Двигатели принтера сколько вольт

Двигатель постоянного тока (DC Motor)

Поработаем с двигателем постоянного тока, который обычно входит в состав стартового набора с пропеллером.

Двигатели весьма часто применяются в Arduino-проектах. Они приводят в действие колеса, крутят пропеллеры, вращают манипуляторы промышленного робота и перемещают каретку 3D-принтера.

Каждый начинающий робототехник сталкивается с проблемой подключения двигателя к микроконтроллеру. У мотора всего два вывода, и кажется, что двигатель можно подключить к цифровым выводам Arduino, а затем включать и выключать по программе. Но не тут-то было. Даже небольшой двигатель, часто используемый в разного рода игрушках, для своей работы требует ток силой от 200 мА до 1 Ампера. А цифровой выход Arduino может дать нам только 20мА. Большинству мощных двигателей требуется напряжение более 5 Вольт, привычных для Arduino. Распространены двигатели на 12, на 24 и на 48 Вольт. Другими словами, Arduino очень слаба для прямого управления двигателями. Нужен какой-то мощный посредник!

Самый простой посредник — это транзистор. Подойдут и полевые транзисторы, и биполярные, работающие в режиме ключа.

Управляем через транзистор 2N2222/P2N2222

Для сборки схемы понадобятся транзистор 2N2222 (как вариант P2N2222, BC547, 2N3904, N2222A, TIP120), диод 1N4001 (как вариант 1N4148, 1N4007).

Собираем по схеме. Будьте внимательные при соединении транзистора и диода, соблюдайте их стороны.

Скетч. Возможно, питания от USB будет недостаточно для работы мотора, используйте питание от сети.

В Serial Monitor нужно ввести значение от 0 до 255, чтобы задать скорость мотора. В моём случае мотор начинал нормально вращаться от значения 30 и выше.

Есть урок с использованием транзистора IRF530N.

Драйвер L293D

Существует множество готовых микросхем, которые позволяют управлять разными типами двигателей. Мы рассмотри драйвер L293D.

Микросхема представляет собой два H-моста, а значит можно управлять сразу двумя двигателями. Каждый мост снабжён четырьмя защитными диодами и защитой от перегрева. Максимальный ток, который может передать L293D на двигатель — 1.2А. Рабочий ток — 600мА. Максимальное напряжение — 36 В.

Микросхема L293D имеет DIP-корпус с 16-ю выводами. Схема выводов ниже. Отсчёт выводов ведётся против часовой стрелки и начинается от выемки в корпусе микросхемы.

+V — питание микросхема, 5В;
+Vmotor — питание двигателей, до 36В;
0V — земля;
En1, En2 — выводы включения/выключения H-мостов;
In1, In2 — управляющие выводы первого H-моста;
Out1, Out2 — выводы для подключения первого двигателя;
In3, In4 — управляющие выводы второго H-моста;
Out3, Out4 — выводы для подключения второго двигателя.

Выводы En1 и En2 служат для отключения или включения мостов. Если мы подаём 0 на En, соответствующий мост полностью выключается и двигатель перестаёт вращаться. Эти сигналы пригодятся нам для управления тягой двигателя при помощи ШИМ-сигнала.

Схема подключения двух двигателей:

Подключим один двигатель по схеме.

Скетч для вращения двигателя, меняя направление каждую секунду. Функция analogWrite() с помощью ШИМ-сигнала управляет мощностью двигателя. Мы командуем драйверу вращать двигатель с максимальной скоростью, что соответствует ШИМ-сигналу — 255. Здесь следует отметить, что уменьшение ШИМ-сигнала в два раза не даст в два раза меньшую скорость. Скорость и тяга двигателей постоянного тока зависят от входного напряжения нелинейно.

Усложним программу. Будем кроме направления менять ещё и мощность.

Вот что получится в итоге. Сначала мотор вращается с небольшой скоростью, затем выходит на максимальные обороты, и повторяет всё в обратном направлении. На видео используется двигатель постоянного тока CH1 с колесом. Такие часто применяют в учебных роботах.

