Давление в камере сгорания для ракетного двигателя

Давление в камере сгорания для ракетного двигателя

  • О Фонде
  • Органы управления
    • Правление
    • Попечительский совет
    • Научно-технический совет
  • Лаборатории
  • Центры
  • Документы
  • Противодействие коррупции
  • Направления
  • Предложить проект
  • Вакансии
  • Партнеры
  • Проекты
  • Конкурсы
  • Контакты
  • Пресс-центр
  • О Фонде
    • Цели и задачи
    • Органы управления
      • Генеральный директор
      • Правление
      • Попечительский совет
      • Научно-технический совет
    • Лаборатории
    • Центры
    • Документы
    • Противодействие коррупции
  • Проекты
    • Все проекты
    • Физико-технические исследования
    • Химико-биологические
      и медицинские исследования
    • Информационные исследования
  • Конкурсы
    • Все
    • Завершенные
  • Сотрудничество
    • Направления
    • Предложить проект
    • Вакансии
    • Партнеры
  • Пресс-центр
    • Новости Фонда
    • СМИ о нас
    • События
  • Контакты

      Проезд от ст. м. «Киевская»
      автобусы №7, 17, 34 до остановки
      «Патентное ведомство»

      • Цели и задачи
      • Органы управления
      • Лаборатории
      • Центры
      • Документы
      • Противодействие коррупции

      Совместный проект Фонда перспективных исследований и АО «НПО Энергомаш имени академика В.П.Глушко»

      Лаборатория «Детонационные ЖРД» создана Фондом перспективных исследований в 2014 году на базе АО «НПО Энергомаш».

      АО «НПО Энергомаш имени академика В.П. Глушко» – ведущее российское предприятие по разработке мощных жидкостных ракетных двигателей (ЖРД). Ракетные двигатели, разработанные в НПО Энергомаш, вывели и выводят в космос практически все отечественные космические аппараты. В их числе – первый искусственный спутник Земли, первый космический корабль с человеком на борту, орбитальная станция «Мир» и космический корабль «Буран».

      В НПО Энергомаш созданы самые мощные в мире жидкостные ракетные двигатели РД-170 и РД-171 для ракет-носителей «Энергия» и «Зенит», двигатели РД-264 и РД-268 для боевых ракет Р-36М и МР-УР-100, двигатель РД-180 для американских ракет-носителей «Атлас III» и «Атлас-V», двигатель РД-191 для семейства российских ракет-носителей «Ангара».

      Огромный опыт создания жидкостных ракетных двигателей и владение уникальными технологиями обеспечили основу сотрудничества предприятия с авиакосмическими организациями и компаниями всего мира.

      Работа лаборатории «Детонационные ЖРД» ведётся в кооперации с ФГБОУ ВПО МАИ (НИУ) и ФГБОУ ИГиЛ СО РАН, в рамках этой работы создан и успешно испытан демонстратор жидкостного ракетного двигателя, работающего в режиме непрерывной спиновой детонации. В ходе реализации данного проекта изучены возможности повышения тягово-экономических характеристик двигателя путем организации детонационного горения, а также способы обеспечения работоспособности конструкции двигателя при высочайших температурах и параметрах давления внутри камеры сгорания, возникающих при работе в детонационном режиме при отсутствии охлаждения пристеночного слоя.

      Новизна данных исследований определена применением принципиально новых способов организации рабочего процесса в камере сгорания жидкостного ракетного двигателя и использованием для создания его конструкции не имеющих аналогов высокотемпературных теплозащитных покрытий со специфическими свойствами. Эти покрытия позволяют обеспечить работоспособность стенки камеры сгорания без системы охлаждения в течение заданного времени. Более того исследования позволят получить понимание о возможностях и пределах детонации топливной пары кислород-керосин.

      Особое место в проекте было отведено исследованиям процесса смесеобразования топлива и поиску новых подходов в конструкции смесительных головок, позволяющих получать капли топливной смеси необходимого размера, состава и концентрации.

      В результате реализации проекта создан демонстратор нового ракетного двигателя, который ляжет в основу нового класса ракет-носителей. Кроме того, в ходе реализации проекта разработан ряд уникальных технологий, математических моделей и программных продуктов, которые могут быть использованы для других перспективных работ.

      В настоящее время в составе лаборатории работают девять человек. Это ведущие сотрудники конструкторского бюро АО «НПО Энергомаш», которые имеют уникальный опыт расчетов и разработки конструкций ЖРД, а также проведения научно-исследовательских работ в области создания перспективных инновационных ракетных двигателей.

