Датчик счета оборотов двигателя

Преобразователи частоты для управление тягодутьевыми машинами

Для регулирования режима работы паровых и водогрейных котлов требуется изменять соотношение топливо-воздух и поддерживать постоянное разрежение в топке котла. Существующие ручные и автоматические системы регулирования работы котла основаны на регулировании расходов воздуха и уходящих газов заслонками, приводимыми в движение электроприводами типа «МЭО». При этом мощные двигатели тягодутьевых машин включаются от сети и их режим работы не регулируется. Применение частотно-регулируемых приводов тягодутьевых машин позволяет снизить потребление электроэнергии ими на величину до 70% за счет отказа от регулирования заслонками и снижения непроизводительных потерь мощности. Также за счет снижения средних рабочих оборотов двигателей дымососов и дутьевых вентиляторов уменьшается уровень вибраций и продлевается срок службы механических деталей приводов. Поэтому при модернизации котельных в первую очередь целесообразна установка частотно-регулируемых приводов на дымососы и дутьевые вентиляторы.

Рассмотрим подробней схему (рис. 1) управления потоком дымовых газов с помощью преобразователя частоты (ПЧ). То есть вместо механического перекрытия дымоходов шиберами, преобразователи частоты будут изменять частоту вращения роторов двигателей, тем самым изменяя величину потока дымовых газов и разрежение в топках котлов, а также значительно снижая потребление электроэнергии двигателями дымососов.

Рис.1 Функциональная схема управления электродвигателем дымососа преобразователем частоты
РЕ – датчик разрежения; М – асинхронный электродвигатель дымососа; ПЧ – преобразователь частоты

Управление тягой дымососов осуществляется следующим образом. Датчик давления (РЕ) измеряет величину давления-разрежения в топке котла и передает результат измерения с помощью токового сигнала 4-20 мА на частотный преобразователь (ПЧ). Встроенный в ПЧ ПИД- регулятор обрабатывает аналоговый сигнал с датчика, и в соответствии с заданием изменяют частоту питающего напряжения (в пределах 5-50 Гц), соответственно изменяется и частота вращения ротора двигателя дымососа/вентилятора. Таким образом, соблюдается технологический процесс удаления продуктов горения из топок котлов. Следовательно, мы наблюдаем снижение частоты вращения ротора, силы тока, а значит и потребление электроэнергии, в отличие от постоянной работы двигателя на номинальной нагрузке.

Основные преимущества от внедрения ПЧ для управления тягодутьевыми машинами:

  1. Стабилизация процесса управления разрежением в топках котлов, сглаживание переходных процессов (точность удержания частоты 0,1 Гц).
  2. Улучшение процессов горения за счет создания стабильной тяги.
  3. Защита двигателей дымососов: от перегрузки по току, от перегрева, от межфазного замыкания, от обрыва фаз, от перекоса фаз, от заклинивания (по коэффициенту мощности).
  4. Управление двигателями с высокой точностью, получение высокого крутящего момента, снижение шума и вибрации, плавный пуск и остановка двигателей, функция автоматического перезапуска двигателей вследствие скачка напряжения.
  5. Значительная экономия электроэнергии.

Для подбора преобразователя частоты для вашего дымососа/вентилятора, заполните форму «Получить коммерческое предложение».

Датчик скорости: особенности работы, неисправности и замена

INTEGRA sedan (01.85 — 12.89)

6 sedan (119) (07.81 — 05.86)

Датчик скорости – один из множества автомобильных датчиков, ответственных за выработки сигналов измерительной информации, ее передачу, дальнейшее преобразования и обработку электронным блоком управления и некоторыми другими устройства. Если в автомобиле нет ЭБУ, потребность в датчиках меньше не становится. Выход даже наименее важного из датчиков сказывается хотя бы на том, насколько комфортно будет эксплуатировать автомобиль. Поскольку датчик скорости является довольно важным, давайте попробуем разобраться в особенностях его устройства, разберем основные неисправности и попытаемся понять, как в случае нужды его может заменить даже неопытный автолюбитель.

Коротко о работе датчиков скорости

Вообще, автомобильные датчики скорости делятся всего на два типа:

  • Электронный;
  • Механический.