12V 1/32 соотношение высокой скорости Micro 35byj46 DC шаговый двигатель для 3D-принтер

Описание Продукции

  • Номер Моделя: 35byj46
  • Скорость : Постоянная скорость
  • Количество статора : Четырехфазный
  • Режим возбуждения : PM-Постоянный Магнит
  • функция : Вождение
  • Количество поляков : 2
  • Тип : Магнитоэлектрический
  • Сертификация : ISO9001 , CCC
  • Trademark: ms
  • Packing: Carton+Foam
  • Standard: 35byj46
  • Origin: China
  • HS Code: 850110990
  • Production Capacity: 5000000PCS/Year

Мы профессиональные производителя для 20BYJ46 / 24BYJ / 28BYJ48 / 24BYJ48 / 30BYJ / 30BYJ46 / 35BYJ46 / 35BYJ412 series шагового двигателя
Напряжение питания электродвигателя, скорость, потяните крутящий момент, может быть отрегулирована в соответствии с требованиями клиента.
Продукция широко используется в системы кондиционирования воздуха, мониторинг, smart туалет, электронными замками, клапаны, таурас, продукты питания, механизм печати и обработки полупроводников, медицинское оборудование, текстильного машиностроения, оборудования для автоматизации делопроизводства, оборудование для фитнеса, выгравированы надписи, и в других районах и систем автоматизации. Мы также предлагаем пользователю в то же время предоставить всю систему управления программой, выбор двигателя и техническая поддержка для управления двигателями, чтобы взять на себя управление электродвигателем привода системы аппаратного и программного обеспечения.
В основном используется для: домашняя система кондиционирования воздуха, камеры видеонаблюдения, высокая скорость купол, переменная скорость, средняя скорость мяч, система кондиционирования воздуха, smart туалет, конторское оборудование, мобильный кондиционер, освещения сцены, медицинского оборудования, текстильного машиностроения, оборудование, санитарных и других средств автоматизации и управления.

В рамках послепродажного обслуживания
Все двигатели имеют гарантию и полного послепродажного обслуживания:
1). Если есть проблемы с качеством изображения в один месяц, когда заказчик получил наших моторов, мы отправим вам новые двигатели для замены неисправного, мы хотели бы для всех расходов; или мы возврат все платежи для клиента.
2). Все наши двигатели информацию, такую как данные спецификации и инструкции по использованию будет предлагаться для клиента.
1.Q:Могу ли я получить образцы в первую очередь?
A:Убедитесь в том, мы имеем честь предложить вам образцы для проверки.
2.Q:У вас есть на складе?
A:наша продукция производится в соответствии с вашим заказом, за исключением нормальных продуктов.
3.Q:какой срок поставки?
A:Это обычно занимает около 7 рабочих дней,но точный срок поставки может быть различным для разных порядка или в разное время.
4.Q: Как ваша на заводе не в отношении контроля качества?
A: Качество является приоритетной задачей. Мы придаем большое значение для контроля качества от начала до конца. Каждый продукт будет полностью собран и тщательно протестированы перед упакованы.
5.Q:какой у вас условия гарантии?
A: мы предлагаем различные условия гарантии для различных продуктов. Свяжитесь с нами для получения дополнительной информации.

Как сделать мини дрель из двигателя старого принтера

После разборки принтера остались много полезных деталей, среди них несколько электродвигателей. Подошло время сделать мини дрель или минибормашинку. Как раз пришла посылка с Алиэкспресс с быстрозажимным патрончиком.

В наше время сделать самодельную бормашинку не составит больших трудов и материальных затрат. Для этого нужно иметь старый струйный принтер, извлекаем из него блок питания и электродвигатель каретки принтера. Блок питания можно легко сделать регулируемым.

Во многих струйных принтерах применяются однотипные электродвигатели каретки. Они рассчитаны на питание постоянным током с напряжением 24 В.

Читать еще:  Характеристики двигателя бмв 528

Валы этих двигателей имеют диаметр 3,2 мм или 2,3мм. В моем случае двигатель был извлечен из неисправного принтера Canon MP160 а диаметр вала двигателя был 3,2мм. Остается приобрести цанговый или кулачковый патрон с посадочным диаметром 3,17мм. Патрон зажимает инструмент до 3,5мм. Кулачковый патрон состоит непосредственно из патрона с тремя губками и латунного переходника для установки на вал двигателя. В комплекте есть фиксирующие винты и ключ для них. Этот комплект можно купить как интернет-магазинах, так и в хозяйственных магазинах и рынках по цене 1,5-2 доллара.



