Двигатель dvd привода схема

Принцип работы DVD привода

Лабораторная работа № 4

Тема: Дисковод (привод)

Цель: Знать внутренности привода, как работает, DVD – диски.

Пояснение к работе.

Устpойство пpивода CD-ROM.

CD-ROM привод — это сложное электpонно-оптико-механическое устpойство для считывания инфоpмации с лазеpных дисков. Типичный дpайв состоит из платы электpоники (иногда двух и даже тpех плат — схема упpавления шпинделем и усилитель оптопpиемника отдельно), шпиндельного узла, оптической считывающей головки с пpиводом ее пеpемещения и механики загpузки диска.

Типовой привод состоит из платы электроники, шпиндельного двигателя, системы оптической считывающей головки и системы загрузки диска. Hа плате электроники размещены все управляющие схемы привода, интерфейс с контpоллеpом компьютера, разъемы интерфейса и выхода звукового сигнала. Большинство приводов использует одну плату электроники, однако в некоторых моделях отдельные схемы выносятся на вспомогательные небольшие платы.

Узел шпинделя (двигатель и собственно шпиндель с держателем диска) служит для вращения диска. Обычно диск вращается с постоянной линейной скоростью, что означает, что шпиндель меняет частоту вращения в зависимости от радиуса дорожки, с которого в данный момент считывает информацию оптоголовка. При перемещении головки от внешнего радиуса диска к внутреннему диск должен быстро увеличить скорость вращения примерно вдвое, поэтому от шпиндельного двигателя требуется хорошая динамическая характеристика. Двигатель используется как для разгона, так и для торможения диска.

На оси шпиндельного двигателя (или в собственных подшипниках) закреплен собственно шпиндель, к которому после загрузки прижимается диск. Поверхность шпинделя иногда покрыта резиной или мягким пластиком для устранения проскальзывания диска, хотя в более прогрессивных конструкциях обрезинивают только верхний прижим — чтобы увеличить точность установки диска на шпиндель. Прижим диска к шпинделю осуществляется при помощи верхнего прижима, расположенного с другой стороны диска. В некоторых конструкциях шпиндель и прижим содержат постоянные магниты, сила притяжения которых прижимает прижим через диск к шпинделю. В других конструкциях для этого используются спиральные или плоские пружины.

Система оптической головки состоит из самой головки и системы ее пеpемещения. В головке pазмещены лазеpный излучатель на основе инфpакpасного лазеpного светодиода, система фокусиpовки, фотопpиемник и пpедваpительный усилитель. Система фокусиpовки пpедставляет собой подвижную линзу, пpиводимую в движение электpомагнитной системой voice coil (звуковая катушка), сделанной по аналогии с подвижной системой гpомкоговоpителя. Изменение напpяженности магнитного поля вызывают пеpемещение линзы и пеpефокусиpовку лазеpного луча. Благодаpя малой инеpционности такая система эффективно отслеживает веpтикальные биения диска даже пpи значительных скоpостях вpащения.

Система пеpемещения головки имеет собственный пpиводной двигатель, пpиводящий в движение каpетку с оптической головкой пpи помощи зубчатой либо чеpвячной пеpедачи. Для исключения люфта используется соединение с начальным напpяжением: пpи чеpвячной пеpедаче — подпpужиненные шаpики, пpи зубчатой — подпpужиненные в pазные стоpоны паpы шестеpней. В качестве двигателя обычно используется шаговый двигатель, и гоpаздо pеже — коллектоpный двигатель постоянного тока.

Система загpузки диска бывает тpех ваpиантов: с использованием специальной кассеты для диска (caddy), вставляемого в пpиемную нишу пpивода (аналогично тому, как вставляется 3′ дискета в дисковод), с использованием выдвижного лотка (tray), на который кладется сам диск, и с использованием втяжного механизма. Системы с Tray обычно содержат специальный двигатель, обеспечивающий выдвижение лотка, хотя встречаются конструкции (например, Sony CDU31) без специального привода, задвигаемые рукой. Системы с втяжным механизмом применяются как правило в компактных CD-Changer-ах на 4-5 дисков, и обязательно содержат двигатель для втягивания и выброса дисков через узкую зарядную щель.

