Эффективный запуск трехфазного двигателя

Включение 3 фазного двигателя в бытовую сеть

Оглавление

1. Простой способ включения трехфазного двигателя.

1.1. Выбор трехфазного двигателя для подключения в однофазную сеть.

Среди различных способов запуска трехфазных электродвигателей в однофазную сеть, наиболее простой базируется на подключении третьей обмотки через фазосдвигающий конденсатор. Полезная мощность развиваемая двигателем в этом случае составляет 50. 60% от его мощности в трехфазном включении. Не все трехфазные электродвигатели, однако, хорошо работают при подключении к однофазной сети. Среди таких электродвигателей можно выделить, например, с двойной клеткой короткозамкнутого ротора серии МА. В связи с этим при выборе трехфазных электродвигателей для работы в однофазной сети следует отдать предпочтение двигателям серий А, АО, АО2, АПН, УАД и др.

Для нормальной работы электродвигателя с конденсаторным пуском необходимо, чтобы емкость используемого конденсатора менялась в зависимости от числа оборотов. На практике это условие выполнить довольно сложно, поэтому используют двухступенчатое управление двигателем. При пуске двигателя подключают два конденсатора, а после разгона один конденсатор отключают и оставляют только рабочий конденсатор.

1.2. Расчет параметров и элементов электродвигателя.

Если, например, в паспорте электродвигателя указано напряжение его питания 220/380, то двигатель включают в однофазную сеть по схеме, представленной на рис. 1

Рис. 1 Принципиальная схема включения трехфазного электродвигателя в сеть 220 В:

С р — рабочий конденсатор;

С п — пусковой конденсатор;

После включения пакетного выключателя П1 замыкаются контакты П1.1 и П1.2, после этого необходимо сразу же нажать кнопку «Разгон». После набора оборотов кнопка отпускается. Реверсирование электродвигателя осуществляется путем переключения фазы на его обмотке тумблером SA1.

Емкость рабочего конденсатора Ср в случае соединения обмоток двигателя в «треугольник» определяется по формуле:

, где Ср — емкость рабочего конденсатора в мкФ;
I — потребляемый электродвигателем ток в А;
U -напряжение в сети, В

А в случае соединения обмоток двигателя в «звезду» определяется по формуле:

, где Ср — емкость рабочего конденсатора в мкФ;
I — потребляемый электродвигателем ток в А;
U -напряжение в сети, В

Потребляемый электродвигателем ток в выше приведенных формулах, при известной мощности электродвигателя, можно вычислить из следующего выражения:

, где Р — мощность двигателя в Вт, указанная в его паспорте;
h — кпд;
cos j — коэффициент мощности;
U -напряжение в сети, В

Емкость пускового конденсатора Сп выбирают в 2..2,5 раза больше емкости рабочего конденсатора. Эти конденсаторы должны быть рассчитаны на напряжение в 1,5 раза больше напряжения сети. Для сети 220 В лучше использовать конденсаторы типа МБГО, МБПГ, МБГЧ с рабочим напряжением 500 В и выше. При условии кратковременного включения в качестве пусковых конденсаторов можно использовать и электролитические конденсаторы типа К50-3, ЭГЦ-М, КЭ-2 с рабочим напряжением не менее 450 В. Для большей надежности электролитические конденсаторы соединяют последовательно, соединяя между собой их минусовые выводы, и шунтируют диодами (рис. 2)

Общая емкость соединенных конденсаторов составит (С1+С2)/2.

На практике величину емкостей рабочих и пусковых конденсаторов выбирают в зависимости от мощности двигателя по табл. 1

Таблица 1. Значение емкостей рабочих и пусковых конденсаторов трехфазного электродвигателя в зависимости от его мощности при включении в сеть 220 В.
Мощность трехфазного двигателя, кВт 0,4 0,6 0,8 1,1 1,5 2,2
Минимальная емкость рабочего конденсатора Ср, мкФ 40 60 80 100 150 230
Минимальная емкость пускового конденсатора Ср, мкФ 80 120 160 200 250 300

Следует отметить, что у электродвигателя с конденсаторным пуском в режиме холостого хода по обмотке, питаемой через конденсатор, протекает ток на 20. 30 % превышающий номинальный. В связи с этим, если двигатель часто используется в недогруженном режиме или вхолостую, то в этом случае емкость конденсатора Ср следует уменьшить. Может случиться, что во время перегрузки электродвигатель остановился, тогда для его запуска снова подключают пусковой конденсатор, сняв нагрузку вообще или снизив ее до минимума.

