Двигатели постоянного напряжения характеристики

Приводы и двигатели постоянного тока

Принцип работы

Двигатели постоянного тока

На статоре находится индукторная обмотка (обмотка возбуждения), на которую подаётся постоянный ток — в результате создаётся постоянное магнитное поле (поле возбуждения). В двигателях с постоянными магнитами поле возбуждения создаётся постоянными магнитами.

В обмотку ротора (якорная обмотка) также подаётся постоянный ток, на который со стороны магнитного поля статора действует сила Ампера — создаётся вращающий момент, который поворачивает ротор на 90 электрических градусов, после чего щёточно-коллекторный узел коммутирует обмотки ротора – вращение продолжается.

По способу возбуждения двигатели постоянного тока делятся на четыре группы:

  • С независимым возбуждением — обмотка возбуждения питается от независимого источника
  • С параллельным возбуждением — обмотка возбуждения включается параллельно источнику питания обмотки якоря
  • С последовательным возбуждением — обмотка возбуждения включена последовательно с обмоткой якоря
  • Со смешанным возбуждением — у двигателя есть две обмотки: параллельная и последовательная.

Пуск двигателя постоянного тока

При прямом пуске ток якоря может на порядок превышать номинальный, поэтому при пуске в цепь якоря вводится пусковое сопротивление пусковой реостат. Для плавного пуска реостат делают ступенчатым — в первый момент включаются все ступени (максимальное сопротивление), по мере разгона двигателя растёт противо-ЭДС, ток якоря уменьшается — ступени выключаются одна за другой.

Регулирование скорости вращения двигателя постоянного тока

  • Скорость ниже номинальной регулируется напряжением на якоре (мощность при этом пропорциональна скорости, момент неизменен)
  • Скорость выше номинальной регулируется током обмотки возбуждения — чем слабее поле возбуждения, тем выше скорость (момент падает при постоянной мощности)

Регулирование питания якоря и обмотки возбуждения осуществляется с помощью тиристорных преобразователей (приводов постоянного тока).

Преимущества и недостатки двигателей постоянного тока

Преимущества:
  • Практически линейные характеристики двигателя:
    • механическая характеристика (зависимость частоты от момента)
    • регулировочная характеристика (зависимость частоты от напряжения якоря)
  • Просто регулировать частоту вращения в широких пределах
  • Большой пусковой момент
  • Компактный размер.
Недостатки:
  • Дополнительные расходы на профилактическое обслуживание коллекторно-щёточных узлов
  • Ограниченный срок службы из-за износа коллектора
  • Дороже асинхронных двигателей.

Как выбрать

Выбор двигателя постоянного тока

  • Высота оси
  • Номинальное напряжение якоря
  • Номинальное напряжение возбуждения
  • Номинальная частота вращения
  • Номинальная мощность
  • Номинальный момент
  • Номинальный ток якоря
  • Мощность возбуждения
  • Максимальная частота вращения при понижении поля (выше этой скорости падает мощность)
  • Предельно допустимая рабочая скорость (выше этой скорости начинается механическое разрушение)
  • КПД
  • Момент инерции
  • Степень защиты IP
  • Степень виброустойчивости (прессы и т.п.)
  • Класс изоляции (для работы от преобразователя не ниже F)
  • Температура окружающей среды (для работы при отрицательных температурах в условиях русской зимы требуется специальное исполнение: смазка, вал из специальной стали и т.п.)
  • Высота установки над уровнем моря (выше 1000 метров падают характеристики)
  • Конструктивное исполнение по способу монтажа электродвигателей
    • Маслоуплотнённый фланец для присоединения редуктора
  • Положение клеммной коробки (справа, сверху и т.д.)
  • Тип принудительного охлаждения:
    • Конвекционное: воздушный фильтр, контроль расхода воздуха, встроенный (направление обдува) или внешний (подключение труб) вентилятор
    • Через теплообменник
  • Классификация методов охлаждения электрических двигателей
  • Окраска
  • Подшипники
    • Качения (радиально-упорные)
    • Усиленные подшипники для повышенных радиальных нагрузок на валу
    • С пополнением смазки
    • Для подключения редуктора
  • Вал двигателя
    • Со шпоночным пазом
  • Датчик скорости
    • Тахогенератор
    • Энкодер
  • Тормоз
  • Контроль износа щёток
    • Окошко для визуального контроля
    • Микропереключатель ограничения остаточной длины щёток
  • Контроль нагрева двигателя
    • Термисторная защита – контроль граничных значений (предупреждение, отключение)
    • Непрерывный контроль температуры при помощи датчика KTY
  • Подогрев остановленного двигателя (против образования конденсата)
  • Уровень шума.