На передней панели привода обычно расположены кнопка Eject для загрузки/выгрузки диска, индикатор обращения к приводу и гнездо для подключения наушников с электронным или механическим регуля- тором громкости. В ряде моделей добавлена кнопка Play/Next для запуска проигрывания звуковых дисков и перехода между звуковыми дорожками.

Большинство приводов также имеет на передней панели небольшое отверстие, предназначенное для аварийного извлечения диска в тех случаях, когда обычным способом это сделать невозможно — например, при выходе из строя привода лотка или всего CD-ROM, при пропадании питания и т.п. В отверстие обычно нужно вставить шпильку или распрямленную скрепку и аккуратно нажать — при этом снимается блокировка лотка или дискового футляра, и его можно выдвинуть вручную (хотя существуют приводы, например Hitachi, в которых в такое отверстие надо вставлять небольшую отвертку и вращать ей находящуюся за передней панелью драйва ось с шлицем).

Принцип работы DVD привода

Из чего состоит?

1. Все что вы можете видеть, не вскрывая его корпус — это лоток, играющий роль выезжающего подноса, куда вы вставляете диск, чтобы в дальнейшем привод начал работу с ним.

2. В необозримой его части скрывается — моторчик, заставляющий лоток выезжать из своего гаража (корпуса), чтобы затем вновь вернуться на прежнее место, в независимости от того, будет ли он пустым или с содержимом — диском.

3. Моторчик, благодаря которому, диск вращается вокруг своей оси до заявленной производителем скорости. Например, если это обычный тип диска — CD, скорость чтения может достигать 52X и выше.

4. Моторчик, позволяющей конструкции, на которой расположен лазер привода — двигаться.

5. Плата — играющая основную роль в функционировании. Своего рода, компьютер, принимающий команды главного и заставляющий выполнять их остальными составляющими, перечисленными выше, чтобы затем вновь обратиться к главному и отправить ему результат своих действий.

Как работает?

1. Самое первое, что выполняет привод, после того, как в него был помещен диск — пытается прочитать с него данные. Для этого он задействует все выше перечисленные компоненты, но первый из них — лоток и его составляющие.

2. Затем в ход идет конструкция, которую движет моторчик из пункта 4, где мы описываем, из чего состоит привод. На ней размещен лазер, который выбрасывает «световой пучок».

3. Световой пучек, благодаря специальной «направляющей призмы» и других своих составляющих — проникает на поверхность «отражающего зеркала», которое, за счет последующего перемещения конструкции с лазером отражает его на поверхность вставленного диска.

4. Когда луч доходит до цели, он вновь отражается, но уже от самой поверхности диска. Отраженный от диска луч вновь оказывается у «отражающего зеркала». И тут в ход опять идет направляющая призма, с помощью которой, полученный луч проникает на «светочувствительное устройство», генерирующее электрические импульсы.

5. Завершающим этапом можно считать «разжёвывание» полученной информации путем использования микросхем, которые в свою очередь, отправляют полученные данные компьютеру, либо принимают их, и в зависимости от типа команды, берутся за работу.

Читать еще:  Двигатель brc форд характеристики

Емкость дисков DVD (слои и стороны)

В настоящее время существует четыре основных типа дисков DVD, которые классифицируются по количеству сторон (одно- или двухсторонние) и слоев (одно- и двухслойные).

· DVD-5 — односторонний однослойный диск емкостью 4,7 Гбайт. Состоит из двух соединенных друг с другом подложек. Одна из них содержит записанный слой, который называется нулевым слоем, вторая совершенно пуста. На однослойных дисках обычно используется алюминиевое покрытие.

· DVD-9 — односторонний двухслойный диск емкостью 8,5 Гбайт. Состоит из двух штампованных подложек, соединенных таким образом, что оба записанных слоя находятся с одной стороны диска; с другой стороны располагается пустая подложка. Внешний (нулевой) штампованный слой покрыт полупрозрачной золотой пленкой, которая отражает лазерный луч, сфокусированный на данном слое, и пропускает луч, который сфокусирован на нижнем слое. Для считывания обоих слоев используется один лазер с изменяемой фокусировкой.

· DVD-10 — двухсторонний однослойный диск емкостью 9,4 Гбайт. Состоит из двух штампованных подложек, соединенных друг с другом тыльными сторонами. Записанный слой (нулевой слой на каждой стороне) обычно имеет алюминиевое покрытие. Обратите внимание, что диски этого типа являются двухсторонними; считывающий лазер находится в нижней части накопителя, поэтому для чтения второй стороны диск необходимо извлечь и перевернуть.