Емкость пускового конденсатора Сп можно уменьшить при пуске электродвигателей на холостом ходу или с небольшой нагрузкой. Для включения, например, электродвигателя АО2 мощностью 2,2 кВт на 1420 об/мин можно использовать рабочий конденсатор емкостью 230 мкФ, а пусковой — 150 мкФ. В этом случае электродвигатель уверенно запускается при небольшой нагрузке на валу.

1.3. Переносной универсальный блок для пуска трехфазных электродвигателей мощностью около 0,5 кВт от сети 220 В.

Для запуска электродвигателей различных серий, мощностью около 0,5 кВт, от однофазной сети без реверсирования, можно собрать переносной универсальный пусковой блок (рис. 3)

При нажатии на кнопку SB1 срабатывает магнитный пускатель КМ1 (тумблер SA1 замкнут) и своей контактной системой КМ 1.1, КМ 1.2 подключает электродвигатель М1 к сети 220 В. Одновременно с этим третья контактная группа КМ 1.3 замыкает кнопку SB1. После полного разгона двигателя тумблером SA1 отключают пусковой конденсатор С1. Остановка двигателя осуществляется нажатием на кнопку SB2.

1.3.1. Детали.

В устройстве используется электродвигатель А471А4 (АО2-21-4) мощностью 0,55 кВт на 1420 об/мин и магнитный пускатель типа ПМЛ, рассчитанный на переменный ток напряжением 220 В. Кнопки SB1 и SB2 — спаренные типа ПКЕ612. В качестве переключателя SA1 используется тумблер Т2-1. В устройстве постоянный резистор R1 — проволочный, типа ПЭ-20, а резистор R2 типа МЛТ-2. Конденсаторы С1 и С2 типа МБГЧ на напряжение 400 В. Конденсатор С2 составлен из параллельно соединенных конденсаторов по 20 мкФ 400 В. Лампа HL1 типа КМ-24 и 100 мА.

Пусковое устройство смонтировано в металлическом корпусе размером 170х140х50 мм (рис. 4)

Рис. 4 Внешний вид пускового устройства и чертеж панели поз.7.

1- корпус 2 — ручка для переноски 3 — сигнальная лампа 4 — тумблер отключения пускового конденсатора
5 -кнопки «Пуск» и «Стоп» 6 — доработанная электровилка 7- панель с гнездами разъема

На верхней панели корпуса расположены кнопки «Пуск» и «Стоп» — сигнальная лампа и тумблер для отключения пускового конденсатора. На передней панели корпуса устройства находится разъем для подключения электродвигателя.

Для отключения пускового конденсатора можно использовать дополнительное реле К1, тогда надобность в тумблере SA1 отпадает, а конденсатор будет отключаться автоматически (рис.5)

При нажатии на кнопку SB1 срабатывает реле К1 и контактной парой К1.1 включает магнитный пускатель КМ1, а К1.2 — пусковой конденсатор Сп. Магнитный пускатель КМ1 самоблокируется с помощью своей контактной пары КМ 1.1, а контакты КМ 1.2 и КМ 1.3 подсоединяют электродвигатель к сети. Кнопку «Пуск» держат нажатой до полного разгона двигателя, а после отпускают. Реле К1 обесточивается и отключает пусковой конденсатор, который разряжается через резистор R2. В это же время магнитный пускатель КМ 1 остается включенным и обеспечивает питание электродвигателя в рабочем режиме. Для остановки электродвигателя следует нажать кнопку «Стоп». В усовершенствованном пусковом устройстве по схеме рис.5, можно использовать реле типа МКУ-48 или ему подобное.

2. Использование электролитических конденсаторов в схемах запуска электродвигателей.