Начать стоит с механического, ведь хронологически именно он предшествовал более совершенному электронному устройству. В основе механического датчика лежит группа сцепленных шестеренок и небольшой тросик. Устанавливали такие датчики прямо на механизмах привода спидометра недалеко от КПП. Механические устройства весьма незамысловаты и обладают солидным эксплуатационным ресурсом, однако не дают точных показаний на всем диапазоне скоростей и все-таки зависят от ряда внешних условий. Чего не скажешь об электронных датчиках скорости.

Современные датчики основываются на эффекте Холла . Если сказать, что они не работают на частотно-импульсном сигнале, проще не станет, так что постараемся все разъяснить. Итак, датчик формирует так называемый импульсный сигнал, частота следования импульсов в котором имеет зависимость от скорости вращения вала. Автомобиль движется быстрее – вал вращается быстрее – датчик производит импульсы большей частоты – на спидометр выводится достоверная информация об изменении скорости в большую сторону. Разумеется, «привычный» для электроники сигнал человек понять не может. По этой причине в систему вводится контролер , подсчитывающий частоту поступающих от датчика скорости импульсов в единицу времени, а затем переводящий эту величину в человеко-понятные км/ч или миль/ч.

Электронные датчики удалось реализовать двумя способами:

  • С контактом от вала;
  • Без контакта.

Первые датчики просто называют контактными. В них используют приводные шестерни и гибкий трос (иногда жесткий вал небольшой длины). Трос или вал служат для передачи крутящего момента от таких автомобильного моста, вала коробки передач или же раздаточной коробки. Угловое вращение переводится в электрические импульсы, которые передаются далее по системе и переводятся в человеко-понятные величины. Именно такие датчики нашли самое широкое применение в автомобильной индустрии. Причин две: они надежные, их можно использовать вместо механического привода спидометра без дорогостоящих доработок последнего.

Все более популярные бесконтактные датчики основываются на том же эффекте Холла, но технически реализуются не так, как контактные. Они используют одно из вспомогательных устройств: ротор или задающий диск. В бесконтактных датчиках эффект Холла используется в полной мере, тем временем как в менее сложных контактных – тот же эффект, магниторезистивный эффект или работа оптронов (оптроэлектронных пар).

Читать еще:  Характеристики двигателя шкода akl

Подробнее о контактных и бесконтактных датчиках

Бесконтактные датчики скорости основываются на уже упомянутом эффекте Холла, вследствие чего они не имеют подвижных частей. Суть эффекта Холла в том, что на плоском проводки, через который с противоположных сторон пропускается постоянный ток, при его нахождении в магнитном поле возникает напряжение на паре других противоположных сторон. Для работы датчиков нужно разместить на валу агрегата, которым может быть мост, редуктор или же коробка передач, импульсный диск или специальный диск. Данные элементы имеют намагниченные участки . Импульсный сигнал образуется за счет того, что ротор, отдаленный от чувствительной части автомобильного датчика с микросхемой Холла, начинает вращаться. Далее сигнал поступает к контролеру.

Контактные датчики скорости, использующие эффект Холла, и их одноименная микросхема с магнитом постоянно неподвижны, а магнитное поле изменяется благодаря вращению специального кольца с прорезями, иначе называемым шторкой. Само кольцо подсоединено к валу или гибкому приводному тросику, через которое вращение и передается.

Магниторезистивные и оптоэлектронные датчики

В основе работы датчиков скорости авто может стоять магниторезистивный эффект . Во многом он напоминает эффект Холла, но лишь на первый взгляд. Суть в том, что некоторые материалы могут быстро менять свое электрическое сопротивление в случае, если они помещаются в магнитном поле. Что бросается в глаза при изучении таких датчиков, так это микросхема, в которую интегрирован магнитерезистивный элемент. Он составлен из полупроводниковых элементов. Кроме того, подобный датчик оборудован прямым приводом и многополюсным магнитом.

