Датчик схема принципиальная двигатель

Электрическая мастер-схема автомобиля Lada Largus с двигателем ВАЗ-11189 (люкс)

Изделия электрооборудования, используемые в схеме

Перечень предохранителей

Поз. Наименование
Блок предохранителей и реле салона:
F1 Предохранитель 20А
F2 Предохранитель 5А
F3 Предохранитель 10А
F4 Предохранитель 10А
F5
F6
F7
F8
F9 Предохранитель 10А
F10 Предохранитель 10А
F11 Предохранитель 10А
F12 Предохранитель 10А
F13 Предохранитель 30А
F14 Предохранитель 30А
F15 Предохранитель 10А
F16 Предохранитель 15А
F17 Предохранитель 15А
F18 Предохранитель 10А
F19 Предохранитель 10А
F20 Предохранитель 7,5А
F21 Предохранитель 5А
F22 Предохранитель 5А
F23
F24
F25
F26 Предохранитель 5А
F27 Предохранитель 20А
F28 Предохранитель 15А
F29 Предохранитель 15А
F30 Предохранитель 20A
F31 Предохранитель 15А
F32 Предохранитель 30А
F33
F34
F35
F36 Предохранитель 30А
F37 Предохранитель 5А
F38 Предохранитель 15А
F39 Предохранитель 10А
Блок предохранителей и реле моторного отсека
F1.1 Предохранитель 50А 597-1
F2.1 Предохранитель 25А 597-1
F 1.2 Предохранитель 40А 597-2
F1.3 Предохранитель 60А 597-3
F2.3 Предохранитель 60А 597-3
F1.5 Предохранитель 80А 597-4
F2.4 Предохранитель 25А 1047

В исполнении без системы кондиционирования(СНОРЕС), использовать изделия 188 и 336.
Подключение контакта 85 (изделие 336) выполнить по коду цепи 3JP к контакту Н2 (КСУА). Изделия 262, 321 и 700 — не используются В исполнении с системой кондиционирования(СА), использовать изделия 262, 321, 336 и 700.
Подключение контакта 85 (изделие 700) выполнить по коду цепи 3JN к контакту Н2 (КСУД).
Подключение контакта 85 (изделие 336) выполнить по коду цепи 3JP к контакту НЗ (КСУД). Изделие 188— не используются

Расположение точек крепления «массы» на кузове автомобиля

Автоматическое включение дневных огней в автомобиле, датчик работы двигателя

Некоторые автоматические устройства для автомобилей требуют применения датчика работы двигателя, например, чтобы подтвердить факт запуска двигателя, либо чтобы после запуска двигателя выполнить какое-то действие. В радиолюбительской литературе приводились такие схемы, но они используют для своей работы импульсы с выхода датчика тахо-генератора (Л.1).

На мой взгляд, это не совсем верный подход к вопросу. Во-первых, датчик тахогенератора есть только в современных инжекторных автомобилях, а во-вторых, у разных марок и моделей эти датчики существенно отличаются по выходным параметрам.

В то же время, ведь требуется только подтвердить факт работы двигателя. А это можно сделать и другим способом. Вот, например, у всех автомобилей есть датчики давления масла, включающие лампу на приборной панели при низком давлении. Датчик представляет собой подпружиненный контакт.

Если давление масла низко, этот контакт под действием пружины замкнут на корпус датчика — на «массу». Если давление достаточно -контакт приподнят и на «массу» не замкнут. Давление в системе смазки автомобиля возникает от работы масляного насоса, который приводится от двигателя. Двигатель работает — давление высоко и сигнальная лампа не горит.

Двигатель не работает — давление низко, и сигнальная лампа горит.

Принципиальная схема

Таким образом, датчик давления масла является наиболее удобным местом для снятия информации о том, работает двигатель или нет.

На рисунке 1 показана схема датчика «Двигатель запущен», использующего напряжение на сигнальной лампе недостаточного давления масла, обозначенной на схеме как Н1. Сам датчик давления масла — SF1.