При включении трехфазных асинхронных электродвигателей в однофазную сеть, как правило, используют обычные бумажные конденсаторы. Практика показала, что вместо громоздких бумажных конденсаторов можно использовать оксидные (электролитические) конденсаторы, которые имеют меньшие габариты и более доступны в плане покупки. Схема эквивалентной замены обычного бумажного дана на рис. 6

Положительная полуволна переменного тока проходит через цепочку VD1, С2, а отрицательная VD2, С2. Исходя из этого можно использовать оксидные конденсаторы с допустимым напряжением в два раза меньшим, чем для обычных конденсаторов той же емкости. Например, если в схеме для однофазно сети напряжением 220 В используется бумажный конденсатор на напряжение 400 В, то при его замене, по вышеприведенной схеме, можно использовать электролитический конденсатор на напряжение 200 В. В приведенной схеме емкости обоих конденсаторов одинаковы и выбираются аналогично методике выбора бумажных конденсаторов для пускового устройства.

2.1. Включение трехфазного двигателя в однофазную сеть с использованием электролитических конденсаторов.

Схема включения трехфазного двигателя в однофазную сеть с использованием электролитических конденсаторов приведена на рис.7.

В приведенной схеме, SA1 — переключатель направления вращения двигателя, SB1 — кнопка разгона двигателя, электролитические конденсаторы С1 и С3 используются для пуска двигателя, С2 и С4 — во время работы.

Подбор электролитических конденсаторов в схеме рис. 7 лучше производить с помощью токоизмерительных клещей. Измеряют токи в точках А, В, С и добивается равенства токов в этих точках путем ступенчатого подбора емкостей конденсаторов. Замеры проводят при нагруженном двигателе в том режиме, в котором предполагается его эксплуатация. Диоды VD1 и VD2 для сети 220 В выбираются с обратным максимально допустимым напряжением не менее 300 В. Максимальный прямой ток диода зависит от мощности двигателя. Для электродвигателей мощностью до 1 кВт подойдут диоды Д245, Д245А, Д246, Д246А, Д247 с прямым током 10 А. При большей мощности двигателя от 1 кВт до 2 кВт нужно взять более мощные диоды с соответствующим прямым током, или поставить несколько менее мощных диодов параллельно, установив их на радиаторы.

Читать еще:  Коленвал: главные элементы детали

3. Включение мощных трехфазных двигателей в однофазную сеть.

Конденсаторная схема включения трехфазных двигателей в однофазную сеть позволяет получить от двигателя не более 60% от номинальной мощности, в то время как предел мощности эликтрифицированного устройства ограничивается 1,2 кВт. Этого явно недостаточно для работы электрорубанка или электропилы, которые должны иметь мощность 1,5. 2 кВт. Проблема в данном случае может быть решена использованием электродвигателя большей мощности, например, с мощностью 3. 4 кВт. Такого типа двигатели рассчитаны на напряжение 380 В, их обмотки соединены «звездой» и в клеммной коробке содержится всего 3 вывода. Включение такого двигателя в сеть 220 В приводит к снижению номинальной мощности двигателя в 3 раза и на 40 % при работе в однофазной сети. Такое снижение мощности делает двигатель непригодным для работы, но может быть использовано для раскрутки ротора вхолостую или с минимальной нагрузкой. Практика показывает, что большая часть электродвигателей уверенно разгоняется до номинальных оборотов, и в этом случае пусковые токи не превышают 20 А.

3.1. Доработка трехфазного двигателя.

Наиболее просто можно осуществить перевод мощного трехфазного двигателя в рабочий режим, если переделать его на однофазный режим работы, получая при этом 50 % номинальной мощности. Переключение двигателя в однофазный режим требует небольшой его доработки. Вскрывают клеммную коробку и определяют, с какой стороны крышки корпуса двигателя подходят выводы обмоток. Отворачивают болты крепления крышки и вынимают ее из корпуса двигателя. Находят место соединения трех обмоток в общую точку и подпаивают к общей точке дополнительный проводник с сечением, соответствующим сечению провода обмотки. Скрутку с подпаянным проводником изолируют изолентой или поливинилхлоридной трубкой, а дополнительный вывод протягивают в клеммную коробку. После этого крышку корпуса устанавливают на место.