Оптоэлектронные контактные датчики скорости весьма просты, но это единственное их достоинство. Дело в том, что они менее чувствительны (к отклонениям основного параметра) и более инерционны (имеют большое запаздывание в измерении), нежели вышеописанные датчики. Работает датчик за счет оптопары, представляющей собой фототранзистор и светодиод, разделенные диском с прорезями. Последний закреплен на приводном валу. За счет вращения диска и прерывания светового потока между парой элементов и генерируется импульсный сигнал.

Как датчик скорости влияет на работу двигателя

В систему определения скорости введен специальный контролер, который воспринимает импульсный сигнал от датчика. Именно контролер передает сигнал электронному блоку управления, которые рассчитывает объем топлива, необходимый для оптимальной работы двигателя. К примеру, если скорость автомобиля уменьшается, уменьшается и количество топлива, которое подается двигателю. За счет этого удается существенно экономить горючее и эксплуатировать двигатель в наиболее щадящем режиме.

В случае неисправности датчика скорости блок управления не будет получать сигнал, отвечающий реальной скорости автомобиля. Топливо будет подаваться равномерно вне зависимости от того, как сильно водитель вжимает педаль газа. На практике выходит так, что горючее расходуется с избытком, а силовой агрегат иногда работает с рывками. Статистика показывает, что исправный датчик позволяет экономить порядка 2 литров топлива на 100 километров пробега . Еще одна особенность современных автомобилей с датчиками скорости на основе эффекта Холла: неисправность электроусилителя руля при неисправном датчике (ошибка P-0501).

Определение частоты вращения асинхронных двигателей без датчика оборотов

Внедрение: 2018 г.

Данная статья является продолжением прежней статьи по опубликованным материалам А.В. Скляра, но уже по результатам диссертационных исследований [1], где автор применил оригинальную систему измерений с использованием модуля АЦП E14‑140‑M.

Объектом исследования диссертационной работы является асинхронный двигатель с короткозамкнутым ротором. Предметом исследования являются способы и алгоритмы бездатчикового определения частоты вращения ротора асинхронных двигателей. Целью работы является повышение точности и технологичности определения частоты вращения асинхронных двигателей путем применения сигнатурного способа с использованием алгоритма на основе комбинации спектрального и корреляционного методов анализа.

Система измерений, реализованная на основе модуля АЦП E14‑140‑M, содержит плату, разработанную автором, содержащую аналоговые фильтры и согласующие усилители. Внешний вид устройства показан на рисунке 1.

Рисунок 1. Устройство бездатчикового определения частоты вращения: 1 – разъем для подключения датчика тока; 2 – измерительный трансформатор напряжения; 3 – клеммы для подключения исследуемого напряжения; 4 – аналого-цифровой преобразователь; 5 – разъем питания, 6 – аналоговые фильтры.

На рисунке 2 показаны составные части разработанной автором программы и потоки информации между описываемыми блоками. В структуре программы можно выделить блок, отвечающий за ввод-вывод информации: работу с АЦП, обмен командами через интерфейс оператора, хранение БД двигателей и т. д.; блок математической обработки, включающий быстрое преобразование Фурье, работу с комплексными числами, функции обработки спектра, метод корреляционных функций; блок поиска зубцовых гармоник и вычисления скорости вращения вала, который выделяет зубцовые гармоники и на основе этой информации определяет частоту вращения ротора асинхронного двигателя.

Рисунок 2. Структура разработанной программы.

Главное окно программы показано на рисунке 3. При запуске отображаются параметры подключенного АЦП и настройки записи сигналов тока и напряжения. В этом окне оператор выбирает тип двигателя.

Рисунок 3. Главное окно программы.

Основным преимуществом применения сигнатурного способа, использующего поиск зубцовых гармоник статорного тока, является то, что не требуется дополнительно производить какие-либо измерения тока. Обычно системы спектр-токового диагностирования используют спектры тока для поиска частотных компонент дефектов двигателя, при этом используется высокое разрешение по частоте, что облегчает процедуру выделения зубцовых гармоник из спектра сигнала тока.

Читать еще:  Авто форд неисправность двигателя

Предложенный способ определения частоты вращения ротора асинхронных двигателей был успешно применен в компании ООО «Транспроект-автоматика» при производстве испытательных станций асинхронных вспомогательных машин (акт внедрения приведен в диссертации).