Шаг третий. Окончательная сборка.
Осталось установить мини дрель в подходящий корпус, подключить соединительные провода и выключатель питания. Подобрал для корпуса инструмента походящий по диаметру электродвигателя кусок пластмассовой трубы. Двигатель входит в него плотно. В качестве передней и задней крышек подошли колпачки от аэрозольных баллончиков. В передней крышке сверлим отверстие для центральной части двигателя и два отверстия для закрепления винтами корпуса двигателя.


В видео можно посмотреть процесс изготовления и испытания мини дрели для выполнения мелких работ.

Резюме:
1. На материалы ушло 120 рублей (патрон), блок питания бесплатный от принтера (этот же блок можно использовать питания других самоделок).
2. Время на сборку инструмента затрачено примерно 2 часа.
3. Легкий и достаточно полезный инструмент для мелких домашних работ.
4. Удовольствие от процесса изготовления своими руками полезной самоделки.

3D-принтер Ender 3 Pro. Часть 4. Установка новой электроники.

После того, как установил принтер в короб, всёравно остался недоволен уровнем шума. Так как я изначально ожидал такой исход, то были заказаны новые электронные компоненты.

В этой части сборка и подключение. Настройка прошивки в одной из следующих частей.
Расскажу основные моменты, в том числе те, которые описаны в документации, но не очевидны.

Ещё до прихода посылки с компонентами, напечатал новый корпус, так как старый годится только для родной платы и только в прикрученном к принтеру состоянии.
Также купил пару вентиляторов TITAN TFD-9225H12ZP/KU(RB), 92мм, Ret, так как они дешевле тех, что все рекомендуют, но ничуть не хуже. Планировал заменить как вентилятор обдува платы, так и вентилятор в блоке питания.
В довесок к вентиляторам купил понижающий DC-DC преобразователь LM2596, чтобы понизить напряжение с 24 вольт до 6-7 вольт. Да, это меньше 12 вольт, сделано специально, чтобы уменьшить скорость вращения вентилятора.

Установка драйверов в плату
Для установки драйверов в режим UART надо выставить перемычки под каждым драйвером. Инструкции и фото есть в документации к плате.
Также надо обрезать диагностический пин у драйвера, если не планируется к использованию режим sensorless homing (парковка без концевиков), так как SKR 1.4 диагностические пины драйверов электрически соединены дорожками с пинами концевиков. Т.е. или концевики, или парковка без концевиков, надо выбрать что-то одно. Я этот режим не планировал использовать, поэтому «обрезал». Подробности в документации (в конце).

Настройка тока шаговых двигателей.
Первым делом надо измерить напряжение Vref на родной плате. Обязательно надо отключить шаговые двигатели перед началом измерений. Я всё делал по инструкции

У меня получилось 0.57 В на двигателях осей и 0.726 В на двигателе экструдера.
Далее рассчитал максимальный ток по формулам для этих драйверов и сравнил его с максимальным током из спецификации.
На моём принтере стоят ШД Creality 42-34 на осях и у них максимальный ток 0.8 А.
И ШД Creality 42-40 на экструдере, на нём максимальный ток 1А

По результатам рассчётов получилось примерно 0.7 А и 0.9 А соответственно, т.е. Китайцы сознательно занизили максимальный ток на 0.1 А, чтобы защитить двигатели, что правильно. От этих цифр и следует отталкиваться. В этот момент становится понятно, что TMC2209 можно было не покупать и что TMC2208 вполне достаточно, но кто же знал. Зато на TMC2209 не надо паять перемычку на микроскопической плате, что тоже неплохо. Так что тем, кто плохо держит в руках паяльник, лучше покупать TMC2209.

Драйверы TMC2209 оперируют среднеквадратичным током, поэтому надо его рассчитать. На многих ресурсах предлагают выставить эти значения наугад, но делать этого не стоит, так как в таких режимах двигатель может быстрее выйти из строя (или вообще сразу).

Далее рассчитал по формулам Irms для двигателей. Для двигателей осей получилось 0.566 А, если максимальный ток использовать 0.8 А и 0.504 А, если максимальный ток 0.7125 А.
А для двигателя экструдера получилось 0.707 А и 0641 А соответственно.