      Поднатужился и смог. Илон Маск заявил о том, что побил рекорд российского ракетного двигателя РД-180

      Об успешных испытаниях, в ходе которых давление в камере сгорания достигло почти 269 атмосфер, сообщил основатель и владелец SpaceX Илон Маск. На выложенном им графике проведена линия на уровне 267 атмосфер: она, по заявлению Маска, соответствует рабочему давлению в камере сгорания РД-180. И хотя НПО «Энергомаш» у себя на сайте указывает иное значение (261 атмосферу), принципиально картину это не меняет — у российского двигателя, который сам Маск называет «превосходным», похоже, скоро появится серьезный конкурент.

      Raptor reached 268.9 bar today, exceeding prior record held by the awesome Russian RD-180. Great work by @SpaceX engine/test team! pic.twitter.com/yPrvO0JhyY

      Raptor reached 268.9 bar today, exceeding prior record held by the awesome Russian RD-180. Great work by @SpaceX engine/test team! pic.twitter.com/yPrvO0JhyY

      Давление в камере сгорания — это не единственный, но довольно важный показатель эффективности двигателя. «Чердак» предлагает разобраться, к чему стремятся конструкторы ракетных двигателей.

      Зачем повышают давление?

      Принцип работы ракетного двигателя сравнительно прост: некая горючая смесь при сгорании дает много раскаленных газов, которые вырываются из камеры сгорания в нужном направлении. При этом чем больше в камере давление, тем выше скорость струи газов, а это напрямую задает тягу. Здесь в дело вступает закон сохранения импульса, и ракета получает такой же импульс, какой имеют выброшенные продукты сгорания. Импульс ракеты равен массе газов, помноженной на скорость струи, поэтому в идеале нужно одновременно сжигать как можно больше и выбрасывать продукты сгорания с максимально возможной скоростью — тяга в этом случае окажется максимальной.

      Недостаток давления и меньшую скорость истечения газов можно компенсировать повышением расхода топлива и окислителя, но тогда их надо будет брать изначально с большим запасом. А больший запас означает большую стартовую массу, которая, в свою очередь, требует еще большей тяги — получается замкнутый круг, разорвать который иногда просто невозможно. В космос невозможно улететь с двигателями, которые дают слишком малую скорость истечения, да и используемые сейчас не слишком эффективны в силу фундаментальных причин: при сгорании практически чего угодно получить струю со скоростью свыше 3,5 км/с не дают законы физики. Энергия на разгон ракетной струи берется из энергии химических связей в молекулах топлива и окислителя, а ее не может быть больше определенного порога просто в силу того, что так устроены атомы.

      Вывод тонны груза на орбиту обходится в десятки тонн сожженного керосина с жидким кислородом, то есть в миллионы рублей, еще до учета себестоимости одноразовой ракеты, стоимости работ на космодроме и многого другого.

      Высокое давление в камере сгорания РД-180 стало одной из причин, по которой эти двигатели оказались одними из лучших в истории. В 1990-е годы НПО «Энергомаш» выиграло конкурс на поставку двигателей для американских ракет Atlas, и с тех пор в США поставлено более 80 серийных образцов, использованных для 69 запусков без единой аварии ракеты-носителя. РД-180 разработали специально под американский проект ракеты Atlas, взяв за основу РД-170, который, в свою очередь, делали под так и не реализованный в полной мере проект ракеты-носителя «Энергия». «Энергия» совершила всего два запуска, а еще более мощная ее модификация, «Вулкан», вкупе с уменьшенной «Энергией-М» вовсе остались на бумаге.

      Успех российской разработки после 2014 года повлек волну предложений о запрете экспорта РД-180 в США. Причем с двух сторон: российские политики хотели оставить американцев без хороших двигателей, а тот же Илон Маск желал избавится от конкурентов. В итоге новые контракты не заключают, но поставки по старым еще продолжаются.

      Почему это сложно?