Схема коммутации электродвигателя в этом случае будет иметь вид, показанный на рис. 8.

Рис. 8 Принципиальная схема коммутации обмоток трехфазного электродвигателя для включения в однофазную сеть.

Во время разгона двигателя используется соединение обмоток «звездой» с подключением фазосдвигающего конденсатора Сп. В рабочем режиме в сеть остается включенной только одна обмотка, и вращение ротора поддерживается пульсирующим магнитным полем. После переключения обмоток конденсатор Сп разряжается через резистор Rр. Работа представленной схемы была опробована с двигателем типа АИР-100S2Y3 (4 кВт, 2800 об/мин), установленном на самодельном деревообрабатывающем станке и показала свою эффективность.

3.1.1. Детали.

В схеме коммутации обмоток электродвигателя, в качестве коммутационного устройства SA1 следует использовать пакетный переключатель на рабочий ток не менее 16 А, например, переключатель типа ПП2-25/Н3 (двухполюсный с нейтралью, на ток 25 А). Переключатель SA2 может быть любого типа, но на ток не менее 16 А. Если реверс двигателя не требуется, то этот переключатель SA2 можно исключить из схемы.

Недостатком предложенной схемы включения мощного трехфазного электродвигателя в однофазную сеть можно считать чувствительность двигателя к перегрузкам. Если нагрузка на валу достигнет половины мощности двигателя, то может произойти снижение скорости вращения вала вплоть до полной его остановки. В этом случае снимается нагрузка с вала двигателя. Переключатель переводится сначала в положение «Разгон», а потом в положение «Работа» и продолжают дальнейшую работу.

Для того, чтобы улучшить пусковые характеристики двигателей кроме пускового и рабочего конденсатора можно использовать еще и индуктивность, что улучшает равномерность загрузки фаз. Обо всем этом написано в статье Устройства запуска трехфазного электродвигателя с малыми потерями мощности

При написании статьи использовалась часть материалов из книги Пестрикова В.М. «Домашний электрик и не только. «

Всего хорошего, пишите to Elremont © 2005

Работа трехфазного электродвигателя в однофазной сети и его защита

Работа трехфазного электродвигателя в однофазной сети и его защита

Очень часто возникает необходимость в использовании трехфазных электродвигателей для станков, наждаков и других устройств. Для их питания совсем не обязательно наличие трехфазной сети. Наиболее эффективный способ пуска электродвигателя — это подключение третьей обмотки через фазосдвигающий конденсатор

Для нормальной работы двигателя с конденсаторным пуском , емкость конденсатора должна меняться в зависимости от числа оборотов. Это условие трудно выполнимо, и на практике управляют двигателем двухступенчато. Включают двигатель с пусковой емкостью конденсатора, а после его разгона пусковой конденсатор отключают, оставляя рабочий (рис. 1). Пусковой конденсатор отключают вручную переключателем В 2. Рабочая емкость конденсатора (в микрофарадах) для трехфазного двигателя определяется по формуле если обмотки соединены по схеме «звезда» (рис. 1, а), или если обмотки соединены по схеме «треугольник» (рис. 1,6):

При известной мощности электродвигателя ток (в амперах) можно определить из выражения:

Р-мощность двигателя, указанная в паспорте (на щитке) Вт;
U-напряжение сети. В;
cos-коэффициент мощности;

Конденсатор пусковой С.п. должен быть в 1,5—2 раза больше рабочего Ср. Рабочее напряжение конденсаторов должно быть в 1,5 раза больше напряжения сети, а конденсатор обязательно бумажный, например типа МБГО, МБГП и др. Для электродвигателя с конденсаторным пуском существует очень простая схема реверсирования.

При переключении переключателя В1 (Рис. 1) двигатель меняет направление вращения. Двигатели с конденсаторным пуском имеютособенности. При работе электродвигателя вхолостую по обмотке, питаемой через конденсатор, протекает ток на 20—40% больше номинального. Поэтому при работе двигателя с недогрузкой нужно уменьшить рабочую емкость. При перегрузке двигатель может остановиться, тогда для его запуска необходимо снова включить пусковой конденсатор. Необходимо знать, что при таком включении мощность, развиваемая электродвигателем, составляет 50% от номинального значения.