Выбор преобразователя постоянного тока

  • Режим работы:
    • Одноквадрантный (1Q) — нереверсивный
    • Четырёхквадрантный (4Q) — реверсивный.
    Выход:
  • Номинальное постоянное напряжение (якоря двигателя)
  • Номинальный постоянный ток якоря
  • Перегрузочная способность по току
  • Номинальная мощность
  • Мощность потерь (рассеиваемая мощность) при номинальном токе
  • Номинальное постоянное напряжение обмотки возбуждения (напряжение поля)
  • Номинальный постоянный ток обмотки возбуждения (ток поля)
  • Панель оператора (съёмная, хранение параметров, поддержка русского языка)
  • Коммуникационный интерфейс для обмена данными с PLC, HMI (PROFIBUS и др.)
  • Точность регулирования
  • Встроенные ПИД-регуляторы
  • Встроенные функции логического контроллера
  • Сигнальные (дискретные и аналоговые) входы-выходы.
Читать еще:  Что такое термистор двигателя

4 типа двигателей постоянного тока и их характеристики

Видео: Обзор двигателей постоянного тока ДПМ , ДПР , ДП. 2021, Сентябрь

Характеристики двигателя постоянного тока

Как вы уже знаете, есть два электрических элемента двигателя постоянного тока, обмотки возбуждения и якорь . Обмотки якоря состоят из токопроводящих проводников, которые заканчиваются на коммутаторе.

4 типа двигателей постоянного тока и их характеристики (на фото: коллектор двигателя 575 кВт DC, кредит: Pedro Raposo)

Напряжение постоянного тока подается на обмотки якоря через угольные щетки, которые работают на коммутаторе. В небольших двигателях постоянного тока для статора могут использоваться постоянные магниты. Однако в больших двигателях, используемых в промышленности, статор представляет собой электромагнит.

Когда напряжение подается на обмотки статора, устанавливается электромагнит с северным и южным полюсами. Полученное магнитное поле является статическим (не вращательным).

Для простоты объяснения статор представлен постоянными магнитами на следующем рисунке.

Электродвигатели постоянного тока

Поле двигателей постоянного тока может быть:

  1. Постоянный магнит (статор постоянного магнита),
  2. Электромагниты, соединенные последовательно (статор раны),
  3. Шунт (статор раны) или
  4. Соединение (статор раны).

Давайте рассмотрим основы каждого типа, а также их преимущества и недостатки.

1. Двигатели постоянного магнита

Двигатель постоянного магнита

В двигателе с постоянными магнитами используется магнит для подачи потока потока . Двигатели постоянного магнита постоянного тока имеют превосходный пусковой момент с хорошим регулированием скорости. Недостатком двигателей постоянного постоянного тока является то, что они ограничены объемом нагрузки, которую они могут приводить в движение. Эти двигатели можно найти в приложениях с низкой мощностью.

Другим недостатком является то, что крутящий момент обычно ограничивается 150% номинального крутящего момента, чтобы предотвратить размагничивание постоянных магнитов.

Вернуться к индексу ↑

2. Серийные двигатели

Двигатель серии DC

В последовательном двигателе постоянного тока поле последовательно соединено с арматурой. Поле намотано несколькими витками большого провода, потому что оно должно нести полный ток якоря.

Особенностью серийных двигателей является то, что двигатель развивает большое количество пускового момента. Тем не менее, скорость варьируется в широких пределах между нагрузкой и полной нагрузкой. Серийные двигатели не могут использоваться, когда требуется постоянная скорость при различных нагрузках.

Кроме того, скорость серийного двигателя без нагрузки увеличивается до момента, когда двигатель может быть поврежден. Некоторая нагрузка всегда должна быть подключена к последовательно соединенному двигателю.

Двигатели с серийным соединением обычно не подходят для использования в большинстве приводов с переменной скоростью.

Вернуться к индексу ↑

3. Шунтовые двигатели

Электродвигатель постоянного тока

В шунтирующем двигателе поле подключается параллельно (шунт) с обмотками якоря. Двигатель с шунтовым соединением обеспечивает хорошее регулирование скорости. Обмотка возбуждения может быть отдельно возбуждена или подключена к тому же источнику, что и арматура.

Преимуществом отдельно возбужденного шунтирующего поля является способность привода с переменной скоростью обеспечивать независимое управление арматурой и полем.

Электродвигатель с шунтовым соединением обеспечивает упрощенное управление реверсом. Это особенно полезно для регенеративных приводов.

Вернуться к индексу ↑

4. Составные двигатели

Электродвигатель постоянного тока

У составных двигателей есть поле, соединенное последовательно с якорем и отдельно возбужденным шунтирующим полем. Поле серии обеспечивает лучший пусковой момент, а шунтовое поле обеспечивает лучшее регулирование скорости .

Однако поле серии может вызвать проблемы с управлением в приводах с переменной скоростью и, как правило, не используется в четырех квадрантных приводах.