· DVD-18 — двухсторонний двухслойный диск емкостью 17,1 Гбайт. Объединяет в себе два слоя записи на каждой стороне. Стороны диска, каждая из которых формируется двумя штампованными слоями, соединяются вместе тыльными частями друг к другу. Внешние слои (слой 0 на каждой стороне диска) покрыты полупрозрачной золотой пленкой, внутренние слои (слой 1 на каждой стороне) имеют алюминиевое покрытие. Отражательная способность однослойного диска составляет 45–85%, двухслойного — 18–30%. Различные отражающие свойства компенсируются схемой автоматической регулировки усиления (АРУ).

Двигатель dvd привода схема

9zip.ru Радиотехника, электроника и схемы своими руками Как подключить двигатель от cd rom (от cd привода)

Сейчас можно довольно просто найти неисправный привод cd или dvd rom. Из них можно использовать лазерные светодиоды и двигатели. О последних и пойдёт речь в этой статье. Идеи подключить двигатель от cd rom привода появляются в на различных сайтах довольно часто. К сожалению, в большинстве случаев решением является совет купить контроллер бесколлекторного двигателя от авиамодели, который по цене превышает новый cd-rom.

Попробуем разобраться, что же представляет из себя этот мотор и как можно его подключить. Сам мотор выглядит так:


Внутри находится неподвижный статор с тремя обмотками и подвижный ротор с магнитом по окружности. Таким образом, это обычный трёхфахный бесколлекторный двигатель. Для упрощения построения контроллера, под ротором имеются три датчика холла. При помощи этих датчиков обеспечивается синхронизация и подача управляющих сигналов на обмотки двигателя в зависимости от положения ротора.


Нам не удалось обнаружить в доступной продаже контроллеров для двигателей такого рода, поэтому пришлось изобретать свои.

Вариант первый. Так как двигатель от cd-rom представляет собой трёхфазный бесколлекторный двигатель, то самый простой вариант — создать внешним генератором бегущее поле последовательно на каждой из его обмоток. Здесь существуют два варианта:


Вариант 1. Последовательные импульсы.

Вариант 2. Последовательные импульсы со смещением.

Оба варианта показали одинаково неудовлетворительный результат. Двигатель плохо стартует, плохо работает под нагрузкой. И это неудивительно, потому что ни один из приведённых вариантов не обеспечивает обратной связи от положения ротора. Без неё данный тип двигателей практически не работоспособен. Стоит отметить, что использование датчиков холла — не единственный возможный способ синхронизации. Возможна синхронизация при помощи наведённой на обмотки ЭДС.

Аналогичные бесколлекторные трёхфазные двигатели используются во floppy-дисководах. Поэтому если от двигателя cd-rom не требуется высокая скорость вращения, можно подключить его к контроллеру от дисковода.


Обмотки подключаеются вместо обмоток штатного двигателя, выводы датчиков также подключаются вместо имеющихся. Петля синхронизации, выполненная в виде печатного проводника под ротором мотора дисоковода, отключается от контроллера.


Данный вариант подключения двигателя стабильно запускается и прекрасно работает под нагрузкой. Правда, обороты при этом невелики.

Up 25.01.12 : решение по стабильному запуску двигателей на одной микросхеме.

Up 19.9.13 : Обмотки в двигателе от cd-rom соединены без вывода общей точки. Разобрав мотор, можно сделать дополнительный вывод. Необходимо найти точку соединения обмоток и припаять к ней проводок.


Этот провод необходимо вывести наружу, благо место позволяет — через промежуток между обмотками. Чтобы не повредить изоляцию, место прохождения проводка можно покрыть защитным лаком.


Проводок проходит вниз и не мешает ротору.


Сборка мотора:


PS: На Али есть готовые платы для запуска моторчиков от CD и HDD, см.рекламу после статьи.

Опыт изучения Arduino. Подключение шагового двигателя. Часть аппаратная.

Идея подключить шаговый двигатель (ШД) к ардуино и заставить его работать появилась у меня достаточно спонтанно, когда я случайно купил два нерабочих DVD-RW привода за 100 р. на Юноне. После того как один из приводов был раскурочен, в руках у меня оказался вот такой шаговый двигатель.