После включения зажигания на систему индикации поступает напряжение 12V от замка зажигания. Если двигатель не работает, давление масла низко, контакты датчика давления масла SF1 замкнуты и через них поступает ток на сигнальную лампу Н1. Соответственно, напряжение на базе транзистора VT1 мало, он закрыт.

Как следствие, закрыт и транзистор VT2. На его коллекторе напряжение равно нулю.

Рис.1. Схема датчика работающего двигателя автомобиля.

Если двигатель работает, давление масла достаточное для того, чтобы разомкнуть контакты датчика SF1. Сигнальная лампа выключается. Но, через лампу и резистор R1 на базу транзистора VT1 поступает ток, достаточный для его открывания.

Как следствие, открывается и транзистор VT2. На его коллекторе напряжение равно уровню логической единицы, а светодиод HL1 загорается. Вот такая, достаточно простая схема.

По правилам дорожного движения, автомобиль, днем должен ехать с включенными фарами ближнего света. Фары — большой потребитель тока, поэтому многие автомобилисты устанавливают дополнительные светодиодные фары, так называемые, «дневные ходовые огни» (ДХО), которые включают днем вместо ближнего света фар. При этом, пользоваться ДХО ночью, когда работают основные фары, нельзя, потому что ДХО, выполненные на мощных светодиодах могут слепить встречный транспорт.

На рисунке 2 показана несложная схема для автоматического включения ДХО после запуска двигателя, и выключения ДХО после выключения двигателя, либо после включения основных фар.

Рис.2. Схема автомата включения ДХО в автомобиле.

В основе — схема датчика работы двигателя, почти такая же, как на рисунке 1. Если двигатель не работает, но зажигание включено контакты датчика давления масла SF1 замкнуты, транзисторы VT1, VT2 закрыты и на обмотку реле К1 напряжение не поступает.

При работающем двигателе давление масла достаточное для размыкания контактов датчика давления масла SF1. На базу VT1 поступает ток через лампу Н1, резистор R1 и транзистор открывается. Как следствие, открывается VT2 и через него поступает напряжение на обмотку реле К1. Реле К1 замыкает контакты и подает напряжение от автомобильного аккумулятор на ДХО.

Читать еще:  Электромобиль тесла технические характеристики двигателя

При включении основных фар поступает напряжение на цепь габаритных огней (ГО), это напряжение через R5 поступает на базу транзистора VТЗ, который открывается и шунтирует базовую цепь транзистора VТ1. Напряжение на базе VТ1 падает, и он закрывается. Как следствие, закрывается транзистор VТ2 и реле К1 выключает ДХО.

В завершение

Здесь напряжение на ДХО поступает с положительной клеммы аккумулятора, а не с выхода замка зажигания, это сделано чтобы не перегружать замок зажигания дополнительной нагрузкой.

Светодиод HL1 показывает, что ДХО включены. Реле К1 можно заменить любым аналогичным, с обмоткой на 12V и контактами на так не ниже 10А.

Ладкин А. П. РК-2016-03.

Литература: 1. А. Натненков. «Датчик «двигатель запущен», ж. Р2015-03, стр. 45.

Устройство автомобилей

Микропроцессорное управление двигателем

Датчики углового положения коленчатого вала

Работоспособность любой системы зажигания зависит от информации об угле поворота коленчатого вала двигателя. Датчик углового положения коленчатого вала выдерживает жесткие условия работы в отсеке двигателя, должен обладать высокой надежностью, и при этом работать на любой частоте вращения коленчатого вала.

В настоящее время автомобильные системы зажигания используют ряд бесконтактных датчиков, работа которых основывается на различных физических явлениях. К ним относятся следующие датчики:

  • магнитоэлектрические;
  • работающие на эффекте Холла;
  • высокочастотные;
  • оптоэлектронные;
  • токовихревые;
  • работающие на эффекте Виганда;
  • фотоэлектрические.