На рисунке 4 изображена фотография рабочего процесса проверки двигателя комплексом спектр-токового диагностирования, использующего разработанное автором устройство бездатчикового определения частоты вращения ротора асинхронных двигателей.

Рисунок 4. Использование разработанного устройства при проведении спектр-токового диагностирования двигателя АИР355M4.

Внедрение результатов диссертационной работы позволило повысить надежность испытательной станции за счет сокращения количества соединительных проводов, элементов конструкции крепления датчика оборотов и отсутствия самого датчика оборотов. Положительным эффектом можно также назвать повышение технологичности проведения испытаний – время подготовки комплекса спектр-токового диагностирования сократилось на семь минут за счет отсутствия необходимости настройки и подключения датчика оборотов, как следствие сократилось время испытания двигателя.

Источник:
Скляр А.В. Совершенствование методики и устройства определения частоты вращения асинхронных двигателей на основе частотного анализа тока статора: диссертация на соискание ученой степени кандидата технических наук. – Омск. – 2018. – 196 с.

Набор инструментов для контроля частоты

В рабочей практике происходит множество процессов, которые требуют подсчета частоты вращения или следования объектов. Например, это обязательный контроль частоты вала ленточного транспортера, привода крыльчатки бетономешалки, частоты следования ковшей нории, частоты вращения шестерни коробки передач.

От выполнения этих задач зависит производительность оборудования, поэтому Вы стараетесь выбирать надежные и долговечные инструменты для их решения:

  • проверенные опытным путем
  • с гарантией качества
  • по выгодным, стабильным ценам
  • и с возможностью срочной/бесплатной доставки.

В «ТЕКО» Вы получите полный спектр выгод и широкий выбор инструментов для подсчета частоты.

Индуктивные датчики для контроля частоты вращения приводного барабана конвейера

В случае провисания или обрыва конвейерной ленты, нарушается технологический процесс. Этого можно избежать, используя индуктивный датчик контроля минимальной скорости. После установки датчика на приводной барабан конвейера, Ваша система автоматически отслеживает частоту его оборотов, тем самым держит под контролем состояние ленты транспортера. В случае неисправности (снижении частоты ниже установленного минимума) на устройство управления будет подан сигнал о неполадках в работе системы.

С помощью подстроечного резистора на датчике устанавливается минимальное пороговое значение частоты вращения приводного барабана (скорости движения ленты). Для того, чтобы датчик не выдал ложный сигнал по причине инерции конвейера, в нем предусмотрена величина задержки срабатывания при первоначальном запуске двигателя для разгона. В типовых датчиках она достигает 9 секунд, при необходимости — регулируется. Диапазон регулируемых частот: 0,1. 2,5 Гц; 2. 50 Гц

Вариант успешного применения датчика контроля минимальной скорости: контроль исправности грохота. Датчик запрограммирован на определенную частоту прохождения грохота мимо чувствительного элемента. И в случае, если частота меняется, датчик сигнализирует о сбое в работе грохота (из-за обрыва троса, выхода из строя двигателя или другой возможной причины).

Гарантия — 24 месяца

Контроль частоты в специфических условиях, для индивидуальных обстоятельств

При необходимости, любые типы датчиков «ТЕКО» могут выступать в качестве датчиков минимальной скорости: индуктивные, емкостные, оптические и магниточувствительные. Для этого их достаточно подключить к блоку контроля частоты CF1, который контролирует частоту импульсов входного сигнала и формирует сигнал на выходе при достижении частотой установленного порогового значения.

Применение блока позволяет контролировать частоту следования объектов во взрывоопасных средах: в соединении со взрывобезопасными датчиками и блоком сопряжения.

Для контроля объектов в «узких» местах конструкции, где крупногабаритный датчик разместить невозможно, возможно применение миниатюрных датчиков с блоком контроля частоты.

Гарантия — 12 месяцев

Датчики скорости (датчик частоты вращения) на эффекте Холла

Для определения частоты вращения вала в коробках передач и подачи сигнала на тахометр и тахограф мы рекомендуем датчики частоты ВТИЮ.7019 и ВТИЮ.7030.