      Простая идея повысить рабочее давление, чтобы получить струю помощнее, сталкивается со сложностями реализации. Чтобы увеличить давление, надо повышать и температуру в камере сгорания, а это автоматически влечет за собой потребность в особо прочных материалах. Даже если не брать РД-180, а рассмотреть старенький РД-107 (сделанный для самой первой межконтинентальной ракеты еще в 1950-х), давление в его камере сгорания достигнет шестидесяти атмосфер (то есть как под грузом в шестьсот тонн на квадратный метр) при температуре внутри в 3250 ℃. Стенки камер сгорания в ракетных двигателях делают из жаропрочной стали, но этого недостаточно — камеру сгорания и сопло дополнительно охлаждают циркулирующим за стенками топливом, а конфигурацию пламени внутри специально рассчитывают так, чтобы оно не касалось поверхности. В том же РД-107 стенки грелись «всего» до 380 ℃, поэтому металл сохранял свою прочность и мог противостоять давлению изнутри.

      Сделать прочную камеру сгорания еще полдела. Чтобы в эту камеру поступало горючее и окислитель, их надо подавать под тем же давлением. Для этого требуются, во-первых, специальные насосы, во-вторых, турбина, которая эти насосы раскручивает, и ее лопатки уже должны работать непосредственно в пламени с очень высокой температурой. Разрушение турбонасосного агрегата привело к гибели не одного десятка ракет в истории, этот узел до сих пор относится к числу тех изделий, которые в состоянии изготовить лишь немногие предприятия мира. Ракетная отрасль консервативна: модификация упомянутого выше РД-107 используется в боковых ступенях «Союзов-2» до сих пор. Ничего радикально лучше и надежнее создано не было.

      Не давлением единым

      Давление — важная, но не единственная характеристика двигателя. Самая тяжелая ракета из когда-либо успешно летавших, Saturn V, имела двигатели F1 с давлением всего 70 атмосфер. Merlin, стоящие в Falcon 9, не дотягивают до сотни, а российские «Союзы» довольствуются снова 70 — и дело не в готовности оператора тратить лишнее топливо с окислителем. Напротив, Falcon 9 оказалась одной из самых дешевых ракет на сегодняшнем рынке, и ключевую роль тут сыграла многоразовость.

      Двигатели Merlin не столь мощны, как РД-180, но зато связкой из девяти таких двигателей проще управлять при снижении ракеты. Это позволило возвращать первые ступени на Землю в целом виде и после ремонта использовать повторно, так что в итоге вышло дешевле и практичнее. Не столь экстремальный двигатель проще в изготовлении и обслуживании, а еще может иметь меньшую массу, так что недостаток тяги иногда не столь уж страшен. Как уже было отмечено, двигатель сжигает топлива и окислителя на миллионы рублей, однако стоимость того же РД-180 составляет несколько миллионов долларов, а в ракете кроме двигателей есть масса иных недешевых компонентов.

      Идеальный двигатель имел бы малую массу, высокое давление в камере сгорания, надежные детали и низкую стоимость. Но на практике это столь же несочетаемо, как попытка соединить тягу тепловоза с динамикой спорткара и расходом топлива мопеда.

      Что делает Маск

      Места для роста ракетным двигателям осталось немного. Законы термодинамики гласят, что получить скорость истечения газов больше трех с половиной километров в секунду уже не получится — разве что перейти на смеси, которые в приличном конструкторском обществе употреблять не принято. Жидкий фтор с водородом и жидким же литием (температурой 180 градусов, заливать в подогретые баки) может, конечно, выдать целых 5320 м/с, но иметь дело с этим химическим кошмаром американские ракетчики в пятидесятые годы отказались. Советские инженеры, правда, смогли разработать РД-301, работавший на паре фтор+аммиак, но в семидесятые годы закрыли и этот проект.

      Маск рассчитывает создать двигатель, который соединит управляемость Merlin с давлением РД-180, сохранив надежность и того и другого. Работать Raptor будет на метане и кислороде, что необычно, но не слишком: метан почти не использовался в космонавтике, однако горит в кухонных плитах, так что никаких из ряда вон выходящих мер безопасности не требуется. Тяга Raptor должна составить 170 тонно-сил, и этот показатель уже достигнут в испытаниях, так что шансы проекта на успех довольно высоки.

      Алексей Тимошенко

      Какой ракетный двигатель самый лучший?


      Ракетные двигатели — одна из вершин технического прогресса. Работающие на пределе материалы, сотни атмосфер, тысячи градусов и сотни тонн тяги — это не может не восхищать. Но разных двигателей много, какие же из них самые лучшие? Чьи инженеры поднимутся на пьедестал почета? Пришло, наконец, время со всей прямотой ответить на этот вопрос.

      К сожалению, по внешнему виду двигателя нельзя сказать, насколько он замечательный. Приходится закапываться в скучные цифры характеристик каждого двигателя. Но их много, какую выбрать?