Магнитоэлектрические датчики

Наиболее распространенным типом магнитоэлектрического датчика является генераторный датчик коммутаторного типа с пульсирующим потоком. Его принцип действия заключается в изменении магнитного сопротивления магнитной цепи, содержащей магнитную обмотку, при изменении зазора с помощью распределителя потока (коммутатора).
На рис. 1 показана принципиальная схема магнитоэлектрического датчика коммутаторного типа.

При вращении зубчатого ротора в обмотке статора в соответствии с законом индукции возникает переменное напряжение. Когда один из зубцов ротора 4 приближается к полюсу статора, в обмотке 3 растет напряжение. При совпадении фронта зубца ротора с полюсом статора (со средней линией обмотки) напряжение на обмотке достигает максимума, затем быстро меняет знак и увеличивается в противоположном направлении до максимума при удалении зубца ротора. Напряжение очень быстро изменяется от положительного до отрицательного максимумов, поэтому нулевой переход (точка ) между двумя максимумами используется для управления системой зажигания и получения точного момента подачи искры в цилиндр двигателя.

Однако точку перехода сложно уловить с помощью электроники, поскольку схема будет чувствительна к сигналам помех, т. е. не будет удовлетворять требованиям помехозащищенности. Поэтому для получения момента искрообразования используют точки максимума амплитуд (отрицательную или положительную), которые выбираются на допустимо низких уровнях. При этом обеспечивается нечувствительность схемы детектирования к помехам и надежное срабатывание схемы в период пуска двигателя.

Распределитель потока (зубчатый ротор) устанавливается на распределительный валик распределителя зажигания. Число его зубцов зависит от числа цилиндров двигателя. Магнитное поле создается, как правило, постоянным магнитом.

Рассмотренная выше магнитная система генераторного датчика очень чувствительна к влиянию паразитных изменений зазора, имеющих место из-за конструктивных допусков, износов, вибраций, передаваемых двигателем деталям, входящим в состав магнитной цепи. Это приводит к асинхронности момента искрообразования по цилиндрам двигателя. Поэтому на практике применяется симметричная магнитная система, которая обеспечивает для каждого положения распределителя потока средний зазор, являющийся суммой элементарных зазоров.
Принципиальная схема генераторного датчика коммутаторного типа с симметричной магнитной системой для четырехцилиндрового двигателя приведена на рис. 3 .

Создание постоянных магнитов на основе новых магнитных материалов, таких, как магнитопласты, магниторезина, позволило резко снизить стоимость и массу датчиков, увеличить их надежность.

Датчики с переменным потоком

Датчик с переменным потоком состоит из неподвижной катушки и постоянного магнита, жестко связанного с валиком распределителя зажигания, причем число пар полюсов в магните равно количеству цилиндров двигателя. Такие магнитные системы называются датчиками с вращающимися магнитами (рис. 4 ).

Работа датчика определяется знакопеременным магнитным потоком и симметричной формой выходного напряжения. Сигнал датчика с вращающимся магнитом требует более тщательной обработки в цепи детектирования для компенсации электрического смещения момента искрообразования в зоне низких частот вращения валика распределителя зажигания.

Датчики, работающие на эффекте Холла

Благодаря развитию микроэлектроники широкое распространение получили датчики углового положения, работающие на эффекте Холла. Эффект Холла возникает в пластине из проводника или полупроводника при внесении ее в магнитное поле и пропускании через пластину электрического тока. При определенных условиях между противоположными гранями пластины возникает ЭДС Холла, которая может использоваться в качестве сигнала для определения момента искрообразования.
Более подробно эффект Холла описан на этой странице.

Датчики на эффекте Холла обладают такими достоинствами, как малая стоимость производства, относительно высокая точность и хорошая стойкость к внешним воздействиям. Поэтому они широко примененяются в автомобилестроении в качестве датчиков углового положения (ДПКВ, ДПРВ и т. п.).

Недостатком систем, работающих на эффекте Холла, является высокая чувствительность к внешним магнитным и электрическим помехам. Величина ЭДС Холла очень мала, поэтому должна быть усилена непосредственно вблизи датчика для того, чтобы устранить влияние радио- и электропомех. Поэтому конструктивно датчики Холла часто выполняются в виде интегральной микросхемы, содержащей усилитель сигнала.