Чем же отличается шаговый двигатель от обычного коллекторного или асинхронного? Если не вдаваться в детали, то задача обычного двигателя — вращать вал в определенную сторону с определенной частотой, а задача шагового двигателя — повернуть вал в определенную сторону на определенный угол и удерживать его в таком положении.

Покурив интернеты стало ясно, что просто подав питание на его обмотки, многого от него добиться не получится. Минимум что нужно, чтобы заставить ШД хоть как-то функционировать — это плата управления и источник питания. Забегая немного вперед отмечу, что источников питания понадобится два: для питания логической части и АЦП (3-5 В) и для питания силовой части (8-35 В). Кстати, плата очень боится пониженного напряжения в цепях питания двигателя. Я сначала подал 6 В. Пока разобрался в чем дело, спалил две платы. Данные приведены для платы управления на базе распространенного чипа 4988. Вот её схема подключения:

Тут ещё одно замечание. Выводов «в воздухе» быть не должно — все выводы должны быть подключены. Они имеют очень большую чувствительность к помехам.
Как видно на схеме, у двигателя две обмотки, чтобы подключить его к плате, надо определить какой вывод к какой обмотке относится. Я напаял 4 разноцветных провода поверх заводского шлейфа.

Делать нужно именно так. Сам шлейф можно обрезать или просто заизолировать, но отпаивать от выводов обмоток нельзя — выводы провалятся внутрь двигателя и он придёт в негодность.
Когда провода напаяны, приступаю к определению принадлежности выводов к той или иной обмотке. Проще всего это сделать мультиметром в режиме омметра.

Читать еще:  Шевроле авео прыгают обороты на холодном двигателе

В моем случае синий и зеленый провод это выводы одной обмотки, а оранжевый и белый — другой. Где начало и конец обмотки непринципиально — если двигатель пойдёт не в ту сторону, достаточно поменять местами выводы на любой обмотке.
Теперь проверяю двигатель на отсутствие замыканий между обмотками:

Тут тоже всё в порядке.
Для питания логической части собрал простейший стабилизатор на микросхеме LM7805 по такой схеме:

На выход добавил конденсатор 40 мкФ на 16 В. Стабилизатор и плату управления разместил на макетной плате.
В следующей записи опишу процесс настройки платы и программирование платы ардуино. На следующем фото небольшая превьюшка следующей части)

Ремонт CD-ROM acer650g-003

1.2 Описание структурной схемы CD ROM.

CD ROM состоит из нескольких типовых блоков:

2. Digital Servo Processor ( Сервосистема ).

3. CD Decoder (Процессор цифрового сигнала).

4. D/A Converter (Цифро-аналоговый преобразователь).

5. Driver (Драйвер).

6. Microcontroller (Микроконтроллер).

7. Разъёмы: интерфейса, питания и аудио.

1. Приводы CD ROM, как правило, имеют CD механизм с фронтальной загрузкой он состоит из каркаса, на котором установлены:

а) оптический преобразователь — optical pick-up, с устройством его привода;

б) двигатель вращения диска — spindle motor, с вращательной платформой — turn — table и узлом прижима диска — disk clamping;

в) загрузочный мотор — loading motor с дископриёмником — disk tri.

2. Сервосистема — так же состоит из нескольких систем:

а) Сервосистема двигателя диска вырабатывает команды управления двигателем диска. Она иногда может входить в состав процессора цифрового сигнала.

б) Сервосистема фокусировки вырабатывает команды управлении для фокусной катушки.

в) Сервосистема отслеживания дорожки записи вырабатывает команды управления для тракин катушки и для двигателя привода оптического преобразователя.

Процессор цифрового сигнала служит для декодирования EFM сигнала. В нём происходят процессы обратные тем, которые происходили при записи CD, т.е. демодуляция ЕFМ сигнала, деперемеживание, коррекция ошибок, отделение аудио информации от субкода.

Представляет собой цифро-аналоговый преобразователь, который восстанавливает из цифровой формы аналоговый аудио сигнал.

Это схемы управления фокусной и тракин катушками и двигателями CD

Служит для управления режимами работы CD ROM. Команды для процессора системы управления подаются с ПК либо с лицевой панели CD ROM. В состав этого процессора может входить схема управления индикатором.

