Давление горения дизельного двигателя

Давление горения дизельного двигателя

Промотор воспламенения (цетаноповышающая присадка) Atren Cet™

Описание услуги

Цетановое число – это один из важнейших показателей качества дизельного топлива. Он характеризует его самое значимое эксплуатационное свойство – воспламеняемость.

Назначение

  • позволяет повысить мощность дизельного двигателя за счёт более равномерного и полного сгорания топливной смеси;
  • снижается расход и образование нагара в цилиндре, что влияет на экологичность выхлопа;
  • облегчается запуск двигателя в зимнее время за счёт снижения времени задержки воспламенения топлива.

В связи с ужесточением экологических требований к качеству выпускаемых топлив, у НПЗ и мелких предприятий (АЗС, фабрики, автобазы и т.д.) появляется потребность в доведении их качества до соответствия нормативно-технической документации.

Среди важнейших качеств дизельного топлива выделяют способность к воспламеняемости и самовоспламеняемости, которая выражается цетановым числом. От значения цетанового числа зависят важные показатели работы дизельного двигателя. Оптимальное значение – от 40 до 55, при значении меньше 40 увеличивается период задержки горения и давление в камере сгорания, что приводит к увеличению износа двигателя.

Для уменьшения периода задержки самовоспламенения топливной смеси необходимо использовать цетаноповышающую присадку – продукт на основе 2-этилгексилнитрата, сложный эфир азотной кислоты. Присадка начинает действие на первоначальном этапе процесса горения при разделении молекул на радикалы и инициации воспламенения. При добавлении присадки облегчается пуск двигателя и увеличивается среднее давление сгорания, улучшается работа двигателя.

Купить цетаноповышающую присадку для дизельного топлива

Преимущества заказа присадки Atren Cet™ в компании «Миррико»:

1. технологичность:

  • повышенная приемистость к различным дизельным топливам;
  • полная растворимость в дизельном топливе;
  • отсутствие коррозионных свойств;
  • низкий класс опасности.

2. сервисное сопровождение реагентов, корректировка дозировок под определенные условия.

Рекомендации по использованию цетаноповышающей присадки

Дозировка и хранение

Цетаноповышающая присадка Atren Cet ГК «Миррико» подается в поток дизельного топлива для доведения цетанового числа до нормированных значений. Рекомендуемая постоянная концентрация при применении составляет 150-200 г/т. Оптимальные дозировки, необходимые для получения дизельного топлива с заданным цетановым числом, зависит от качества (фракционный и групповой состав) и количества компонентов дизельного топлива, требуемого цетанового числа и определяется в ходе лабораторных испытаний присадки.

Цетаноповышающая присадка поставляется в стальных бочках или автоцистернах, степень заполнения тары — 95%.

Для заказа присадки воспользуйтесь формой «оставить заявку» в карточке продукта.

Принцип работы автомобиля

Работа двигателя. Процессы горения и передачи тепла

У бензиновых двигателей после прохождения поршнем ВМТ давление и температура в цилиндре за счет сгорания топливо-воздушной смеси достигают максимума — давления порядка 3-6 МПа и температуры свыше 2500 К. Весь процесс сгорания происходит вблизи ВМТ, длится 4060° угла поворо­та коленчатого вала (ПКВ), объем камеры сгорания при этом изменяется мало. Именно поэтому бензиновые двигатели с искровым зажиганием в литературе называют иногда двига­телями с подводом тепла при постоянном объеме или двига­телями Отто (работающими по циклу Отто).

Для дизелей условно принимают, что часть теплоты под­водится при постоянном объеме, а часть — при постоянном давлении. Поскольку у дизелей степень сжатия существенно выше, чем у бензиновых двигателей (е = 21-22), то макси­мальное давление при сгорании также выше и достигает 5,5 МПа. При этом температура газов в цилиндре меньше и, как правило, не превышает 20005-2200 К.

Процесс сгорания топливо-воздушной смеси в двигателе очень сложен и до конца не изучен. При горении происходят химические реакции с выделением тепла и образованием продуктов сгорания. Процесс горения существенно зависит от большого числа физических явлений в цилиндре: от геоме­трии (формы) камеры сгорания до состава, скорости и на­правления движения смеси в цилиндре в данный момент вре­мени в данной точке.

Для осуществления процесса горения необходимо, чтобы количество топлива, подаваемого в цилиндр, строго соответ­ствовало количеству воздуха, поступающего в цилиндр на такте впуска. Соотношение количеств воздуха и топлива в смеси определяется коэффициентом избытка воздуха. где 15 — постоянный (стехиометрический) коэффици­ент для данного топлива — теоретически необходимое количе­ство воздуха (кг) для полного сгорания 1 кг топлива. При а = 1, когда количество топлива точно соответствует количеству воздуха, необходимому для полного сгорания этого топлива, состав смеси называют стехиометрическим.