Читать еще:  Шелест при запуске двигателя причины

При изготовлении полупроводниковых пластин датчиков Холла наиболее часто используются германий (Ge), кремний (Si), арсенид галлия (GaAs), арсенид индия (InAs), антимонид индия (InSb).

Датчики Виганда

Принцип действия таких датчиков основан на эффекте Виганда.

Джон Ричард Виганд (John R. Wiegand) — американский физик и изобретатель. Открыл, описал и исследовал физический феномен, который возникает в специальной «проволоке Виганда» при помещении её в магнитное поле.

Феномен, описанный Д. Вигандом заключается в том, что если ферромагнитную проволоку, имеющую специальный химический состав и физическую структуру, внести в магнитное поле, то произойдет спонтанное изменение ее магнитной поляризации, как только напряженность поля превысит некоторое предельное значение, называемое порогом зажигания. Изменение состояния проволоки Виганда можно регистрировать при помощи электромагнитной обмотки, размещенной рядом с ней. Проволока Виганда представляет собой ферромагнитное тело, состоящее из магнитомягкой сердцевины и магнитотвердой внешней оболочки.

Проволока изготавливается из специального ферромагнитного сплава типа викаллой (примерный состав — 10% ванадия, 52% кобальта и железа). Точный состав материала проволоки, а также технология ее изготовления, как правило, являются секретом фирм, производящих датчики.

Чувствительные элементы Виганда применяются в датчиках скорости, угла поворота и положения, в расходомерах, для считывания пластиковых идентификационных карт и других технических устройствах.

К достоинствам датчиков Виганда следует отнести независимость от влияния внешних электрических и магнитных полей, широкий температурный диапазон работы, работу без источника питания.

Сельсины и дифференциальные трансформаторы

В последние годы в качестве датчиков абсолютного углового положения на автомобилях иногда используются вращающиеся трансформаторы (сельсины), которые характеризуются высокой разрешающей способностью (до 7‘) и работают в тяжелых внешних условиях. Однако широкого распространения такие датчики пока не получили из-за высокой стоимости.

Обмотки возбуждения сельсинов питаются напряжением с частотой 400. 20000 Гц, обычно для автомобилей 2. 5 кГц. Угловое положение ротора декодируется по сигналам с синусной и косинусной обмоток специальной микросхемой в цифровой код.

В качестве датчиков абсолютного линейного положения находят применение линейные дифференциальные трансформаторы. Выходной сигнал таких датчиков может быть декодирован специализированной интегральной схемой.

Магниторезистивные датчики

В магниторезистивных датчиках используется способность некоторых материалов, например, железо-никелевого сплава FeNi, изменять свое сопротивление под воздействием переменной напряженности магнитного поля. В рабочем диапазоне магниторезистора его сопротивление меняется в пределах 2,5…15%. Магниторезисторы встраивают в интегральную схему, где размещают и цепи обработки сигнала.

Датчик схема принципиальная двигатель

Автор: к.т.н. Вильфрид Криммель. Перевод: АЛЬФА-СЕНСОР © 2010.
Вильфрид Криммель работает в области измерительной техники крутящего момента более 20 лет. На фирме Lorenz Messtechnik GmbH он руководит калибровочной лабораторией.

1. Тензометрическая технология измерений

Историческое развитие технологии измерения крутящего момента начинается в 1678 году. В этом году английский учёный Роберт Гук описал пропорциональную зависимость между деформацией материала и напряжением материала в известном законе Гука.

Дальнейшим витком развития послужил 1833 год. Тогда английский учёный Хантер Кристи описал мостовую схему, при помощи которой можно измерять малейшие изменения напряжения. Не смотря на то, что схема в последующем получила название в честь второго изобретателя, Чарльза Витстоуна, настоящая слава принадлежит все же Хантеру Кристи.

