за регулировку давления топлива. Он может стоять, к примеру, на рампе, соединенной с трубкой слива топлива в бензобак. Или же в баке вместе с насосом. Если этот элемент вышел из строя, то двигатель не сможет развить полную мощность, временами будет глохнуть на холостом ходу и допускать рывки и провалы в работе.

Третий в списке — индукционный датчик положения коленчатого вала, который ставится на современные двигатели. При вращении он выдает импульс блоку управления. Если сигнала нет, то система воспринимает это как остановку работы двигателя. Автомобиль просто не заведется. При поломке этого датчика вызова эвакуатора не избежать.

Датчик температуры охлаждающей жидкости — четвертый по счету — ставится, как правило, между головкой блока цилиндров и термостатом. Чем выше температура — тем меньше его электрическое сопротивление. На основании его показаний, к примеру, электроника готовит оптимальную топливную смесь при запуске в холодное время года. Или же включает вентилятор на радиаторе.

Если работа датчика нарушена, блок управления начинает готовить топливную смесь, предназначенную для температуры 0 градусов Цельсия: потребление бензина неизбежно вырастет. Ну а при высоких температурах невозможно будет запустить вентилятор. Из-за отсутствия корректировки угла опережения зажигания в блоках цилиндров могут начаться подрывы топливной смеси.

Пятый в списке — датчик детонации двигателя. Его задача — определить преждевременный подрыв смеси в цилиндрах, из-за чего могут начать необратимые разрушения. Чаще всего этот датчик работает по принципу пьезо-зажигалки. Чем больше ударная нагрузка — тем выше напряжение на нем. На основании его данных блок управления корректирует угол опережения зажигания, чтобы прекратить детонации. Если датчик выйдет из строя, серьезных последствий для двигателя не избежать.

Рядом с катализатором в выхлопной системе часто находится датчик содержания кислорода в выхлопных газах (лямбда-зонд). Он анализирует этот показатель и передает данные для корректировки смеси. Наличие кислорода сигнализирует о том, что топливная смесь бедная. Нарушения в работе этого датчика приводят к тому, что растет расход топлива и объем вредных выбросов.

Читать еще:  Двигатель вяло набирает обороты
Ссылка на основную публикацию
Adblock
detector