При сгорании коэффициент избытка воздуха а смеси для бензиновых двигателей традиционных конструкций должен находиться в интервале от 0,70-0,75 до 1,05-1,15 в зависимо­сти от режимов работы двигателя. Для этого система питания двигателя должна строго дозировать топливо. Например, при разгоне целесообразно иметь, а меньше 1 («богатая» смесь и большой крутящий момент), в то время как для установивше­гося режима движения автомобиля желательно, чтобы а бы­ло близко к 1 (нормальная или слегка обедненная смесь, вы­сокая экономичность, а также приемлемая токсичность отработавших газов).

Для воспламенения и горения смеси у двигателей тради­ционных схем необходимо, чтобы топливо хорошо испарилось и перемешалось с воздухом еще на также сжатия, т. е. перед искровым разрядом. Это достигается внешним смесеобразо­ванием, т. е. подачей топлива заранее во впускной трубопро­вод (с помощью карбюратора или форсунок системы впрыс­ка). При этом топливо успевает практически полностью испа­риться перед воспламенением. После воспламенения смеси искровым разрядом образуется фронт пламени, распростра­няющийся по объему камеры сгорания.

Коэффициент избытка воздуха а существенно влияет не только на экономичность и мощность, но и на состав отрабо­тавших газов. Например, если основная часть продуктов сго­рания — это углекислый газ СО2 и водяные пары Н20, то при работе на богатых смесях двигатель выделяет повышенное ко­личество оксида углерода СО, а также несгоревшие углеводо­роды CnHm (СН). На некоторых режимах продукты сгорания содержат также повышенное количество оксидов азота NOx, что особенно характерно для двигателей с высокой степенью сжатия (оксиды азота образуются при высоких температурах).

Очень важное значение для состава отработавших газов имеет конструкция головки блока двигателя и особенно каме­ры сгорания — пространства между головкой и днищем порш­ня. От того, как организовано движение смеси по камере сго­рания перед и во время сгорания, сильно зависит количество вредных выбросов типа СО, NOx и СН.

В конечном счете, все указанные факторы влияют и на ко­личество выделившегося при сгорания тепла — чем оно боль­ше, тем выше основные параметры двигателя. Например, двигатель, имеющий на определенном режиме большое коли­чество СО и несгоревших углеводородов СН в отработавших газах, вряд ли обеспечит на этом режиме хорошую мощность или экономичность. С другой стороны, сгорание должно так­же происходить в строго определенной фазе цикла — слишком раннее или позднее сгорание приводит к уменьшению давле­ния в цилиндре и, в конечном счете, к ухудшению основных параметров двигателя.

При сгорании в цилиндре выделяется большое количество тепла. Часть его уходит с отработавшими газами, другая часть передается в стенки головки и гильзу цилиндра, в пор­шень. Если бы конструкция поршня не позволяла от­водить тепло от днища, то поршень очень быстро бы распла­вился и прогорел. В самом деле, температура газа в камере сгорания превышает 1800-2000°С, в то время как рабочая температура деталей из алюминиевого сплава не должна быть больше 300-350°С. Для работы в таких условиях наибо­лее важна передача тепла через поршневые кольца в стенки цилиндра. При этом через верхнее кольцо уходит до 50-60% всего тепла, переданного из камеры в поршень, а через среднее — до 15-20%. Для того, чтобы обеспечить передачу тепла через кольца, необходимо точное (плотное) прилегание коль­ца к канавке поршня и к поверхности цилиндра. Дефекты кольца (плохое прилегание к цилиндру, поломки) и поршня (деформация или разрушение перемычек) приводят к сниже­нию потока тепла от поршня и, соответственно, к его перегре­ву с последующим разрушением. Другая часть тепла от порш­ня передается через его юбку в стенку цилиндра, а также че­рез палец в шатун и далее рассеивается в картере. Незначи­тельная часть тепла уходит в картер в результате вентиляции внутри поршневого пространства при возвратно-поступатель­ном движении поршня.

Тепловое состояние (т.е. распределение температуры) поршня в значительной степени зависит от его конструкции и материала. Эти факторы влияют на такие параметры, как за­зор между поршнем и цилиндром, износ юбки и др. Чем хуже отвод тепла, тем больше температура поршня, тем больше его тепловое расширение и тем больше необходимый зазор. Если зазор между поршнем и цилиндром окажется меньше, чем на­до, поршень в цилиндре может заклинить. При очень малом зазоре увеличивается трение юбки поршня о стенки цилинд­ра, из-за чего вместо отвода тепла может происходить его подвод (разогрев юбки от трения). После заклинивания и по­следующего остывания поршень, как правило, деформируется (сжимается по юбке), а на поверхности цилиндра появляются глубокие царапины (задиры), иногда со следами алюминия, перенесенного с поршня на материал гильзы.