Мостовая схема Wheatstone

Уильям Томсон, который позже стал лордом Кельвином (его именем названа температурная шкала), открыл в 1856 году зависимость между растяжением проводника и его электрическим сопротивлением.

После этого не раз проводились эксперименты с проводниками. Например, в 1937 году с ними экспериментировал Нернст, чтобы измерить давление в двигателе внутреннего сгорания. Однако, первой модели свободно наклеиваемого тензорезистора пришлось ждать до 1938 года. Тогда профессором Руге был разработан первый тензорезистор. Уже три года позже появились первые индустриально изготовленные проволочные тензорезисторы, которые очень быстро нашли практическое применение. Настоящим прорывом для промышленно производимых тензодатчиков стали появившиеся в 1952 году на рынке плёночные тензорезисторы. Они вытравливались на покрытой проводящим материалом плёнке. Таким способом тензорезисторы изготавливаются и сегодня. Ещё в том же году, плёночные тензорезисторы были предложены для измерений крутящего момента. Таким образом были изготовлены первые невращающиеся тензодатчики крутящего момента. Эти датчики помогли решить многие задачи в разработках и испытаниях посредством измерения крутящего момента реакции. Но более важным и частым применением датчиков крутящего момента являются измерения на вращающемся валу. Здесь разработки длились ещё несколько лет, чтобы предложить на рынке готовые к применению тензометрические датчики крутящего момента.

2. Первые вращающиеся датчики крутящего момента

При нагружении вала аксиальным крутящим моментом происходит его скручивание на угол пропорциональный крутящему моменту. Этот угол может быть измерен при помощи углоизмерительной системы. Работающие по этому принципу вращающиеся датчики крутящего момента с индуктивной измерительной системой были предложены на рынке уже после 1945 года. Для питания датчика использовались несущие частоты в несколько сотен кГц. Таким образом, удалось уменьшить габариты катушек индуктивности системы. Амплитуда переменного измерительного сигнала была пропорциональна углу скручивания измерительного вала датчика крутящего момента и имела ту же частоту, что и напряжение питания.

Для питания расположенной на вращающемся валу измерительной системы и для передачи модулированного по амплитуде измерительного сигнала применялись трансляторы, построенные по принципу вращающегося трансформатора. Одна обмотка трансформатора закреплена на статоре, вторая расположена концентрично первой на роторе. При передаче амплитудно-модулированного измерительного сигнала через построенный по такой схеме транслятор коэффициент передачи включается напрямую в измерительный сигнал. Из-за аксиальных и радиальных смещений, эксцентричного вращения, изменения магнитных характеристик материала и магнитных утечек могут возникать поргешности в измерениях.

Читать еще:  Что такое навестной двигатель

Первая передача измерительного сигнала тензорезисторного моста, наклеенного на вращающийся вал производилась посредством контактных колец в 1952 году.
Передача питающего и выходного напряжения через контактные кольца требует определённой осторожности. Контактные кольца должны быть изолированы от вала и друг от друга. Уже малейшие ошибки в изоляции могут привести к значительным измерительным ошибкам. Сила нажатия скользящего контакта должна быть выбрана так, чтобы с одной стороны сопротивление контакта было возможно малым, надёжность контакта относительно отрывания вследствие сотрясений и эксцентричности контактных колец длжна была быть достаточно высокой и с другой стороны не должно было быть допущено возникновение чрезмерного нагрева и износа контактных пар. Решающую роль помимо выбора материала играет тщательная обработка поверхностей.
Особенные сложности возникают при высоких скоростях вращения. Некоторые датчики снабжены подъёмными устройствами для щёток, которые опускаются только для измерений. Недостатком данной технологии является то, что контактные кольца и угольные щётки со временем изнашиваются и требуют замены.