Контроль частоты вращения механизмов широко востребован для определения скорости движения автотранспорта, мониторинга работы автокрана и для отлаженной работы оборудования, в составе которого присутствуют вращающиеся приводные устройства (от сепаратора до грохота).

Измерение частоты вращения с помощью датчиков «ТЕКО» осуществляется бесконтактно и не влияет на срок службы оборудования.

Датчики частоты ВТИЮ.7019 и ВТИЮ.7030. успешно применяются на автомобилях производства КАМАЗ, МАЗ и других известных производителей.

Гарантия — 24 месяца

Исправность трансмиссии всегда под контролем индуктивных датчиков

Регулярная оценка рабочего состояния трансмиссии позволяет Вам избежать аварий, простоев и непредвиденных ремонтных работ. Специально для наблюдения за частотой вращения элементов трансмиссии предназначен датчик ВТИЮ. 7040. Частота вращения контролируемых элементов может составлять от 0 до 6000 Гц. При необходимости мы разрабатываем датчики под индивидуальные габариты.

Датчик готовится к выпуску.

Контролируйте частоту с помощью фотоэлектрических преобразователей

Определяйте частоту вращающегося объекта с помощью фотоэлектрического преобразователя «ТЕКО» OT NK21A-311P-11-L-F.

Принцип его работы в том, чтобы контролируемый объект или его деталь прерывала световой поток, излучаемый датчиком. Прерывание преобразуется в импульс на выходе датчика, который вы можете использовать для контроля частоты вращающегося диска или любой другой детали, совершающей обороты. Одному пересечению луча соответствует один выходной импульс, формируемый по окончанию прохождения затеняющего предмета.

Гарантия — 24 месяца

Мониторинг аварийных ситуаций с помощью тахометра

Для подсчёта и индикации количества действий в единицу времени, а также для выдачи управляющего сигнала при достижении заданной установки частоты предлагаем использовать тахометр ТХ1 РЗЩ.

Помимо постоянного мониторинга аварийных ситуаций (в системах контроля частоты вращения механизмов) Вы получаете:

  • Универсальность/взаимозаменяемость входных портов;
  • Функция «Слежение», управляющая выходным реле;
  • Непрерывная и динамичная индикация;
  • Программируемый коэффициент деления частоты входного сигнала;
  • Детектирование направления вращения при использовании двух сигналов;
  • Встроенный источник питания.
Читать еще:  Что нужно чтобы поставить новый двигатель

Гарантия на прибор — 24 месяца

Контроль частоты вращения зубчатого колеса обычным индуктивным датчиком

Задачу контроля частоты вращения зубчатого колеса можно решить с помощью обычного индуктивного датчика. Для этого нужно знать максимальную рабочую частоту оперирования датчика, частоту вращения зубчатого колеса и число его зубьев.
Для правильного определения рабочей частоты датчика необходимо определить частоту воздействия на него зубчатого колеса.

Решение возможно с помощью простой формулы:
m x n / 60= ƒ (Гц)
где m — число зубьев, а n — частота вращения об/мин.

Ту же задачу с помощью индуктивных датчиков «ТЕКО» можно решать в специфических условиях эксплуатации. Например, возможно внедрение индуктивного датчика ISBm WC48S8-31N-1,5-250-LZR14-1H-V в редуктор для контроля частоты вращения вала. Датчик безотказно и долго работает в условиях непрерывной вибрации и попадания брызг масла. Это возможно за счет герметичного и вибростойкого корпуса. Таким образом с помощью индуктивного бесконтактного выключателя Вы предотвращаете вероятность аварии, которая может случиться из-за сбоя в скорости вращения вала.

Гарантия на прибор — 2,5 года

Датчик контроля частоты тягового двигателя — ISBt A27B8

Датчик ISBt A27B8 позволяет определять скорость вращения двигателя. Главное преимущество датчика — в возможности работать с высокой частотой переключения (до 10.000Гц) Именно эта характеристика позволяет использовать его с целью контроля частоты тягового двигателя. Однако, он применим и для контроля частоты других объектов.