Читать еще:  Что такое ie2 двигатель

При определенных условиях в эксплуатации бензиновых двигателей могут возникать нарушения процесса сгорания. К ним относятся детонация и преждевременное воспламенение.

Явление детонации широко известно. Внешние проявле­ния детонации — характерный стук, появляющийся при работе на низкооктановом топливе с увеличением нагрузки (т. е. при открытии дроссельной заслонки).

Суть детонации заключается в ненормально быстром (в сотни раз быстрее обычного) сгорания части смеси. При этом образуются ударные волны, с большой скоростью распростра­няющиеся по камере сгорания. В ударной волне происходит скачкообразный рост давления и температуры среды, в кото­рой распространяется волна. А это вызывает воспламенение смеси не в результате обычного распространения пламени (скорость порядка 20-30 м/с), а из-за ее разогрева в ударной волне, движущейся со скоростью более 1000 м/с.

Механизм возникновения детонации поддается изучению с большими трудностями. Опытным путем установлено, что компактные камеры сгорания с вытеснителями имеющие форму, близкую к сферической, менее склонны к образова­нию детонационных процессов, чем длинные и узкие камеры с острыми углами и выступами. Однако в каж­дом конкретном случае при разработке нового двигателя оп­ределить наилучшую форму камеры сгорания — дело очень от­ветственное, долгое и кропотливое.

В эксплуатации детонация наиболее часто возникает на низкооктановом топливе при малых и средних частотах враще­ния и больших нагрузках. Детонация изменяет характер проте­кания давления в цилиндре по углу поворота, резко увеличивает максимальное давление, температуру и нагрузки на детали дви­гателя. Последствия длительной работы двигателя с детонацией весьма тяжелы. В первую очередь это — поломка поршней и пор­шневых колец из-за ударных нагрузок. Наиболее подвержены поломкам перемычки поршней между канавками колец. Удар­ная волна, вызывая резкое повышение давления в зазоре меж­ду днищем поршня и цилиндром, бьет по верхнему поршневому кольцу. Удар передается на перемычку поршня, причем одно­временно не по всей окружности кольца, а в конкретной доста­точно узкой области, что облегчает поломку деталей.

Детонация вызывает не только поломку перемычек, но и перегрев и разрушение краев днища поршня (каверны на по­верхности), поломку поршневых колец. Последующий перегрев поршня обычно настолько велик (из-за уменьшения теплоотвода через кольца), что выгорает огневой пояс поршня от днища до верхнего и даже нижнего поршневого кольца.

После поломки деталей падает давление в цилиндре и мощность двигателя, увеличивается прорыв газов в картер (и давление в картере), расход масла. Результатом длительной работы двигателя с детонацией может быть также износ по торцу верхней канавки поршня и верхнего кольца, износ по­верхностей сопряжения поршня и поршневого пальца. Эти случаи встречаются довольно часто, но ускоренные износы не всегда удается связать с детонацией.

Режимы детонации ограничивают углы опережения зажи­гания на некоторых режимах. Это значит, что при увеличении опережения зажигания основные параметры двигателя повы­шаются, однако, работа на этих режимах недопустима из-за опасности поломки деталей. Электронные системы управле­ния двигателем точно отлеживают эти режимы, в том числе с помощью датчиков детонации.

На некоторых двигателях (TOYOTA, NIS­SAN) вместо одной свечи устанавливают две на один цилиндр. Такая конструкция является достаточно эффективной для уменьшения склонности двигателя к детонации при повышении степени сжатия за счет сокращения длины пути фронта пламе­ни по камере сгорания. Снижает вероятность возникновения детонации более низкая температура поверхностей камеры i сгорания и днища поршня. Это достигается интенсификацией i охлаждения камеры путем уменьшения толщины стенок, увеличения скорости течения охлаждающей жидкости у стенок и даже некоторым снижением уровня температуры охлаждающей жидкости (например, с 90-95°С до 80-85 0 С) за счет схемы и конструкции системы охлаждения двигателя.

У двигателей с впрыском топлива температура топливо-воздушной смеси на входе в цилиндр обычно меньше, чем у карбюраторных двигателей, поскольку у последних необходим подогрев смеси на впуске (иначе не будет качественного испарения и сгорания топлива). Поэтому двигатели с впрыском топлива при прочих равных условиях менее склонны к детонации, что позвопяет несколько увеличить у них степень сжатия. Аналогичное влияние оказывает промежуточное ох­лаждение воздуха у двигателей с наддувом.