      Мощнее

      Ну, наверное, чем мощнее двигатель, тем он лучше? Больше ракета, больше грузоподъемность, быстрее начинает двигаться освоение космоса, разве не так? Но если мы посмотрим на лидера в этой области, нас ждет некоторое разочарование. Самая большая тяга из всех двигателей, 1400 тонн, у бокового ускорителя Спейс Шаттла.

      Несмотря на всю мощь, твердотопливные ускорители сложно назвать символом технического прогресса, потому что конструктивно они являются всего лишь стальным (или композитным, но это неважно) цилиндром с топливом. Во-вторых, эти ускорители вымерли вместе с шаттлами в 2011 году, что подрывает впечатление их успешности. Да, те, кто следят за новостями о новой американской сверхтяжелой ракете SLS скажут мне, что для нее разрабатываются новые твердотопливные ускорители, тяга которых составит уже 1600 тонн, но, во-первых, полетит эта ракета еще не скоро, не раньше конца 2018 года. А во-вторых, концепция «возьмем больше сегментов с топливом, чтобы тяга была еще больше» является экстенсивным путем развития, при желании, можно поставить еще больше сегментов и получить еще большую тягу, предел тут пока не достигнут, и незаметно, чтобы этот путь вел к техническому совершенству.

      Второе место по тяге держит отечественный жидкостной двигатель РД-171М — 793 тонны.


      Четыре камеры сгорания — это один двигатель. И человек для масштаба

      Казалось бы — вот он, наш герой. Но, если это лучший двигатель, где его успех? Ладно, ракета «Энергия» погибла под обломками развалившегося Советского Союза, а «Зенит» прикончила политика отношений России и Украины. Но почему США покупают у нас не этот замечательный двигатель, а вдвое меньший РД-180? Почему РД-180, начинавшийся как «половинка» РД-170, сейчас выдает больше, чем половину тяги РД-170 — целых 416 тонн? Странно. Непонятно.

      Третье и четвертое места по тяге занимают двигатели с ракет, которые больше не летают. Твердотопливному UA1207 (714 тонн), стоявшему на Титане IV, и звезде лунной программы двигателю F-1 (679 тонн) почему-то не помогли дожить до сегодняшнего дня выдающиеся показатели по мощности. Может быть, какой-нибудь другой параметр важнее?

      Эффективнее

      Какой показатель определяет эффективность двигателя? Если ракетный двигатель сжигает топливо, чтобы разгонять ракету, то, чем эффективнее он это делает, тем меньше топлива нам нужно потратить для того, чтобы долететь до орбиты/Луны/Марса/Альфы Центавра. В баллистике для оценки такой эффективности есть специальный параметр — удельный импульс.

      Удельный импульс показывает, сколько секунд двигатель может развивать тягу в 1 Ньютон на одном килограмме топлива

      Рекордсмены по тяге оказываются, в лучшем случае, в середине списка, если отсортировать его по удельному импульсу, а F-1 с твердотопливными ускорителями оказываются глубоко в хвосте. Казалось бы, вот она, важнейшая характеристика. Но посмотрим на лидеров списка. С показателем 9620 секунд на первом месте располагается малоизвестный электрореактивный двигатель HiPEP


      Это не пожар в микроволновке, а настоящий ракетный двигатель. Правда, микроволновка ему все-таки приходится очень отдаленным родственником.

      Двигатель HiPEP разрабатывался для закрытого проекта зонда для исследования лун Юпитера, и работы по нему были остановлены в 2005 году. На испытаниях прототип двигателя, как говорит официальный отчет NASA, развил удельный импульс 9620 секунд, потребляя 40 кВт энергии.

      Второе и третье места занимают еще не летавшие электрореактивные двигатели VASIMR (5000 секунд) и NEXT (4100 секунд), показавшие свои характеристики на испытательных стендах. А летавшие в космос двигатели (например, серия отечественных двигателей СПД от ОКБ «Факел») имеют показатели до 3000 секунд.


      Двигатели серии СПД. Кто сказал «классные колонки с подсветкой»?

      Почему же эти двигатели еще не вытеснили все остальные? Ответ прост, если мы посмотрим на другие их параметры. Тяга электрореактивных двигателей измеряется, увы, в граммах, а в атмосфере они вообще не могут работать. Поэтому собрать на таких двигателях сверхэффективную ракету-носитель не получится. А в космосе они требуют киловатты энергии, что не всякие спутники могут себе позволить. Поэтому электрореактивные двигатели используются, в основном, только на межпланетных станциях и геостационарных коммуникационных спутниках.