Вернуться к индексу ↑

Двигатель постоянного тока — пояснен (ВИДЕО)

Не могу посмотреть это видео? Нажмите здесь, чтобы посмотреть его на Youtube.

Ссылка: Основы DC-приводов — SIEMENS (Скачать)

Электродвигатели постоянного тока и их характеристики

В зависимости от способа соединения обмотки якоря и обмотки возбуждения различают двигатели параллельного, последовательного и смешанного возбуждения.

Читать еще:  Давление впрыска двигателя gdi

Двигатель параллельного возбуждения. До включения рубильника Р (рис. 157) необходимо поставить сопротивление пускового реостата R2 на максимум и сопротивление регулировочного реостата R1 на нуль. После включения в сеть якорь двигателя начнет вращаться, и по мере увеличения частоты вращения сопротивление пускового реостата постепенно уменьшают.

Рабочие характеристики двигателя (рис. 158, а) выражают зависимость частоты вращения п, вращающего момента М, тока 1 и к. п. д. т] от развиваемой двигателем полезной мощности Р2 при неизменном напряжении сети. Частота вращения якоря двигателя п = (U — — — 1Ягя)/(СФ).

При постоянном напряжении U ток возбуждения двигателя не меняется, но магнитный поток с увеличением нагрузки немного уменьшается из-за реакции якоря. С другой стороны, с увеличением нагрузки возрастает ток 1я и внутреннее падение напряжения Uя = 1ягя. Уменьшение магнитного потока увеличивает частоту вращения якоря, а увеличение падения напряжения в обмотке якоря уменьшает ее. У двигателя параллельного возбуждения преобладает последняя причина, поэтому частота его вращения с увеличением нагрузки от нуля до номинальной уменьшается на 5-10%.

Полезная мощность, развиваемая двигателем, Р2=М2пп/60, тогда вращающий момент М = 30Р2І (пп).

При постоянной частоте вращения двигателя п вращающий момент М был бы прямо пропорционален мощности Р2 и зависимость M=f(P2) имела бы вид прямой, проходящей через начало координат. В действительности частота вращения двигателя с увеличе нием нагрузки немного снижается и машина имеет момент холостого хода М. Следовательно, кривая M=f(P2) отклоняется от прямой вверх и начинается с ординаты М. Увеличение тока практически пропорционально полезной мощности двигателя Р2. С увеличением нагрузки к.п.д. двигателя быстро растет и достигает предельного значения 0,8-0,9 при нагрузке, близкой к PJ2, оставаясь в дальнейшем почти постоянным. Чтобы с увеличением нагрузки частота вращения двигателя была постоянной, следует уменьшить магнитный поток двигателя, уменьшая ток возбуждения регулировочным реостатом.

Регулировочная характеристика выражает зависимость тока возбуждения 1в от тока якоря 1я (рис. 158, б) при постоянном напряжении U и частоте вращения п, т. е. 1в 1 (/я) при U — const и п ¦ — const. Эта характеристика показывает, как следует регулировать ток возбуждения, чтобы при различных нагрузках частота вращения двигателя оставалась неизменной.

Электродвигатели параллельного возбуждения применяют в тех случаях, когда при переменной нагрузке требуется, чтобы частота вращения оставалась постоянной и была возможность ее плавной регулировки. Электродвигатель параллельного возбуждения типа СЛ-571К применяют в автоматических шлагбаумах, ограждающих железнодорожные переезды со стороны автомобильных дорог. Такой двигатель имеет номинальную мощность 95 Вт при напряжении 24 В и токе 7 А, частота вращения якоря двигателя 2200 об/мин.

Двигатель последовательного возбуждения (рис. 159). Обмотка возбуждения OB, обмотка якоря Я и пусковой реостат R соединены последовательно. Запуск двигателя последовательного возбуждения следует осуществлять с нагрузкой, которая должна быть не менее 20-25% номинальной вследствие того, что ток возбуждения 1в равен току якоря 1я. При холостом ходе или малых нагрузках потребляемый ток небольшой, следовательно, незначителен и магнитный по ток Ф, а частота вращения двигателя п — U — 1яя + гъ)/(СФ) достигает опасного значения. Во избежание разноса при внезапной разгрузке для этих двигателей применяют зубчатую передачу или непосредственное соединение вала двигателя с рабочим механизмом.

Рабочие характеристики двигателя последовательного возбуждения (рис. 159, б) имеют две особенности при увеличении нагрузки: резко снижается частота вращения п — U — 1яя 4 1^/(СФ); и резко увеличивается вращающий момент М = СМ/ЯФ = См/яСм1/я = = См2/1, где Сы1 — коэффициент пропорциональности магнитного потока и тока до насыщения стали, а постоянный коэффициент См2 =

Свойства двигателей последовательного возбуждения развивать большие вращающие моменты, приблизительно пропорциональные квадрату тока при малых частотах вращения якоря и, наоборот, малые вращающие моменты при больших частотах вращения обусловливают их применение в подъемных механизмах, электровозах и тепловозах. Частоту вращения двигателя последовательного возбуждения обычно регулируют реостатом, включенным параллельно обмотке возбуждения.