Кроме детонации, на практике встречается явление преждевременного воспламенения, называемое также калильным зажиганием. При калильном зажигании происходит воспла­менение смеси не от искрового разряда свечи, а от нагретых до очень высоких температур (более 700°С) поверхностей ка­меры сгорания. В качестве таких источников воспламенения могут выступать электроды свечи зажигания, тарелка выпуск­ного клапана или частицы нагара, если нагар лежит на дета­лях достаточно толстым слоем.

Обычно калильное зажигание возникает из-за несоответ­ствия характеристики свечи, рекомендованной изготовите­лем автомобиля, в частности, когда для двигателя с высокой степенью сжатия использована «горячая» свеча от низкофор­сированного двигателя. При этом смесь в цилиндре самовос­пламеняется несколько раньше, чем происходит искровой разряд, но процесс сгорания протекает нормальным обра­зом. С ростом нагрузки и частоты вращения момент самовос­пламенения отодвигается в раннюю сторону, из-за чего теп­ловое и силовое воздействие на детали двигателя, особенно, на поршень, значительно возрастает.

Опасность калильного зажигания заключается в том, что на начальной стадии его практически невозможно отличить «на слух» от обычного сгорания, в то время как с течение вре­мени (обычно от нескольких десятков секунд до нескольких минут), когда у двигателя появляется посторонний звук и он начинает терять мощность, детали поршневой группы уже мо­гут быть повреждены. Вследствие этого на двигате­лях современных автомобилей замена свечей зажигания оказывается весьма небезопасной для двигателя, если ста­вятся первые попавшиеся свечи.

Подготовка дизеля к зиме

Многие знают, что дизельные двигатели более чувствительны к низкой температуре зимой, чем бензиновые. Так почему все больше людей отдает предпочтение дизелю и с какими проблемами сталкиваются? Рассмотрим подробнее основные проблемы и возможности их решения.

Преимущества дизельных двигателей

Дизельные двигатели набирают популярность у водителей легковых автомобилей. Дизели, изначально работавшие для тяжелой дорожной, строительной, военной и сельскохозяйственной техники, на современных машинах проявляют себя как наиболее экономичные и выгодные с эксплуатационной точки зрения двигатели.

Почему потребители покупают дизельные автомобили?
  1. Экономичность. КПД дизеля на 15-20 пунктов выше, чем бензинового двигателя. Для дизельных двигателей — это 45-50% энергии, полученной от преобразования топлива, для бензиновых — от 20 до 30%. Это говорит об экономичном расходе ресурса.
  2. Надежность. Дизель работает по циклу «впрыск топлива — сжатие — расширение — выпуск отработанных газов», запускаюсь от ТНВД или поступившего к компьютеру сигнала датчика в системах Common Rail. У бензиновых двигателей запуск осуществляет система зажигания, которая при скачкообразном поступлении высокого напряжения создает влияющие на электронику помехи. Разница в способе воспламенения топлива даёт большую нагрузку на дизельный двигатель, поэтому детали изначально имеют повышенную прочность материала внутренних компонентов. Повышенная стойкость деталей двигателя значительно увеличивает его общий ресурс и срок эксплуатации.
  3. ГСМ. При современном уровне почти сравнявшихся цен на бензин и дизельное топливо, благодаря высокому КПД, расход у дизельных автомобилей меньше на 15-20%. С финансовой точки зрения дизели более выгодны.
  4. ТО и ремонт. Надежность дизеля реже приводит к серьезным поломкам, которые требуют больших финансовых вложений для их устранения.
  5. Цена автомобиля. При одинаковых ценах на модели дизельных и бензиновых машин через пять лет эксплуатации в одинаковых режимах потеря в цене на первые не превысит 5-7%. На вторые — упадет на 35-40%.
  6. Экологичность и безопасность. Устройство двигателей дизельных автомобилей и принцип воспламенения топлива в разы снижают концентрацию вредных веществ в выхлопных газах. А сам мотор мало подвержен нагреву до критических температур.
  7. Автомобили, использующие ДТ, могут без внесения конструктивных изменений в ДВС работать на альтернативном топливе.



Поведение дизельного мотора зимой

Дизельный двигатель запускается при сильном сжатии впрыснутого топлива. Сама сила сжатия остается неизменной и зависит от максимально близкого расположения поршня и верхней стенки камеры сгорания. Также существует такое понятие, как компрессия.

Компрессия — показатель того, насколько увеличилось в большую сторону от нормального расстояние между этими деталями в процессе эксплуатации. Иначе – это уровень давления в цилиндрах, которые обеспечивают оптимальное давление для силы сжатия. Иначе — износ указанных деталей двигателя.