      Ну, хорошо, скажет читатель, отбросим электрореактивные двигатели. Кто будет рекордсменом по удельному импульсу среди химических двигателей?

      С показателем 462 секунды в лидерах среди химических двигателей окажутся отечественный КВД1 и американский RL-10. И если КВД1 летал всего шесть раз в составе индийской ракеты GSLV, то RL-10 — успешный и уважаемый двигатель для верхних ступеней и разгонных блоков, прекрасно работающий уже много лет. В теории, можно собрать ракету-носитель целиком из таких двигателей, но тяга одного двигателя в 11 тонн означает, что на первую и вторую ступень их придется ставить десятками, и желающих так делать нет.

      Можно ли совместить большую тягу и высокий удельный импульс? Химические двигатели уперлись в законы нашего мира (ну не горит водород с кислородом с удельным импульсом больше

      460, физика запрещает). Были проекты атомных двигателей (раз, два), но дальше проектов это пока не ушло. Но, в целом, если человечество сможет скрестить высокую тягу с высоким удельным импульсом, это сделает космос доступней. Есть ли еще показатели, по которым можно оценить двигатель?

      Напряженней

      Ракетный двигатель выбрасывает массу (продукты сгорания или рабочее тело), создавая тягу. Чем больше давление давление в камере сгорания, тем больше тяга и, главным образом в атмосфере, удельный импульс. Двигатель с более высоким давлением в камере сгорания будет эффективнее двигателя с низким давлением на том же топливе. И если мы отсортируем список двигателей по давлению в камере сгорания, то пьедестал будет оккупирован Россией/СССР — в нашей конструкторской школе всячески старались делать эффективные двигатели с высокими параметрами. Первые три места занимает семейство кислородно-керосиновых двигателей на базе РД-170: РД-191 (259 атм), РД-180 (258 атм), РД-171М (246 атм).


      Камера сгорания РД-180 в музее. Обратите внимание на количество шпилек, удерживающих крышку камеры сгорания, и расстояние между ними. Хорошо видно, как тяжело удержать стремящиеся сорвать крышку 258 атмосфер давления

      Четвертое место у советского РД-0120 (216 атм), который держит первенство среди водородно-кислородных двигателей и летал два раза на РН «Энергия». Пятое место тоже у нашего двигателя — РД-264 на топливной паре несимметричный диметилгидразин/азотный тетраоксид на РН «Днепр» работает с давлением в 207 атм. И только на шестом месте будет американский двигатель Спейс Шаттла RS-25 с двумястами тремя атмосферами.

      Надежней

      Каким бы ни был многообещающим по характеристикам двигатель, если он взрывается через раз, пользы от него немного. Сравнительно недавно, например, компания Orbital была вынуждена отказаться от использования хранившихся десятилетиями двигателей НК-33 с очень высокими характеристиками, потому что авария на испытательном стенде и феерический по красоте ночной взрыв двигателя на РН Antares поставили под сомнение целесообразность использования этих двигателей дальше. Теперь Antares будут пересаживать на российский же РД-181.


      Большая фотография по ссылке

      Верно и обратное — двигатель, который не отличается выдающимися значениями тяги или удельного импульса, но надежен, будет популярен. Чем длиннее история использования двигателя, тем больше статистика, и тем больше багов в нем успели отловить на уже случившихся авариях. Двигатели РД-107/108, стоящие на «Союзе», ведут свою родословную от тех самых двигателей, которые запускали первый спутник и Гагарина, и, несмотря на модернизации, имеют достаточно невысокие на сегодняшний день параметры. Но высочайшая надежность во многом окупает это.

      Доступней

      Двигатель, который ты не можешь построить или купить, не имеет для тебя никакой ценности. Этот параметр не выразить в числах, но он не становится от этого менее важным. Частные компании часто не могут купить готовые двигатели задорого, и вынуждены делать свои, пусть и попроще. Несмотря на то, что те не блещут характеристиками, это лучшие двигатели для их разработчиков. Например, давление в камере сгорания двигателя Merlin-1D компании SpaceX составляет всего 95 атмосфер, рубеж, который инженеры СССР перешли в 1960-х, а США — в 1980-х. Но Маск может делать эти двигатели на своих производственных мощностях и получать по себестоимости в нужных количествах, десятками в год, и это круто.