7. На задней панели практически всех без исключения приводов CD ROM находятся, по крайней мере, три разъёма:

б) разъём питания.

Первый предназначен для подключения шины данных, второй для

Разъём для вывода звука позволяет подключать привод к звуковой карте. Это удобно при прослушивании аудиодисков, поскольку не требует переключения акустической системы или наушников с одного гнезда на другое.

Кроме интерфейса IDE/ATAPI в CD ROM может использоваться интерфейс SCSI, следует отметить, что SCSI-интерфейс более высокого уровня, чем IDE и при использовании SCSI-интерфейса с задней панели привода доступны также резисторы-терминаторы устройства и набор перемычек (jumpers), или переключателей (switches), которые определяют номер устройства и режим работы. Не следует забывать, что резисторы-терминаторы должны быть установлены на host-адаптере SCSI и приводе компакт-дисков, если к шине интерфейса не подключены другие устройства.

2. Технические характеристики

Скорость передачи данных: 7,500 КБ/с. (50 x )

Время доступа: 100 мс.

Тип дисковода: внутренний.

Интерфейс: E-IDE (ATAPI).

Размер буфера: 128 КБ.

Время наработки на отказ: 60000 часов.

Способ загрузки носителя: моторизированный лоток.

Соотношение сигнал/шум: 75 дБ.

Переходное затухание сигнала: 70 дБ.

Размер: 149х42,5х200 мм.

3. Типичные неисправности привода CD — ROM

Нет чтения с дисков, загрузка диска есть

Вначале проверяют корректность установки CD-ROM в системе (правильно ли выбран и установлен драйвер, или программа, обеспечивающая «стыковку» операционной системы с устройством). Затем контролируют правильность установки перемычек MASTER-SLAVE на самом устройстве. CD-ROM не должен конфликтовать с винчестером, подключенным к тому же шлейфу интерфейса IDE.

Что касается CD-ROM с интерфейсом SCSI, то проверяют правильность установки адреса устройства (этот адрес не должен иметь другие SCSI-устройства).

Затем вскрывают корпус устройства CD-ROM и проверяют, раскручивается ли диск после его установки. Эту операцию можно проводить, подключив к CD-ROM только соединитель питания, информационный шлейф можно не подключать.

Если диск не вращается после его установки, проверяют, светится ли лазер при установке каретки CD-ROM в рабочее положение, но уже без диска.

Иногда свечения лазера не видно. Тогда нужно еще раз проконтролировать свечение, но уже в затемненном помещении, и наблюдение за линзой лазера следует производить с разных ракурсов.

Дело в том, что в современных устройствах CD-ROM контроль наличия диска осуществляется самим лазером.

Если фотодатчик, установленный в лазерной каретке, получает отраженный сигнал от диска, логическая схема CD-ROM воспринимает это как «диск установлен» и уже только после этого формирует команду включения маршевого двигателя вращения диска.

Если видно свечение лазера, а запуска приводного двигателя с диском нет, увеличивают интенсивность свечения лазера. Для этого вначале находят установленный на каретке с лазером переменный резистор. Обычно он очень малых размеров (5. 7 х 2. 5 мм). Поворачивают движок этого переменного резистора по часовой стрелке на 20. 30°. Проверяют факт вращения приводного двигателя при установке диска. Если диск не стал вращаться, поворачивают движок переменного резистора еще на 20. 30° и так продолжают до тех пор, пока двигатель не запустится (двигатель должен запуститься и какое-то время, примерно 10. 20 с, вращаться с постоянной скоростью).

Необходимость вращения переменного резистора, регулирующего интенсивность свечения лазера, вызвано тем, что со временем мощность светового потока лазера уменьшается (старение элементов, помутнение линзы и т.д.), поэтому это нужно скомпенсировать.

Частые сбои устройства CD-ROM при чтении дисков

Возможными причинами этой неисправности могут быть: уменьшение интенсивности свечения лазера, помутнение или загрязнение линзы лазера, загрязнение посадочного места привода диска, слабый прижим диска к посадочному месту. Уменьшение интенсивности свечения лазера компенсируется так, как описано в п.1. Загрязнение линзы лазера убирается мягкой (например, беличьей) кисточкой. Эта операция проводится крайне осторожно, так как можно повредить подвеску самого лазера.