Читать еще:  Холодный пуск двигателя приравнивается

Чем лучше состояние цилиндров и поршневых колец, тем выше компрессия. При большем давлении воспламенение топлива наступает быстрее и двигатель запускается. При недостаточном — температуры в камерах на запуск не хватает, и двигатель не заводится.

В нормальном состоянии топливо воспламеняется в температурном диапазоне от 230°С до 345 °С. При похолодании дизельное топливо обычно мутнеет, густеет, становится вязким и замерзает.

Летнее ДТ начинает процесс преобразования при -5°С, зимнее при -25°С. При низкой компрессии поршню не хватает мощности, чтобы «продавить» ДТ через топливные фильтры и добрать необходимую для воспламенения температуру в камере сгорания. Как и любое давление, измерить компрессию можно в атмосферах.

В новом автомобиле компрессия в цилиндрах составляет примерно 36-40 атмосфер: машина спокойно заведется в -30-35°С. Условно-общие значения компрессии для запуска мотора в холодное время года:

  • 30-36 атмосфер: запуск мотора возможен при понижении температуры до -30°С;
  • 28-30 атмосфер: диапазон допустимых значений температуры воздуха от -15 до -30°С, или многодневная парковка на улице при температуре не ниже -15°С;
  • 25-28 атмосфер: авто способно выдержать продолжительное время на стоянке под открытым небом и завестись, если за этот период температура не опускалась ниже -10°С;
  • 20-25 атмосфер: автомобилю необходим отапливаемый гараж или теплый паркинг для запуска двигателя;
  • До 20 атмосфер: машина не заведется даже при положительной температуре.

Тем, кто взял новый автомобиль, волноваться не о чем ближайшие 2-3 года. А тем, у кого постгарантийное ТС, лучше подготовиться к зимним холодам и холодной осени.

Компрессия в дизельном двигателе

Замер компрессии в дизельном двигателе — это ряд несложных операций, в ходе которых измеряют процент сжатия поршнем воздуха. По результатам проверки можно сделать выводы о состоянии поршневой группы, цилиндра, прокладок, и головки этого блока. Для измерений используют специальный прибор — компрессометр или компрессограф. Компрессометр — простая конструкция, которая в основном состоит из манометра. Он, в свою очередь, соединен с переходником, на котором расточена такая же резьба, как и на стандартной свече и имеет похожий вид.

Помимо компрессии в цилиндрах существует ещё и другая величина — степень сжатия. Степень сжатия — это геометрическая величина, которая отображает соотношение камеры сгорания между головкой и поршнем при его положениях в верхней и нижней мертвой точке.

Часто эти понятия путают, хотя компрессия — это физическая величина, которая измеряется в кг/см2, pci или барах и является давлением, которое создается в цилиндрах двигателя при работе поршня. Величина компрессии всегда больше, чем степень сжатия.

Измерение компрессии дизельного двигателя выполнятся в несколько этапов. Для начала нужно учесть некоторые аспекты:

  • Измерения проводятся исключительно на прогретом дизельном двигателе, его температура должна быть приблизительно около 70-90 С.
  • Необходимо отключить подачу топлива (отключить бензонасос или форсунки).
  • Стоит вывернуть абсолютно все свечи, так как они будут создавать компрессию в других цилиндрах, из-за этого у двигателя при прокрутке стартером упадут обороты и будет возникать сопротивление вращению.
  • Аккумулятор должен быть полностью заряжен или подключено пусковое устройство. Стартер также должен быть исправен.


Рассмотрим этапы замера компрессии в дизельном двигателе:

  1. Необходимо перекрыть подачу топлива для того, чтобы в цилиндре помимо масла больше ничего не создавало излишнюю компрессию. Лучше всего — отсоединить клеммы с топливного насоса.
  2. Выкручиваем все свечи и присоединяем компрессометр. Его установка выполняется так же, как и установка обычной свечи. Закручиваем измерительный прибор по резьбе.
  3. Подключаем заряженный аккумулятор и прокручиваем стартером поршни до тех пор, пока стрелка на компрессометре не остановится в максимальном значении (пока не перестанет возрастать давление). Во время выполнения этой операции нужно поставить нейтральную передачу и ручник.
  4. Повторяем замер со всеми цилиндрами, устанавливая прибор вместо каждой из свеч.
  5. Записываем результаты каждого теста, чтобы сравнить их с нормальными показаниями.
  6. Вкручиваем обратно все свечи, восстанавливаем работу бензонасоса (подачу топлива). Присоединяем клеммы на место.
Подготовка дизеля к зиме