      Двигатель Merlin-1D. Выхлоп из газогенератора как на «Атласах» шестьдесят лет назад, зато доступно

      Раз уж зашла речь о спейсэксовских «Мерлинах», нельзя не упомянуть характеристику, которую всячески форсили пиарщики и фанаты SpaceX — тяговооруженность. Тяговооруженность (она же удельная тяга или TWR) — это отношение тяги двигателя к его весу. По этому параметру двигатели Merlin с большим отрывом впереди, у них он выше 150. На сайте SpaceX пишут, что это делает двигатель «самым эффективным из всех когда-либо построенных», и эта информация разносится пиарщиками и фанатами по другим ресурсам. В английской Википедии даже шла тихая война, когда этот параметр запихивался, куда только можно, что привело к тому, что в таблице сравнения двигателей этот столбец вообще убрали. Увы, в таком заявлении гораздо больше пиара, нежели правды. В чистом виде тяговооруженность двигателя можно получить только на стенде, а при старте настоящей ракеты двигатели будут составлять меньше процента от ее массы, и разница в массе двигателей ни на что не повлияет. Несмотря на то, что двигатель с высоким TWR будет более технологичным, чем с низким, это скорее мера технической простоты и ненапряженности двигателя. Например, по параметру тяговооруженности двигатель F-1 (94) превосходит РД-180 (78), но по удельному импульсу и давлению в камере сгорания F-1 будет заметно уступать. И возносить тяговооруженность на пьедестал как самую важную для ракетного двигателя характеристику, по меньшей мере наивно.

      Этот параметр во многом связан с доступностью. Если вы делаете двигатель сами, то себестоимость вполне можно подсчитать. Если же покупаете, то этот параметр будет указан явно. К сожалению, по этому параметру не построить красивую таблицу, потому что себестоимость известна только производителям, а стоимость продажи двигателя тоже публикуется далеко не всегда. Также на цену влияет время, если в 2009 году РД-180 оценивался в $9 млн, то сейчас его оценивают в $11-15 млн.

      Вывод

      Самый лучший ракетный двигатель — это такой двигатель, который вы можете произвести/купить, при этом он будет обладать тягой в требуемом вам диапазоне (не слишком большой или маленькой) и будет эффективным настолько(удельный импульс, давление в камере сгорания), что его цена не станет неподъемной для вас.

      Скучно? Зато ближе всего к истине.

      И, в заключение, небольшой хит-парад двигателей, которые лично я считаю лучшими:


      Семейство РД-170/180/190. Если вы из России или можете купить российские двигатели и вам нужны мощные двигатели на первую ступень, то отличным вариантом будет семейство РД-170/180/190. Эффективные, с высокими характеристиками и отличной статистикой надежности, эти двигатели находятся на острие технологического прогресса.


      Be-3 и RocketMotorTwo. Двигатели частных компаний, занимающихся суборбитальным туризмом, будут в космосе всего несколько минут, но это не мешает восхищаться красотой использованных технических решений. Водородный двигатель BE-3, перезапускаемый и дросселируемый в широком диапазоне, с тягой до 50 тонн и оригинальной схемой с открытым фазовым переходом, разработанный сравнительно небольшой командой — это круто. Что же касается RocketMotorTwo, то при всем скептицизме по отношению к Брэнсону и SpaceShipTwo, я не могу не восхищаться красотой и простотой схемы гибридного двигателя с твердым топливом и газообразным окислителем.

      F-1 и J-2 В 1960-х это были самые мощные двигатели в своих классах. Да и нельзя не любить двигатели, подарившие нам такую красоту:


      РД-107/108. Парадоксально? Невысокие параметры? Всего 90 тонн тяги? 60 атмосфер в камере? Привод турбонасоса от перекиси водорода, что устарело лет на 70? Это все неважно, если двигатель имеет высочайшую надежность, а по стоимости приближается к «большому глупому носителю». Да, конечно, когда-нибудь и его время пройдет, но эти двигатели будут жить еще лет десять минимум, и, похоже, поставят рекорд по долголетию. Не получится найти более успешный двигатель с более славной историей.

      Использованные источники
      • Материал во многом базируется на вот этой сводной таблице из английской вики, там стараются на каждую цифру дать ссылку и держать материал актуальным.
      • Полная картинка КДПВ с копирайтами, которые пришлось отрезать при кадрировании — тут.