Поразмыслив пару минут, решил выставить 0.5 А на двигателях осей и 0.7 А на экструдер. Зачем так? Потому что двигатели осей на родной плате прекрасно справлялись и можно было даже немного уменьшить ток, а экструдер, наоборот, требовал небольшого повышения тока.

Так какое же напряжение Vref выставить крутилкой на драйвере TMC2209?
Выставлять ток крутилкой требуется только в том случае, если режим работы драйвера будет standalone.
Если у драйвера Rs (Rsense) стоит 0.11 Ом, то в формуле Vref все коэффициенты сокращаются, кроме корня из 2. И получается, что Vref численно равен Imax. Поэтому надо устанавливать численно равным максимальному току.
Если подключать как UART, то в прошивке ток указывается Irms, который требуется рассчитать от максимального тока ШД.

Бумажки с расчётами не выкидываем, аккуратно прибираем в надёжное место. Они ещё пригодятся как шпаргалка в будущем. И совсем скоро тоже пригодятся, при настройке прошивки, так как в режиме UART драйвер управляется именно из прошивки, а не подстроечным резистором.

Подключение кабелей
В целом, всё очень просто. Кабели подсоединяются согласно схеме, с соблюдением полярности.
Просто так подключить не удалось: потребовалось распаять разъём на вентилятор обдува хотенда для подключения в штатное место, так как на родной плате провода зажимались в клеммной колодке, а на SKR1.4 есть специальные разъёмы.
Также пришлось переделать разъёмы концевиков. Подробнее на фото.

Новый дисплей сразу подключил согласно документации. Но так как документация не очень понятная, то нашёл видео на YouTube, где автор подробно рассказывает что и как.

Если коротко, то EXP1 в EXP1, а EXP2 в EXP2 для LCD режима. А для TFT режима отдельный пин (называется reset в отмеченное красным на скриншоте место). Если использовать дисплей в режиме совместимости с родной платой Ender 3 Pro, то надо EXP3 на дисплее подсоединять в EXP1 на плате. Но в этом случае не выйдет подключить TFT, так как работать не будет. Аналогично подсоединяется родной дисплей EXP3 на дисплее в EXP1 на плате.

Читать еще:  Шнур аварийного запуска двигателя

Кабель от UPS подключается в разъём E1DET, а кабель от датчика обрыва филамента в E0DET.
Остальное можно увидеть на фото.

После подключения всех кабелей, осталось собрать корпус, подключить обдув платы, настроить напряжение для вентилятора, подключить вентилятор. Обязательно сначала настроить напряжение на преобразователе LM2596 и только после этого подключать вентилятор, а то можно случайно подать на вентилятор больше 12 В и спалить его.

Что касается модуля WiFi. В прошивке всего 2 Serial порта. Если подключать принтер одновременно по USB, TFT и через WiFi-модуль, то портов уже не хватает. Для этого на экране есть разъём для модуля WiFi. Просто будут разные настройки в прошивке платы.

Часто задаваемые вопросы по шаговым двигателям (FAQ)

Вопрос: Что такое шаговый двигатель и для чего он?

Ответ: Шаговые двигатели — это устройства, задача которых преобразование электрических импульсов в поворот вала двигателя на определенный угол. В отличие от обычных двигателей, шаговые двигатели имеют особенности, которые определяют их свойства при использовании в специализированных областях: управляя шаговым двигателем с помощью специального устройства (драйвер шагового двигателя), можно поворачивать его вал на строго заданный угол. Это позволяет применять его там, где требуется высокая точность перемещений. Наглядные примеры это принтеры, факсы, копировальные машины, станки с ЧПУ (Числовое программное управление), фрезерные, гравировальные машины, модули линейного перемещения, плоттеры, установщики радиоэлектронных компонентов. Шаговый двигатель является бесколлекторным двигателем постоянного тока. Как и другие бесколлекторные двигатели, шаговый двигатель высоконадежен и при надлежащей эксплуатации имеет длительный срок службы. Далее: подробно о строении шагового двигателя

Вопрос: Какие достоинства у шаговых двигателей?