Комплекс мероприятий по подготовке автомобиля к зимнему сезону входят:

  1. Проверка компрессии и устранение причин.
  2. Замена масла. Масло обеспечивает нужный уровень скольжения подшипникам и качение турбокомпрессору, увеличивая продолжительность их службы. Зимнее масло имеет меньший коэффициент вязкости, тем самым облегчая запуск. Для турбированных двигателей масла имеют улучшенный состав.
  3. Замена фильтров. Дизельные двигатели чаще нуждаются в смене расходников, из-за того, что нагрузка на них больше. Поэтому желательно проверить и заменить фильтры.
  4. Чистка форсунок. ДТ не всегда бывает хорошего качества. Некачественное топливо может привести к засорению топливной системы, что скажется на потере мощности турбины и увеличит вероятность выхода её строя. Форсунки склонны к высокому нагреву, поэтому часть топлива запекается, образуя нагар. Этот запекшийся слой уменьшает сечение пропускного канала, снижая работоспособность форсунки и объем подачи ДТ в камеру сгорания для запуска на 20%.
  5. Корректировка работы ТНВД.
  6. Зарядка АКБ.
  7. Проверка свечей накала, если установлен предпусковой подогреватель. Свечи разогревают камеру сгорания топливной смеси в холодное время года, обеспечивая запуск мотора. Зимой проблема актуальна, ведь с пуском могут возникнуть сложности. Летом система не используется.
  8. Утепление двигателя. Не обязательная, но популярная процедура – укрыть двигатель одеялом.
  9. Установка предпускового зажигания. Разнообразие жидкостных, электрических и автономных подогревателей позволяет выбрать необходимый вариант для конкретного случая.


Что делать, если наступило резкое похолодание?

Основные проблемы, с которыми может столкнуться хозяин дизеля на неподготовленной к сезону машине, и методы их решения:

  1. В баке было летнее ДТ, и оно стало вязким. В таком случае в бак заливают депрессорные присадки, но если их нет — подойдет бензин или керосин (не более 15% от объема бака). Долив производится в отогретый автомобиль, поэтому лучше заранее позаботиться о свечах накаливания. Можно попробовать сменить топливный фильтр — возможно, его наглухо забило соляркой и парафинизировало, из-за чего он потерял пропускную способность и топливо не попадает в камеру сгорания.
  2. На улице резко похолодало, и мотор остыл. При кратковременных заморозках стоит утеплить двигатель одеялом или вспененным гофрированным полиэтиленом — это поможет ему быстро отогреться, но не спасет в сильный мороз.
  3. Неисправны свечи накала, а компрессии не хватает. Можно несколько раз включить-отключить зажигание для прогрева свечей накаливания. Также есть старый метод — эфиросодержащий спрей впрыскивают в воздушный фильтр. С помощью него и газовой горелки можно попробовать разогреть воздух в цилиндрах.
  4. Сел аккумулятор. Нужно подзарядить АКБ и попросить «прикурить». Важно помнить, что донор должен заглушить двигатель, иначе мощный дизель может спалить или серьезно повредить электронику прикуривающего авто. Провода должны быть с сечением не менее 1-1,5 квадрата. Предпусковые подогреватели лучше включить.

Во всех остальных случаях поможет только эвакуация ТС в теплый бокс.

Понять, почему дизельный двигатель не заводится на морозе довольно трудно. Есть множество причин и способов их устранения. Поэтому лучше обезопасить себя от возможных проблем и заранее провести подготовку к зимнему сезону.

Разрушители легенд. Двигатель внутреннего сгорания. Часть №3. Степень сжатия.

На самом деле совершенно не степень сжатия является темой данной статьи. Я несколько раз менял название в ходе написания текста и в конце концов вернулся к первоначальному названию, хотя к тому времени сам почти перестал понимать — что это такое и зачем…

Итак.
Официальная трактовка:
Степень сжатия — отношение полного объёма цилиндра двигателя внутреннего сгорания(надпоршневого пространства цилиндра при положении поршня в нижней мёртвой точке) к объёму «камеры сгорания» (надпоршневого пространства цилиндра при положении поршня в верхней мёртвой точке):

Степень сжатия — чисто геометрическая безразмерная характеристика двигателя.