Загрязнение посадочного места привода диска очищается любым тканым материалом, смоченным в спирте.

Проконтролировать прижим диска к посадочному месту можно, если вначале осуществить чтение обычного аудиодиска. Если ошибок и сбоев в этом случае нет, для устойчивого чтения компьютерных дисков принимают меры для увеличения прижима диска сверху (подгибают пружины или увеличивают груз).

Нет чтения, диск не раскручивается

Читать еще:  Range rover двигатель схема

Причиной этой неисправности, в отличие от приведенных выше, может быть заклинивание диска на транспортной каретке.

Часто в этом случае посадочное место диска самопроизвольно опускается по валу двигателя и диск касается элементов транспортной каретки. Чтобы устранить этот дефект, передвигают посадочное место по валу вверх и опытным путем подбирают высоту посадочного места так, чтобы диск вращался без касания конструктивных элементов, а также чтобы CD-ROM обеспечивал устойчивое чтение всех дисков. Затем аккуратно (кернением) фиксируют положение посадочного места диска на валу двигателя.

4. Разработка алгоритма поиска неисправностей.

5. Безопасные условия труда.

для включения компьютера необходимо сделать следующее:

1. включить стабилизатор напряжения, если компьютер подключен через стабилизатор напряжения;

2. включить принтер (если он нужен);

3. включить монитор компьютера;

4. включить компьютер .

1. для выключения компьютера необходимо сделать следующее:

2. закончить работающие программы;

3. ввести команду РАКК (и нажать клавишу ENTER ) для установки головок чтения-записи на жестком диске в положение, при котором можно безопасно выключать электропитание, если используется компьютер, выпущенный ранее 80 года.

4. выключить компьютер (переключателем на корпусе компьютера);

5. выключить принтер (если он включен);

6. выключить монитор компьютера;

ТРЕБОВАНИЕ БЕЗОПАСНОСТИ ВО ВРЕМЯ РАБОТЫ

После включения компьютера оператор ПЭВМ должен проследить за результатами выполнения автоматических тестовых программ, которые проверяют исправность отдельных блоков компьютера сразу после его включения. Обязательно ежедневно делать прогон антивирусных программ.

Во время работы экран монитора должен находиться на расстоянии не ближе 0.5 метра от глаз пользователя. Запрещается компенсировать недостаток контрастности и яркости экрана, освещение уменьшением расстояния между уровнем глаз и поверхностью экрана.

1. для обеспечения оптимальной работоспособности и сохранения здоровья на протяжении рабочей смены должны устанавливаться регламентированные перерывы:

при 8-часовой смене через 2 часа от начала смены и через 1.5-2 часа после

2. обеденного перерыва, продолжительностью 15 минут каждый или 10 минут через каждый час работы;

Продолжительность непрерывной работы с ПЭВМ без регламентированного перерыва не должна превышать 2 часов.

При возникновении аварийной ситуации или ситуации, которая может привести к аварии, признаками которой являются: появление запаха горелой изоляции, случайных самопроизвольных действий со стороны программного обеспечения и других отклонений, оператор должен принять меры по отключению компьютера.

В случае необходимости оператор должен уметь оказать доврачебную медицинскую помощь.

По охране труда при электропаянии:

1.1. К работам по электропаянию допускаются лица, прошедшие медицинский осмотр и

инструктаж по охране труда.

1.2 Опасные и вредные производственные факторы:

— Ожоги горячим электропаяльником или брызгами расплавленного припоя

— Отравления повреждения глаз и кожи при работе с флюсами и оловянно-свинцовыми припоями.

— Поражение электрическим током при неисправности электропаяльника.

1.3. При выполнении работ по электропаянию используется специальная одежда халат хлопчатобумажный, берет, защитные очки.

1.4. При получении учащимся травмы оказать первую помощь пострадавшему, сообщить об этом администрации учреждения, родителям пострадавшего, при необходимости отправить пострадавшего в ближайшее лечебное учреждение.

1.5. После выполнения электромонтажных работ тщательно вымыть руки с мылом.

2. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ ПЕРЕД НАЧАЛОМ РАБОТЫ.

2.1. Надеть спецодежду.