Все ли трехфазные электродвигатели могут быть включены в однофазную сеть? В однофазную сеть могут быть включены любые трехфазные электродвигатели, но одни из них в однофазной сети работают плохо, например двигатели с двойной клеткой короткозамкнутого ротора серии МА а другие при правильном выборе схемы включения и параметров конденсаторов — хорошо (асинхронные электродвигатели серий А, АО, А 02, Д, АОЛ, АПН, УАД). Мощность используемых электродвигателей ограничивается величиной допустимых токов питающей сети.

Способы автоматической защиты трехфазного двигателя при отключении фазы электрической сети. Трехфазные электродвигатели при случайном отключении одной из фаз быстро перегреваются и выходят из строя, если их вовремя не отключить от сети. Для этой цели разработаны различные системы автоматических защитных отключающих устройств, однако, они либо сложны, либо недостаточно чувствительны.

Устройства защиты можно условно разделить на релейные и диодно-транзисторные. Релейные в отличие от диодно-транзисторных более просты в изготовлении. Рассмотрим несколько релейных схем автоматической защиты трехфазного двигателя при случайном отключении одной из фаз питания электрической сети.

Первый способ (рис. 2). В обычную систему запуска трехфазного двигателя введено дополнительное реле Р с нормально разомкнутыми контактами Р1. При наличии напряжения в трехфазной сети обмотка дополнительного реле Р постоянно находится под напряжением и контакты Р1 замкнуты. При нажатии кнопки «Пуск» через обмотку электромагнита магнитного пускателя МП проходит ток и системой контактов МП1 электродвигатель подключается к трехфазной сети. При случайном отключении от сети провода А реле Р будет обесточено, контакты Р1 разомкнутся, отключив от сети обмотку магнитного пускателя, который системой контактов МП1 отключит двигатель от сети. При отключении от сети проводов В и С обесточивается непосредственно обмотка магнитного пускателя. В качестве дополнительного реле Р используется реле переменного тока типа МКУ-48.

Второй способ (рис 3). Защитное устройство основано на принципе создания искусственной нулевой точки (точка 1′), образованной тремя одинаковыми конденсаторами С1—СЗ. Между этой точкой и нулевым проводом 0′ ключено дополнительное реле Р с нормально замкнутыми контактами. При нормальной работе электродвигателя напряжение в точке 0′ равно нулю и ток через обмотку реле не протекает. При отключении одного из линейных проводов сети нарушается электрическая симметрия трехфазной системы, в точке 0′ появляется напряжение, реле Р срабатывает и контактами Р1 обесточивает обмотку магнитного пускателя—двигатель отключается. Это устройство обеспечивает более высокую надежность по сравнению с предыдущим. Реле типа МКУ, на рабочее напряжение 36 В. Конденсаторы С1—СЗ— бумажные, емкостью 4—10 мкф, на рабочее напряжение не ниже удвоенного фазного.

Чувствительность устройства настолько высока, что иногда двигатель может отключиться в результате нарушения электрической симметрии, вызванного подключением посторонних однофазных потребителей, питающихся от этой сети. Чувствительность можно понизить, применив конденсаторы меньшей емкости.

Читать еще:  Шильдик двигателя что это

payaem.ru

Паяем — Все о электронике

Трёхфазный двигатель в однофазной сети

Трёхфазные движки используются для циркулярок, заточки различных материалов, станков для сверления и т.п.

Имеется много вариантов запуска трёхфазных двигателей в однофазной сети, но самый эффективный, это подключение третьей обмотки через фазосдвигающий кондесатор. Нужно учитывать, что конденсатор сдвигает фазу третьей обмотки на 90 градусов, между первой и второй фазами сдвиг очень мал, электромотор начинает терять мощность около 40 — 50% на включении обмоток по схеме треугольника.