Поскольку воздух при быстром(адиабатическом) сжатии нагревается — то у двигателя со степенью сжатия 10 давление конца сжатия будет не 10 атмосфер, а около 16. Эта характеристика того же самого двигателя называется компрессия ДАВЛЕНИЕ КОНЦА ТАКТА СЖАТИЯ:

На самом деле давление в ВМТ может быть и больше(если двигатель горячий), а может быть и меньше(если двигатель холодный и сильно изношен или если используются нестандартные фазы ГРМ)…

Как я уже писал в своих предыдущих опусах — сгорание в двигателе происходит на протяжении 50-70 градусов по коленвалу в определённых «климатических» условиях. Поскольку ни СТЕПЕНЬ СЖАТИЯ, ни КОМПРЕССИЯ нам об этих самых «климатических» условиях ничего толком сообщить не могут(хотя бы по той самой элементарной причине, что замеряются они в одной единственной точке на абсолютно неработающем двигателе) — то и оперировать в дальнейшем я буду ДАВЛЕНИЕМ и ТЕМПЕРАТУРОЙ.
Ибо только они показывают что происходит в цилиндре двигателя НА САМОМ ДЕЛЕ.

А НА САМОМ ДЕЛЕ там творится нечто подобное:

Синяя кривая — это давление в цилиндре НЕРАБОТАЮЩЕГО двигателя.
Ромбик в ВМТ — это «компрессия».

Вопрос залу — а что такое эдакое означают ромбики на кривых давления РАБОТАЮЩЕГО двигателя?!

А это есть СУММАРНАЯ «компрессия», которая обеспечивается не только поршневой группой двигателя — но и давлением, создаваемым сгорающим топливом, если это топливо запалить ДО верхней мёртвой точки.
Давление это до ВМТ будет толкать и поршень и коленвал в обратную сторону, ухудшая и без того низкий КПД двигателя — но именно это давление обеспечит топливу те самые ОПТИМАЛЬНЫЕ «климатические» условия, необходимые для его полного и качественного сгорания.

В том или ином виде суммарную «компрессию» повышают и турбокомпрессор, и ЕГР, и оптимальные фазы ГРМ, и всякого рода резонансные впускные коллектора… Не суть.

Давайте повнимательнее рассмотрим все кривые на рисунке.
Чем раньше(в разумных пределах) мы запалим топливо — тем выше будет давление в ВМТ, тем лучше и полнее сгорит топливо и тем больше давления мы получим — и по максимальному значению и по площади.
Не забываем — именно давление выполняет полезную работу!

Проблема заключается только в том, что КРИВОШИПНО-ШАТУННЫЙ МЕХАНИЗМ это ДАВЛЕНИЕ в РАБОТУ в зоне ВМТ преобразовать ЭФФЕКТИВНО не может.

Если обеспечить момент зажигания в той точке, которая обеспечит наилучшее СГОРАНИЕ топлива, то проблем получается аж три.

1). Воспламенение топлива до ВМТ значительно снижает КПД двигателя за счёт того, что выделяемая энергия ТОРМОЗИТ коленвал, пока он не перевалит через ВМТ. Для того чтобы скомпенсировать это торможение и просто выйти по нулям — нужно аннигилировать аналогичную площадь давления газов уже сразу после ВМТ.
Синий график давления самый эффективный по площади, но про жёлтый треугольник давления можно забыть — полезной работы он не создаст:

Забавная ситуация. Самый пик давления и температуры — а вся выделяемая энергия тупо идёт в нагрев двигателя — ибо именно в этот момент осуществляется максимальная теплопередача в стенки «камеры сгорания», а полезного с коленвала снять не получается вообще НИЧЕГО.
ВСЯ выделяющаяся энергия затрачивается из полезного — ТОЛЬКО на обеспечение тех самых, наилучших для сгорания топлива, «климатических условий».
Чтобы избавиться от этого безобразия нужно воспламенять топливо исключительно после ВМТ, но тогда топливо в наших двигателях не успевает сгореть…

2). Воспламенение топлива до ВМТ значительно снижает КПД двигателя и за счёт того, что выделяемая энергия не может эффективно трансформироваться коленвалом до тех пор, пока поршень находится в зоне ВМТ:

Сиреневая кривая — это усилие на коленвалу. То, что остаётся ПОЛЕЗНОГО от давления газов — от синей кривой.

Чтобы избавиться от этого безобразия нужно обеспечить пик сгорания где-то в районе 50-70 градусов после ВМТ — вот тогда толку от давления сгорающих газов будет в разы больше. Но в существующих ДВС нормальное сгорание на этом отрезке организовать вообще не возможно — так как объём «камеры сгорания» на этом участке уже раза в три-четыре больше, чем в ВМТ, и стремительно увеличивается.