Датчик контроля скорости вращения в общепромышленном исполнении

Бесконтактный датчик ВТИЮ.1345/1345-01 предназначен для контроля скорости вращения различных механизмов. Находит применение во взрывобезопасных условиях, где требуется контроль за минимальной скоростью, где есть риск самопроизвольного снижения скорости или проскальзывания. ВТИЮ.1345 может быть использован на цепных конвейерах, ковшовых элеваторах и других видах вращающихся и перемещающихся устройств.

Выключатель минимальной скорости контролирует частоту прохождений определенных металлических объектов перед чувствительным элементом. Если частота меньше установленного значения, значит, скорость снижена. Тогда выключатель изменяет состояние выходных контактов, тем самым отключая исполнительный механизм или включая сигнал тревоги. Пороговое значение скорости, при которой происходит срабатывание датчика, устанавливается регулировкой. 10-ти секундная задержка в момент запуска системы позволяет механизмам вернуться к рабочему режиму.

Корпус ВТИЮ. 1345 вандалоустойчивый.

Гарантия на прибор — 24 месяца

Датчики с увеличенной дальностью и высокой частотой оперирования

Для обнаружения объектов с высокой частотой вращения (например, зубчатой шестерни или других механизмов) используйте индуктивные датчики с повышенной (относительно базовых моделей датчиков) частотой оперирования. Например, частота переключения датчика ISN FC21A-31P-6-LS4 с номинальным зазором в 6 мм составляет 2000 Гц.

Высокая частота оперирования характерна не только для типовых датчиков «ТЕКО», но также для бесконтактных выключателей с увеличенным (относительно базового) расстоянием срабатывания.

Подберите нужные вам варианты датчиков с повышенной частотой оперирования. Например:

Пример встраимаевых датчиков в корпусе М12:

Типовое исполнение С повышенной чувствительностью
ISB AC21A-31P-2-LZS4 ISB AC21A-31P-4-LZS4
Номинальный зазор — 2мм Номинальный зазор — 4мм
Частота переключения — 3000 Гц Частота переключения — 3000 Гц

Пример невстраиваемых датчиков в корпусе M8:

ИК датчик в счетчике оборотов двигателя

  • Цена: $0.37 + $0.72 доставка
  • Перейти в магазин







Для работы индикатора применяется простая и удобная библиотека SevSeg, позволяющая подключать индикатор к каким угодно выводам МК, применять индикаторы как с общим катодом, так и анодом да еще и яркостью управлять.
Для измерения частоты попробовал библиотеку FreqMeasur. МК с ней отлично мерит сигнал с генератора от 10 до 200Гц (а больше мне и не нужно)


А вот когда на вход контроллера подал с сигнал с сенсора, результат получился плачевным.
Частота прыгала как ненормальная. Виной этому оказался «дребезг» сигнала с оптического датчика. Фольга давала массу помех. Попытка настроить сигнал подстроечником или заменить кусочек фольки на другой не дали ощутимого результата.
Тогда я решил давить «дребезг» программно. Осциллограф показал, что помехами являются импульсы в 0.3 — 1 мкс, тогда как сигнал — это импульсы 5мс (При частоте 12000RPM) и больше.

Программа показала 100% результат с тестового генератора. При включенном моторе с сенсора показывались стабильные обороты, которые хорошо коррелировали с режимом работы мотора. На том и остановимчя



Еще одна проблема нартсовалась при выборе места установки счетчика на станок.
В длинных проводах наводились сильные помехи от мотора и БП и индикатор, отлично работавший «на коленках» никак не хотел работать на станке. В результате смонтировал контроллер в непосредственной близости от сенсора и запитал его через импульсный DC-DC преобразователь от 24В. (Напряжения для шаговиков, подсветки, вентиляторов охлаждения).


Так мой новый станочек обзавелся счетчиком оборотов шпинделя. индикаторы К слову, данный измеритель должен практически без изменения схемы и программы заработать и с «кошерным» датчиком холла и магнитиком на валу.

Пока собирал станок, приехали 5-ти разрядные индикаторы. Хотел переделать измеритель скорости вращения на них с более компактным Atmega8 в TQFP32. Но потом решил, что лучшее — враг хорошего.

Следующий обзор я посвящу контроллеру станка, его доработке и настройке.
Весь мой путь от старого к новому станку есть в моем блоге.

Ссылка на основную публикацию
Adblock
detector