2.2. Подготовить и проверить исправность инструмента, приспособлений и электропаяльника, убедиться в целостности ручки электропаяльника и шнура электропитания.

2.3. Проверить надежность заземления рабочего стола.

2.4. Убедиться, что вблизи рабочего места нет легковоспламеняющихся материалов и горючих жидкостей.

2.5. Включить вытяжную вентиляцию.

3. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ ВО ВРЕМЯ РАБОТЫ

3.1 Осторожно обращаться с электропаяльником, не ронять его и не ударять по нему какими-либо предметами.

3.2. Не касаться горячих мест электропаяльника незащищенными руками, остерегаться при пайке расплавленного припоя

3.3. При кратковременных перерывах в работе класть нагретый электропаяльник на специальную термостойкую подставку.

3 4. Не определять степень нагрева электропаяльника касанием нагретых его частей руками

3.5. При пайке использовать в качестве флюса только канифоль, не использовать для этой цели кислоту.

3.6. Не оставлять без присмотра включенный в сеть электропаяльник.

4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ ПО ОКОНЧАНИИ РАБОТЫ.

4.1. Отключить электрическую схему от источника тока.

4.2. Привести в порядок рабочее место и инструмент, выключить вытяжную вентиляцию.

4.3. Сиять спецодежду и тщательно вымыть руки с мылом.

6. Расчет электромагнитных, экранов в ближней зоне излучения.

Эффективность экранирования цилиндрического электромагнитного экрана в ближней зоне излучения рассчитывается по формуле (4.16), причем величина ZB для экранирования электрической составляющей поля

Z в = Z в µ E =- j (2п fε r ε 0 r э ц ) -1

а для экранирования магнитной составляющей

Z B = Z B ц H = j 2пµ r µ0 r э µ (4.17)

Здесь г э ц — радиус цилиндрического экрана. Для сферического экрана

Z B c E = — j 18*10 9 /( fr в c ,); Z B c H = f 79*10 7 fr Э c /,

где г э ц — радиус сферы. Для прямоугольного экрана- коробки

Z B п E = — f 36*10 9 / fr э п ; Z B п H = f 158*10 -7 fr э п

где г э п — половина расстояния между стенками экрана, обращенными к источнику поля помехи. Остальные величины, входящие в (4.16), рассчитываются так же, как для экранирования в дальней зоне.

В области низких частот (до 10 4 Гц) для случая экранирования электрического поля в ближней зоне выполняется условие | Z B E / Z Э |» | Z э / Z B E |, тогда

ЭЭ E =201 g | l +0,5 Z BE od |. (4.20)

При экранировании магнитного поля в ближней зоне в низкочастотном диапазоне экран из магнитных металлов и сплавов имеет эффективность экранирования.

ЭЭ H =201 g | l +µ r d /(2 r э)|, А из немагнитных материалов

ЭЭЕ=201 g | l + k 2 r Э d /2|.

7. Заключение

Это несколько необычное заключение, так как оно не подводит итогов ни в развитии CD устройств (оно только начинается), ни в этом цикле статей (продолжение следует. ). Это всего лишь возможность отметить, что история техники находится на «крутом повороте», и хотя мы можем только догадываться, «что он нам несет» все же некоторые принципы постепенно проясняются. В совокупности с быстро развивающимися компьютерными сетями это даст принципиально новые возможности, может быть, более похожие не на переход от грампластинок к CD, а на переход от рукописей к книгопечатанию. Цифровое видео с его естественными возможностями (начиная с по кадрового просмотра) не просто улучшает качество воспроизведения — изменяет функциональные возможности восприятия.

8. Структурная схема CD-ROM.

9. Электрическая схема.

10. Список использованной литературы :

Журналы “Хакер”, учередитель и издатель ЗАО “Гейм Ленд”, 1999-2004 года.

Журналы “Навигатор Игрового Мира”, учередитель ООО “Библион”,1999-2003года.

Книга серии “Что есть Что”, “Мультимедиа и виртуальные миры”, Андреас Шменк, Арно Вэтьен, Райнер Кёте, издательство “Слово/ Slovo” , 1998 г.

“Физика справочник школьника и студента”, под редакцией проф. Рудольфа Гёбеля, издательский дом “Дрофа”, 1999 г.

Ссылка на основную публикацию