      Топливо взрывается — полет нормальный

      Детонация — это взрыв. Можно ли ее сделать управляемой? Можно ли на базе таких двигателей создать гиперзвуковое оружие? Какие ракетные двигатели будут выводить необитаемые и пилотируемые аппараты в ближний космос? Об этом наш разговор с заместителем гендиректора — главным конструктором «НПО Энергомаш им. академика В.П. Глушко» Петром Левочкиным.

      Петр Сергеевич, какие возможности открывают новые двигатели?

      Петр Левочкин: Если говорить о ближайшей перспективе, то сегодня мы работаем над двигателями для таких ракет, как «Ангара А5В» и «Союз-5», а также другими, которые находятся на предпроектной стадии и неизвестны широкой публике. Вообще наши двигатели предназначены для отрыва ракеты от поверхности небесного тела. И она может быть любой — земной, лунной, марсианской. Так что, если будут реализовываться лунная или марсианская программы, мы обязательно примем в них участие.

      Какова эффективность современных ракетных двигателей и есть ли пути их совершенствования?

      Петр Левочкин: Если говорить об энергетических и термодинамических параметрах двигателей, то можно сказать, что наши, как, впрочем, и лучшие зарубежные химические ракетные двигатели на сегодняшний день достигли определенного совершенства. Например, полнота сгорания топлива достигает 98,5 процента. То есть практически вся химическая энергия топлива в двигателе преобразуется в тепловую энергию истекающей струи газа из сопла.

      Совершенствовать двигатели можно по разным направлениям. Это и применение более энергоемких компонентов топлива, введение новых схемных решений, увеличение давления в камере сгорания. Другим направлением является применение новых, в том числе аддитивных, технологий с целью снижения трудоемкости и, как следствие, снижение стоимости ракетного двигателя. Все это ведет к снижению стоимости выводимой полезной нагрузки.

      Однако при более детальном рассмотрении становится ясно, что повышение энергетических характеристик двигателей традиционным способом малоэффективно.

      Петр Левочкин: Увеличение давления и расхода топлива в камере сгорания, естественно, увеличит тягу двигателя. Но это потребует увеличение толщины стенок камеры и насосов. В результате сложность конструкции и ее масса возрастают, энергетический выигрыш оказывается не таким уж и большим. Овчинка выделки стоить не будет.

      То есть ракетные двигатели исчерпали ресурс своего развития?

      Петр Левочкин: Не совсем так. Выражаясь техническим языком, их можно совершенствовать через повышение эффективности внутридвигательных процессов. Существуют циклы термодинамического преобразования химической энергии в энергию истекающей струи, которые гораздо эффективнее классического горения ракетного топлива. Это цикл детонационного горения и близкий к нему цикл Хамфри.

      Сам эффект топливной детонации открыл наш соотечественник — впоследствии академик Яков Борисович Зельдович еще в 1940 году. Реализация этого эффекта на практике сулила очень большие перспективы в ракетостроении. Неудивительно, что немцы в те же годы активно исследовали детонационный процесс горения. Но дальше не совсем удачных экспериментов дело у них не продвинулось.

      Теоретические расчеты показали, что детонационное горение на 25 процентов эффективней, чем изобарический цикл, соответстветствующий сгоранию топлива при постоянном давлении, который реализован в камерах современных жидкостно-рактивных двигателей.

      А чем обеспечиваются преимущества детонационного горения по сравнению с классическим?

      Петр Левочкин: Классический процесс горения — дозвуковой. Детонационный — сверхзвуковой. Быстрота протекания реакции в малом объеме приводит к огромному тепловыделению — оно в несколько тысяч раз выше, чем при дозвуковом горении, реализованному в классических ракетных двигателях при одной и той же массе горящего топлива. А для нас, двигателистов, это означает, что при значительно меньших габаритах детонационного двигателя и при малой массе топлива можно получить ту же тягу, что и в огромных современных жидкостных ракетных двигателях.

      Не секрет, что двигатели с детонационным горением топлива разрабатывают и за рубежом. Каковы наши позиции? Уступаем, идем на их уровне или лидируем?

      Петр Левочкин: Не уступаем — это точно. Но и сказать, что лидируем, не могу. Тема достаточно закрыта. Один из главных технологических секретов состоит в том, как добиться того, чтобы горючее и окислитель ракетного двигателя не горели, а взрывались, при этом не разрушая камеру сгорания. То есть фактически сделать настоящий взрыв контролируемым и управляемым. Для справки: детонационным называют горение топлива во фронте сверхзвуковой ударной волны. Различают импульсную детонацию, когда ударная волна движется вдоль оси камеры и одна сменяет другую, а также непрерывную (спиновую) детонацию, когда ударные волны в камере движутся по кругу.