Для того, чтобы Электродвигатель с конденсаторным пуском работал хорошо, нужно чтобы ёмкость конденсатора менялась в зависимоти от количества оборотов. На деле этого добиться довольно тяжело, поскольку двигателем обычно управляют двухступенчатым способом, сначала активируют с пусковым конденсатором (с помощью больших пусковых токов), а после того как движок разгонится его отсоединяют и остаётся только рабочий (рис.1).

Если нажать на кнопку SB1 (её можно снять со стиральной машины — пускатель ПНВС-10 УХЛ2) электромотор М начинает набирать оброты, когда он разгонится кнопку отпускают. SB1.2 размыкается, a SB1.1 и SB1.3 остаются в замкнутом состоянии. Их размыкают, чтобы остановить движок. Бывает такое, что SB 1.2 в кнопке не отходит, в таком случае подложите под него шайбу таким образом, чтобы он отошёл. Чтобы соединить обмотки электродвигателя по схеме «треугольник» ёмкость С2 (рабочего конденсатор) определим с помощью формулы:

С2=4800 I/Uгде I — ток, потребляемый двигателем, А;U — напряжение сети, В.Ток, который потребляет электродвигатель, можно измерить амперметром или использовать формулу:

где Р — мощность электромтора, Вт;U — напряжение сети, В;n— КПД ; cos? — коэффициент мощности

Ёмкость С1 (пускового конденсатор) нужно выбирать в 2 — 2.5 раза больше рабочего на большой нагрузке на вал, их допустимые напряжения должны быть в 1.5 раза больше напряжения сети. В нашём случае наиболее лучшие конденсаторы это МГБО, МБГП, МБГЧ, у которых рабочее напряжение 500 В и больше.

Пусковые конденсаторы нужно будет зашунтировать с помощью резистора R1 сопротивлением 200 — 500 кОм, через него выходит остаток электрического заряда.

Реверсировать электромотор нужно с помощью переключения фазы на его обмотке тумблером SA1 (рис. 1) типа ТВ1 — 4.

На холостом ходу по питаемой через конденсаторы по обмотке протекает ток па 20 — 40% больше номинального. Поэтому уменьшайте ёмкость конденсатора С2 если двигатель будет часто работать в недогруженом режиме или на холостм ходу. Для активации двигателя с мощностью 1,5 кВт будет достаточно использовать рабочий конденсатор ёмкостью 100 мкф, а пусковой — 60 мкФ. Ёмкости рабочих и пусковых конденсаторов зависят от мощности самого двигателя, эти значения представлены в таблице, которая указана выше.

Желательно конечно использовать бумажные конденсаторы в роли пусковых, но если такой возможности у вас нет, то можно в качестве альтернативы использовать оксидные, т.е. электролитические. На рис. 2 показано как производить замену бумажных конденсаторов на электролитические. Положительная полуволна переменного тока протекает через цепь VD1C1, а отрицательная — через VD2C2, по это причине электролиты можно использовать с меньшим допустимым напряжением, чем для бумажных конденсаторов. Для бумажных конденсаторов нужно напряжение 400 В и более, то для электролита вполне хватает 300 — 350 В, по той причине, что он проводит лишь одну полуволну переменного тока и поэтому к нему прикладывается только половина напряжения, для точной надежности он должен держать амплитудное напряжение однофазной сети, это около 300 В. Этот расчет аналогичен расчету бумажных конденсаторов.

Схема для включения трёхфазного двигателя в однофазную сеть, используя электролитические конденсаторы показана на рис. 3. Чтобы подобрать нужную емкость бумажных и оксидных конденсаторов, лучше всего измерить ток в точках а, в, с — эти токи в обязательном порядке должны быть равны между собой при оптимальной нагрузке на вал электродвигателя. Диоды VD1, VD2 подбирайте с обратным напряжением не меньше 300 В и 1пр. мах=10А. Если мощность дыижка больше, то диоды устанавливайте на теплоотводы, по два в плече, в противном случае может случиться пробой диодов и через оксидный конденсатор побежит переменный ток, после чего, спустя немного времени электролит скорее всего нагреется и разорвётся. Электролитические конденсаторы в роли рабочих использовать не рекомендуется, потому что длительный проход через них высоких токов, как правило приводит к их нагреву и взрыву. Лучше используйте их для пусковых.