Читать еще:  Двигатель гбо что значит

Двигатели последовательного возбуждения типа МСП устанавливают в стрелочных электроприводах, предназначенных для дистанционного управления стрелками при электрической, диспетчерской и горочной централизации. Электрические характеристики этих двигателей приведены в табл. 10.

Электродвигатели типа МСП — двигатели закрытого типа, двухполюсные реверсивные, работают в повторно-кратковременном режиме. Для реверсирования имеют две обмотки возбуждения OBI и ОВ2 (рис. 160). При включении первой обмотки якорь двигателя вращается в прямом направлении, а при включении второй обмотки — в обратном. Электродвигатели типа МСП-0,1 устанавливают в электроприводах, предназначенных для перевода стрелок легких типов. В новых разработках эти двигатели не применяют. Электродвигатели типов

Двигатели постоянного напряжения характеристики

Двигатель постоянного тока нашел широкое применение в различных областях деятельности человека. Начиная от использования тягового привода, применяемого в трамваях и троллейбусах , заканчивая приводом прокатных станов и подъемных механизмов, где требуется поддержание высокой точности скорости вращения.

Основные положительные особенности , которые отличают ДПТ от асинхронного двигателя:

— гибкие пусковые и регулировочные характеристики;
— двухзонное регулирование, которое позволяет достигать скорости вращения более 3000 об/мин.
— сложность в изготовлении и высокая стоимость;
— в процессе работы необходимо постоянное обслуживание, так как коллектор и токосъемные щетки имеют небольшой ресурс работы.

Двигатель постоянного тока применяют только тогда, когда применение двигателя переменного тока невозможно или крайне нецелесообразно. В среднем, на каждые 70 двигателей переменного тока приходится всего лишь 1 ДПТ.

Конструкция ДПТ

Двигатель постоянного тока состоит из:

— индуктора (статора);
— якоря (ротора);
— коллектора;
— токосъемных щеток;
— конструктивных элементов.

Якорь и индуктор разделены между собой воздушным зазором. Индуктор представляет из себя станину, которая служит для того, чтобы закрепить основные и добавочные полюса магнитной системы двигателя. На основных полюсах располагаются обмотки возбуждения, а на добавочных – специальные обмотки, которые способствуют улучшению коммутации.

Коллектор подводит постоянный ток к рабочей обмотке, которая уложена в пазы ротора. Коллектор имеет вид цилиндра и состоит из пластин, изолированных друг от друга, он насажен на вал двигателя. Щетки служат для съема тока с коллектора, они крепятся в щеткодержателях для обеспечения правильного положения и надежного нажатия на поверхность коллектора.

Рисунок 1 – Конструкция двигателя постоянного тока

Двигатели постоянного тока классифицируют по магнитной системе статора:

2) ДПТ с электромагнитами :

— ДПТ с независимым возбуждением;
— ДПТ с последовательным возбуждением;
— ДПТ с параллельным возбуждением;
— ДПТ со смешанным возбуждением.

Рисунок 2 – Схемы подключения двигателя постоянного тока

Схема подключения обмоток статора существенно влияет на электрические и тяговые характеристики привода.

Пуск двигателя постоянного тока

Пуск двигателя постоянного тока производят с помощью пусковых реостатов, которые представляют собой активные сопротивления, подключенные к цепи якоря. Выполняют реостатный пуск по двум причинам:

— при необходимости плавного разгона электродвигателя;
— в начальный момент времени, пусковой ток Iп = U / Rя очень большой, что вызывает перегрев обмотки якоря (которая имеет малое сопротивление).

Рисунок 3 – Реостатный пуск двигателя с 3 ступенями

В начале запуска к цепи ротора подключаются все сопротивления, и по мере увеличения скорости они ступенчато выводятся.

Регулирование скорости вращения

Частота вращения двигателя постоянного тока выражается формулой:

Это выражение так же называется электромеханической характеристикой ДПТ, в которой:

U – питающее напряжение;
Iя – ток в якорной обмотке;
Rя – сопротивление якорной цепи;
k – конструктивный коэффициент двигателя;
Ф – магнитный поток двигателя.

Формула момента двигателя:

Подставив в формулу электромеханической характеристики, получим:

Таким образом, исходя из приведенных формул, сделаем вывод, что скорость вращения ДПТ можно регулировать, изменяя сопротивление якоря, питающее напряжение и магнитный поток.

Ссылка на основную публикацию
Adblock
detector