Ответ: Достоинства истекают из особенностей конструкции: — Шаговый двигатель может обеспечить очень точное перемещение на заданный угол, причем без обратной связи — поворот ротора зависит от числа поданных импульсов на устройство управления; — высокая точность позиционирования и повторяемость, так качественные шаговые двигатели имеют точность не хуже 5% от величины шага, при этом данная ошибка не накапливается; — хорошая надежность двигателя, обусловленная отсутствием щеток, при этом срок службы двигателя ограничивается лишь ресурсом подшипников; — обеспечивает получение сверхнизких скоростей вращения вала без использования редуктора; — работа в широком диапазоне скоростей, т.к. скорость напрямую зависит от количества входных импульсов. Недостатки — шаговый двигатель подвержен резонансу; — может пропустить шаги и реальная позиция вала окажется рассинхронизирована с позицией, заданной в управляющей системе — низкая удельная мощность шагового привода; — потребляемая энергия не уменьшается при отсутствии нагрузки; — малый момент на высоких скоростях;

Вопрос: Какие бывают шаговые двигатели?

Ответ: Шаговых двигателей существует множество разновидностей. В настоящее время 95% всех шаговых двигателей — гибридные. В зависимости от конфигурации обмоток двигатели делятся: а)Биполярный — имеет четыре выхода, содержит в себе две обмотки. б)Униполярный — имеет шесть выходов. Содержит в себе две обмотки, но каждая обмотка имеет отвод из середины. в)Четырехобмоточный — имеет четыре независимые обмотки. Можно представлять его как униполярный, обмотки которого разъединены, а если соединить соседние отводы — получим биполярный двигатель.

В зависимости от типа электронного коммутатора управление шаговым двигателем может быть: однополярным или разнополярным; симметричным или несимметричным; ·потенциальным или импульсным. При однополярном управлении напряжение каждой фазе изменяется от 0 до +U, а при разнополярном – от -U до +U. Управление называется симметричным, если в каждом такте коммутации задействуется одинаковое число обмоток, и несимметричным – если разное.

Вопрос: Корпус у меня не разборный, а хочется посмотреть что внутри!

Ответ: Внутри находятся обмотки, зубчатый ротор и несколько подшипников. Не стоит разбирать рабочий двигатель. Ротор устанавливается с малым зазором, кроме того, система ротор-статор образует замкнутый магнитопровод, который намагничивается в собранном состоянии, и двигатель после разборки теряет существенную часть момента.

Вопрос: На какой минимальный угол может повернуться шаговый двигатель?

Ответ: Большинство моделей имеет 200 шагов на оборот, т.е. 1.8 градуса на шаг. Также производятся и можно заказать у нас двигатель с шагом в 0.9 градуса(400 шагов на оборот). Существует также возможность использования микрошагового режима, который позволяет делить шаг без потери точности на 8-10 микрошагов. Это означает, что для двигателя с шагом 0.9 градуса минимальным угла поворота будет примерно 0,09 град = 5.4 угловых минуты. Существуют также драйверы, которые могут делить шаг на 256 и даже 512 микрошагов. Но практическое значение таких делений невелико — во-первых, для совершения каждого микрошага требуется подать отдельный импульс STEP, соответственно, требуется очень высокая частота импульсов, во-вторых, точность перестает расти уже после деления шага на 10-16 частей. Единственным применением таких режимов остается повышение плавности хода двигателя.

Вопрос: Какие существуют программы для работы с шаговыми двигателями?

Ответ: Их существует множетсво как перемещение на определенный шаг, так для трехмерного использования. Могут управлять от одного до шести двигателей. Например MACH3, LinuxCNC, Turbocnc, NC Studio.

Вопрос: Как можно повысить точность вращения вала шагового двигателя?

Ответ: Есть режим дробления шага (микрошаг) реализуется при независимом управлении током обмоток шагового электродвигателя. Управляя соотношением токов в обмотках можно зафиксировать ротор в промежуточном положении между шагами. Таким образом можно повысить плавность вращения ротора и добиться высокой точности позиционирования. Однако, деление шага не всегда приводит к увеличению точности. Погрешность установки вала всегда равна указанному производителем значению (обычно 5% от полного шага), вне зависимости от микрошага. Кроме того, точность установки снижается, если ток в одной из обмоток близок к нулю. В результате точность увеличивает деление шага до примерно 8-10 микрошагов (деление 1/8 или 1/10). Большие значения приводят лишь к увеличению плавности хода.