      Насколько известно, с участием ваших специалистов проведены экспериментальные исследования детонационного горения. Какие результаты были получены?

      Петр Левочкин: Были выполнены работы по созданию модельной камеры жидкостного детонационного ракетного двигателя. Над проектом под патронажем Фонда перспективных исследований работала большая кооперация ведущих научных центров России. В их числе Институт гидродинамики им. М.А. Лаврентьева, МАИ, «Центр Келдыша», Центральный институт авиационного моторостроения им. П.И. Баранова, Механико-математический факультет МГУ. В качестве горючего мы предложили использовать керосин, а окислителя — газообразный кислород. В процессе теоретических и экспериментальных исследований была подтверждена возможность создания детонационного ракетного двигателя на таких компонентах. На основе полученных данных мы разработали, изготовили и успешно испытали детонационную модельную камеру с тягой в 2 тонны и давлением в камере сгорания около 40 атм.

      Данная задача решалась впервые не только в России, но и мире. Поэтому, конечно, проблемы были. Во-первых, связанные с обеспечением устойчивой детонации кислорода с керосином, во-вторых, с обеспечением надежного охлаждения огневой стенки камеры без завесного охлаждения и массой других проблем, суть которых понятна лишь специалистам.

      Можно ли использовать детонационный двигатель в гиперзвуковых ракетах?

      Петр Левочкин: И можно, и нужно. Хотя бы потому, что горение топлива в нем сверхзвуковое. А в тех двигателях, на которых сейчас пытаются создать управляемые гиперзвуковые летательные аппараты, горение дозвуковое. И это создает массу проблем. Ведь если горение в двигателе дозвуковое, а двигатель летит, допустим, со скоростью пять махов (один мах равен скорости звука), надо встречный поток воздуха затормозить до звукового режима. Соответственно, вся энергия этого торможения переходит в тепло, которое ведет к дополнительному перегреву конструкции.

      А в детонационном двигателе процесс горения идет при скорости как минимум в два с половиной раза выше звуковой. И, соответственно, на эту величину мы можем увеличить скорость летательного аппарата. То есть уже речь идет не о пяти, а о восьми махах. Это реально достижимая на сегодняшний день скорость летательных аппаратов с гиперзвуковыми двигателями, в которых будет использоваться принцип детонационного горения.

      Что будет дальше?

      Петр Левочкин: Это сложный вопрос. Мы только приоткрыли дверь в область детонационного горения. Еще очень много неизученного осталось за скобками нашего исследования. Сегодня совместно с РКК «Энергия» мы пытаемся определить, как может в перспективе выглядеть двигатель в целом с детонационной камерой применительно к разгонным блокам.

      На каких двигателях человек полетит к дальним планетам?

      Петр Левочкин: По-моему мнению, еще долго мы будем летать на традиционных ЖРД занимаясь их совершенствованием. Хотя безусловно развиваются и другие типы ракетных двигателей, например, электроракетные (они значительно эффективнее ЖРД — удельный импульс у них в 10 раз выше). Увы, сегодняшние двигатели и средства выведения не позволяют говорить о реальности массовых межпланетных, а уж тем более межгалактических перелетов. Здесь пока все на уровне фантастики: фотонные двигатели, телепортация, левитация, гравитационные волны. Хотя, с другой стороны, всего сто с небольшим лет назад сочинения Жюля Верна воспринимались как чистая фантастика. Возможно, революционного прорыва в той сфере, где мы работаем, ждать осталось совсем недолго. В том числе и в области практического создания ракет, использующих энергию взрыва.

      «Научно-производственное объединение Энергомаш» основано Валентином Петровичем Глушко в 1929 году. Сейчас носит его имя. Здесь разрабатывают и выпускают жидкостные ракетные двигатели для I, в отдельных случаях II ступеней ракет-носителей. В НПО разработано более 60 различных жидкостных реактивных двигателей. На двигателях «Энергомаша» был запущен первый спутник, состоялся полет первого человека в космос, запущен первый самоходный аппарат «Луноход-1». Сегодня на двигателях, разработанных и произведенных в НПО «Энергомаш», взлетает более девяноста процентов ракет-носителей в России.

      Читать еще:  Что сделать чтобы двигатель не брал масло
Ссылка на основную публикацию
Adblock
detector