3). Воспламенение топлива до ВМТ обуславливает сгорание бОльшей части топлива в зоне малого изменения объёма камеры сгорания. Полезной работы не производится вообще — и вся энергия сгорающего топлива расходуется исключительно на повышение давления и температуры внутри «камеры сгорания». Ну и на нагрев стенок «камеры сгорания», есстесственно… Если давление и температура превысят некоторый порог — детонационные процессы(которые в «бензиновом» двигателе присутствуют ВСЕГДА) начнут УСПЕВАТЬ развиваться во взрыв.
Если поршень уже интенсивно опускается(а он с каждым градусом по КВ опускается всё быстрее) — то снижение давления в «камере сгорания» детонацию активно подавляет — не даёт развиться новым очагам самовоспламенения. Если поршень вблизи ВМТ и объём «камеры сгорания» увеличивается ещё не интенсивно — то детонация будет максимальна, так как охватит всё невоспламенившееся ещё топливо. Детанационные пики на рисунке — это не набор микровзрывов. Взрыв по сути один — объёмный. Эти пики показывают как детонационная волна мечется по камере сгорания, отражаясь и переотражаясь от стенок и вызывая этим резонансные процессы:

Рисунок рисовали балбесы. Но этот рисунок самый лучший из десятков просмотренных в инэте(мне лень их рисовать самому, сорри) — он хотя бы правильно показывает ГДЕ на кривой расположена детонация в «бензиновом» двигателе.
Чем сильнее детонация — тем быстрее сгорает топливо — тем выше пик общего давления и тем быстрее он спадает.

Детонация плоха двумя вещами:
Первая — это чрезмерные ударные нагрузки, разрушающие двигатель.
Вторая — резкое укорачивание сгорания опять удерживает пик давления в области ВМТ, где эффективное преобразование давления в работу невозможно.

Дросселирование в «бензиновом» двигателе значительно уменьшает суммарную степень сжатия.
«Климатические» условия в камере сгорания рушатся — температура и давление конца такта сжатия значительно снижаются — ВОСПЛАМЕНЕНИЕ значительно ухудшается. Для исправления ситуации приходится делать зажигание всё раньше и раньше — со всеми положительными и отрицательными моментами.
КПД двигателя по мере прикрытия дроссельной заслонки стремительно падает…

В «дизельном» двигателе ситуация отличается не сильно, но в лучшую сторону:

1). Топливо в «камеру сгорания» поступает дозировано — соответственно нарастанием давления можно худо-бедно управлять. Предвпрыск до ВМТ обеспечивает необходимые «климатические условия» в зоне ВМТ и, самое главное, — пламя. ПЛАМЯ во «всём» объёме «камеры сгорания»!
Потому основной впрыск топлива можно осуществлять после ВМТ — уже в пламя. ВОСПЛАМЕНЕНИЕ свежих порций топлива происходит практически мгновенно.

2). Поскольку смесееобразование осуществляется параллельно со сгоранием — типичная для «бензинового» двигателя детонация не возможна в принципе.
Но попытка впрыскивать топливо слишком интенсивно приводит к тому, что образуются локальные зоны с большим содержанием топлива и зоны, вообще не содержащие топлива — это нарушает смесеобразование.
Ничего хорошего не выходит и при модном нынче у производителей затянутом впрыске — воздушный вихрь делает оборот в камере сгорания и впрыск опять осуществляется в воздушную область, где кислород уже выгорел, потому как туда топливо уже впрыскивалось на предыдущем обороте воздушного вихря.

Интенсивность впрыска топлива в «дизельном» двигателе должна чётко синхронизироваться со складывающейся турбулизацией в камере сгорания. В идеальном случае впрыскивание топлива в камеру сгорания дизеля должно продолжаться ровно столько по времени, за сколько воздушный вихрь совершает один полный оборот.
Это должно неплохо получаться у систем на базе CommonReil — где можно и давлением в рейке манипулировать как угодно и открытием форсунок управлять очень точно…

3). Более высокая по сравнению с «бензиновым» двигателем степень сжатия обуславливает и более высокий КПД «дизельного» двигателя на режиме максимальной мощности, и намного более высокий КПД на режиме холостого хода — ведь дросселирования на «дизельном» двигателе нет.

К сожалению быстрое и эффективное сгорание топлива в ДВС приводит к образованию окислов азота. Законодательство большинства стран прямо предписывает уменьшение азотистых выбросов из года в год. Но ДЕШЁВОГО и эффективного средства ОЧИСТКИ выхлопных газов от азотистых соединений не придумали до сих пор — потому развитие двигателестроения идёт по пути уменьшения ОБРАЗОВАНИЯ окислов азота.
Основной способ — ЗАМЕДЛЕНИЕ сгорания топлива за счёт снижения предельных температур и давления в камере сгорания. Соответственно современный трэнд развития двигателестроения — снижение степени сжатия.
Тьфу ты… зарёкся же… Снижение того, что принято обзывать степенью сжатия.
А добиться этого можно, как вы уже поняли, многими способами.

Ссылка на основную публикацию
Adblock
detector