Вопрос: Что означают характеристики шагового двигателя — ток, индуктивность, напряжение и т.п.?

Ответ: Все характеристики двигателя находятся в тесной взаимосвязи и определяют главную — кривую зависимости крутящего момента от скорости. Рассматривать влияение характеристик надо для двигателей одного размера. Момент удержания — пиковое значение крутящего момента двигателя — зависит от тока и индуктивности обмотки. Чем больше индуктивность, тем больший момент удержания можно развить, но тем больше требуется напряжение питания на высоких скоростях, чтобы преодолеть индуктивное сопротивление и закачать нужный ток в обмотку. Ток обмотки также определяет выбор драйвера шагового двигателя. Напряжение питания обмотки равно U = I*R, номинальному току обмотки умноженному на напряжение и показывает, какое постоянное напряжение надо подать на обмотку, чтобы получить номинальный ток и, соответственно, момент удержания. Величина напряжения используется при выборе драйвера и характеристик источника питания.

Читать еще:  Большой расход масла в двигателе ваз калина

Вопрос: Какой шаговый двигатель лучше, А или Б?

Ответ: Этот вопрос неоднозначен, но все же дадим пару рекомендаций. Как правило, ориентироваться надо не на момент удержания, а на индуктивность. Лучше работают те двигатели, у которых индуктивность меньше — большинство задач требуют момента на высоких скоростях, и малая индуктивность требует меньшего напряжения питания. Нормальной индуктивностью можно считать 2-5 мГн для двигателей NEMA23 (фланец 57 мм), 4-6 мГн для двигателей NEMA34 (фланец 86 мм). Если А и Б — двигатели разного размера, смотрите кривую зависимости момента от скорости — чем она более пологая, тем лучше. См. более подробный алгоритм выбора шагового двигателя.

Вопрос: Что такое драйвер управления шаговым двигателем?

Ответ: Драйверы шаговых двигателей используются для управления биполярными и униполярными шаговыми двигателями с полным шагом, половинным и микрошагом. Они действуют как посредники между компьютером и двигателем и должны подбираться по напряжению и уровню мощности, типу сигнала (аналоговый и цифровой). Тип двигателя является самым важным фактором при выборе драйвера. В униполярном или биполярном двигателе ток проходит только в одном направлении по обмотке. Биполярные шаговые двигатели имеют две обмотки через которые ток проходит поочередно. Шаговые двигатели с полным шагом приводятся в движение благодаря изменениям магнитного поля относительно ротора. Полушаговые двигатели в свою очередь действуют также, как двигатели с полным шагом однако угловое перемещение ротора составляет половину шага полношагового двигателя. На каждый второй шаг запитана лишь одна фаза, а в остальных случаях запитаны две. В результате угловое перемещение ротора составляет половину угла. Микрошаговые или минишаговые двигатели отличаются дискретным числом угловых перемещений угловых положений между каждым полным шагом. В драйверах минишаговых и микрошаговых двигателей используются электронные методы улучшения позиционного решения системы управления. Драйверы шаговых двигателей отличаются по электрическим характеристикам, параметрам управления, размерам и техническим характеристикам. Электрические характеристики включают в себя максимальное напряжение на входе, номинальную мощность, силу тока на выходе, максимальная сила тока на выходе, питание переменным и постоянным током. Драйверы для шаговых двигателей могут быть однофазными или трех фазными с частотой в 50, 60, или 400 Гц. Параметры управления включают в себя особенности установки и управления. В некоторых драйверах используются ручные средства управления типа кнопок, DIP-переключателей или потенциометров. В других используются джойстики, цифровые пульты управления, компьютерные интерфейсы, или слоты для карт PCMCIA (Международная ассоциация производителей карт памяти для персональных компьютеров). Программы контроля могут быть сохранены на передвижных, энергонезависимых носителях данных. Переносные блоки управления разработаны для управления с удаленных точек. Также доступно беспроводное и WEB управления. Форма драйверов позволяет сборку модуля в нескольких конфигурациях. Большинство устройств могут монтироваться на шасси, контактные DIN рельсы, панели, стойки, стены или печатные платы (PCB). Также возможна установка автономных устройств и интегральных микросхем, которые монтируются на печатные платы. Особенности драйверов: подавление резонанса; вспомогательные входы/выходы (I/O); мягкий старт; автонастройка, самодиагностика и проверка состояния; а так же сигнализация в таких случаях как перенапряжение. В драйверах используют много различных типов шин и коммуникационных систем. Шинные типы: (ATA), (PCI), (IDE), (ISA), (GPIB), (USB) и (VMEbus). Коммуникационные стандарты: ARCNET, AS-i, Beckhoff I/O, CANbus, CANopen, DeviceNet, Ethernet, (SCSI) и (SDS). Также доступно большое количество последовательных и параллельных интерфейсов. Соответствующая статья поможет подобрать драйвер биполярного двигателя для станка с ЧПУ.