Для создания датчика со стабильной и не требующей технического обслуживания передачей сигнала, была разработана технология, обеспечивающая бесконтактную передачу измерительного сигнала с тензорезисторного моста. Благодаря запитыванию моста переменным напряжением, на его выходе получается пропорциональное крутящему моменту амплитудно-модулированное переменное напряжение. Как необходимое для питания тензометрического моста переменное напряжение, так и измерительный сигнал могут передаваться благодаря трансформаторной передаче.
После этого, победное шествие вращающихся датчиков крутящего момента на основе тензорезисторов уже невозможно было остановить.
Благодаря постоянно уменьшающимся размерам электроники в 1972 стало возможным разместить на вращающемся валу измерительный усилитель, который служил для питания тензорезисторного моста и подготовки измерительного сигнала. Один трансформаторный транслятор служил для питания датчика, другой — для частотно-модулированной передачи измерительного сигнала.

Тензометрическая техника тем временем развивалась дальше. Сегодня выпускаются датчики крутящего момента как с температурной компенсацией, так и с компенсацией дрейфа сигнала. Большое преимущество тензометрической техники состоит в том, что компенсация помех возможна непосредственно в месте измерения. Температурная зависимость модуля упругости применяемых материалов составляет, например, у стали около 3 % на 100 К изменения температуры. Так как эта величина помехи входит напрямую в коэффициент чувствительности датчика, его необходимо соответствующим образом компенсировать.
У датчиков с углоизмеряющей системой, если и делается компенсация, то она проводится в усилителе. Таким образом здесь обязательно нужно считаться с влиянием температуры. Углоизмеряющие датчики имеют ещё одну проблему в том, что для измерения крутящего момента требуется относительно большой угол скручивания. Это ведёт к мягким торсионным конструкциям, которые позволяют осуществлять только медленные измерительные процессы.
Постоянно уменьшающиеся размеры электроники и соответственно улучшающиеся возможности передачи измерительного сигнала привели к изменению рынка датчиков крутящего момента в том направлении, что теперь они поставляются с интегрированными усилителями.

Первые датчики крутящего момента имели, как правило, аналоговый выходной сигнал. При таких интерфейсах невозможно исключить помехи исходящие от соседствующих силовых узлов и приводов, особенно при протяженной подводке и высокой динамике. Из-за этого в прошлом увеличивали уровень сигнала датчика. Общепринятые уровни сигнала в ± 5 В и ± 10 В. И всё же, для многих применений помехоустойчивость не достаточна высока. Решение данной проблемы лежит в цифровой сенсорной электронике. Схема её принципиальной механической конструкции представлена на следующей картинке.

На валу находится суженное по диаметру место, где наклеен тензометрический мост. На валу так же находятся вращающаяся часть трансформаторного транслятора и вращающаяся электроника. В корпусе находится стационарная часть транслятора и остальная электроника. Для подключения датчика, на корпусе находится штекер.
Интегрированная электроника как в статоре, так и в роторе содержит микропроцессор с сопутствующей памятью. Измерительный сигнал генерирутся на роторе посредством тензорезисторов, тут же усиливается и оцифровывается. Цифровой сигнал попадает в процессор, который готовит его к передаче на статор в форме последовательного сигнала с контрольной суммой. В статоре сигнал данных подготавливается и в заключение формируется в процессоре для последовательного интерфейса RS 485.
Благодаря применению процессоров такие данные как серийный номер, калибровочные значения, измерительный диапазон, дата калибровки и прочие могут быть сохранены как на роторе, так и на статоре и при необходимости могут быть считаны.
Питание датчика происходит через контролируемый процессором источник, который может подключить калибровочный контроль для проверки датчика. Благодаря оцифровыванию измерительного сигнала непосредственно на месте его снятия и сохранению, а так же считыванию данных датчика обеспечивается очень высокая эксплуатационная надёжность измерительного устройства.

Блок-схема цифровой передачи измерительного сигнала с интегрированными микропроцессорами:

4. Области применения датчиков крутящего момента сегодня

Некоторые отрасли науки и техники сегодня уже невозможно представить без датчиков крутящего момента. Ниже представлены только некоторые сферы их применения:

Электродвигатели
Характеристические кривые
Мощность
Крутящий момент

Двигатели внутреннего сгорания
Мощность
Крутящий момент

Ссылка на основную публикацию
Adblock
detector