Вопрос: Как узнать, подходит ли двигатель А к драйверу Б

Ответ: Чтобы это узнать, сделайте следующее: 1) проверьте, может ли драйвер выдавать ток фазы, равный(или примерно равный)току, указанному производителем двигателя. Если ток драйвера заметно меньше тока фазы двигателя — драйвер не подходит. 2) Вычислите максимальное напряжение питания двигателя по формуле Umax = 32 * sqrt (L), где L — индуктивность обмоток двигателя в миллигенри(указывается производителем). Желательно, чтобы максимально допустимое напряжение питания драйвера было примерно равно этому значению, или было немного больше. Если это условие не выполняется, то скорее всего двигатель вращаться будет, но больших скоростей достичь не удастся. Пример:подходит ли драйвер PLD545-G3 для двигателя PL86H151? Ток обмотки двигателя — 4.2 А, ток, выдаваемый драйвером — до 5А, первое условия выполнено. Индуктивность двигателя — 12 мГн, по формуле получаем Umax = 32 * sqrt(12) = 110 Вольт. Максимальное напряжение питания драйвера — 45 Вольт. Это означает, что двигатель будет отдавать момент только на низких оборотах, а для получения качественного движения необходимо использовать или драйвер с напряжением питания до 80 Вольт(например, PLD86 или PLD880), или двигатель с меньшей индуктивностью.

Вопрос: У меня перегревается двигатель, что делать?

Ответ: Для начала надо определить, действительно ли двигатель перегревается. Многие воспринимают рабочую температуру двигателя как перегрев, потому что её «не терпит рука», тогда как нагрев в 80 градусов — нормальное явления для шагового двигателя. Поэтому необходимо замерить реальную температуру. Если она меньше 80 градусов — беспокоиться не стоит. Если больше — первое, что необходимо проверить, это выставленный рабочий ток на драйвере. Он должен соответствовать номинальному току двигателя. Также можно использовать функцию снижения тока обмоток в режиме удержания. К снижению нагрева приводит также снижение питающего напряжения, однако, и момент тоже снизится. Если нет возможности жертвовать динамикой двигателя, остается единственный способ — установить на корпус ШД радиатор и/или вентилятор.

Вопрос: Шаговый двигатель постоянно пропускает шаги. Что делать?

Ответ: Пропуск шагов — самая неприятная проблема у шаговых приводов. Причин может быть множество. В порядке убывания распространенности:

  • Некачественный блок управления двигателем. Не стоит недооценивать сложность управления шаговым двигателем. Разница в работе драйвера Leadshine и кустарной поделки — очень велика. Особенно это заметно при работе в области резонанса.
  • Неверные настройки драйвера. Неверно выбранное напряжение питания, ток — могут приводить к пропуску шагов. Проверьте все настройки еще раз.
  • Двигатель перегружен. Нагрузка на двигатель слишком велика. Снизьте скорость или поставьте двигатель побольше.
  • Механическая часть(направляющие, передачи) подклинивает
  • Бракованный двигатель. Прозвоните обмотки, проверьте их сопротивление(должно совпадать с паспортным). Проверьте вращение вала рукой — при разомкнутых обмотках вал отключенного двигателя должен вращаться легко и беззвучно, при замкнутых накоротко вал крутиться не должен.
  • Дребезг на контактах управляющих сигналов STEP/DIR
  • Проблемы с генерацией сигналов STEP/DIR. Это целое отдельное семейство проблем, которое достойно отдельного обсуждения.
  • Иногда за пропуск шагов принимают проскальзывание шестерни на валу или муфты, соединяющей вал двигателя с винтом передачи
Ссылка на основную публикацию
Adblock
detector