В случае если ваш трехфазный электромотор будет использоваться на динамических (высоких) нагрузках на вал, лучше используйте схему подключения пусковых конденсаторов при помощи токового реле, которое будет при больших нагрузках на вал автоматически включать и выключать пусковые конденсаторы (рис.3).

Во время подключения обмоток трехфазного электродвигателя в однофазную сеть с помощью схемы, которая представлена на рис. 4, мощность электромотора составляет 75% от номинальной мощности в трехфазном режиме, это значит потери составляют около 25%, потому что обмотки А и В подключены противофазно на всё напряжение 220 В, напряжение вращения определяется включением обмотки С. Фазирование обмоток изображено в виде точек.

Самые более надёжные,практичные и удобные при работе с трехфазными электродвигателями резисторно-индуктивноемкостные преобразователи однофазной сети 220 Вольт в трехфазную сеть, с токами в фазах до 4 ампер и сдвигом напряжений в фазах приверно 120 градусов. Эти устройства универсальны, устанавливаются они в жестяном корпусе и позволяют подсоединять трехфазные электромоторы мощностью до 2,5 килловатт в однофазную сеть 220 Вольт почти без потерь мощности.

В преобразователе используем дроссель с воздушным зазором. Его устройство представлено на рис. 6. Если правильно подобраны R, С и соотношения витков в секциях обмотки дросселя, то такой преобразователь даёт нормальную длительную работу электромоторов, это независимо от их характеристик и уровня нагрузки на вал. Вместо индуктивности представлено индуктивное сопротивление XL, потому что его легче измерить, обмотка дросселя крайними выводами через амперметр подсоединяется к напряжению 100 — 220 Вольт, частотой 50 Герц, параллельно с вольтметром. Индуктивное сопротивление (активным сопротивлением можно пренебречь) определяется отношением напряжения в вольтах к току в амперах XL=U/J.

Конденсатор С1 должен жержать напряжение не меньше 250 Вольт, а конденсатор С2 — не меньше чем 350 Вольт. Если вы используете конденсаторы КБГ, МБГ-4, то в таком случае напряжение будет соответствовать номиналу, который указан на маркировке, а конденсаторы МБГП, МБГО при посоединении к цепи переменного тока должны быть с двухкратным запасом напряжения. Резистор R1 должен быть рассчитан на ток до ЗА, это значит на мощность около 700 Вт (наматывается никелево-хромовая проволока диаметром 1,3 — 1,5 мм на фарфоровой трубке с передвигающейся скобой, которая позволяет получать необходимое сопротивление для различных мощностей электродвигателя). Резистор обязательно должен быть защищен от перегрева и ограждён от остальных компонентов, токоведущих частей, а также от возможного конакта человека с ним. Металлическое шасси корпуса в обязательном порядке необходимо заземлить.

Сечение магнитопровода дросселя должно составлять S=16 — 18cm2, диаметр провода d=l,3 — 1,5 мм, общее число витков W=600 — 700. Форма магнитопровода и марка стали могут быть любыми, главное помнить о воздушном зазоре (это даст вам возможность изменять индуктивное сопротивление), которое устанавливаем при помощи винтов (рис. 6). Для того чтобы избежать сильного дребезжания дросселя, нужно между Ш-об-разными половинами магнитопровода проложить деревянный брусок и зажать винтами. В роли дросселя подойдут силовые трансформаторы от ламповых цветных телевизоров с мощностью 270 — 450 Ватт. Обмотка дросселя в целом производится в виде одиной катушки, которая имеет три секции и четыре вывода. Если вы будете использовать сердечник с постоянным воздушным зазором, то вам придется изготавливать пробную катушку,которая не имеет промежуточных отводов, сделать дроссель с примерным зазором, подключить в сеть и измерить XL. XL необходимо отмотать или домотать ещё немного витков. Выясните необходимое количество витков, мотайте необходимую катушку, разделите каркас на секции в отношении W1:W2:W3=1:1:2. Итак, если у нас общее колисество витков равно 600, то из этого исходит Wl =W2= 150, a W3=300. Для того чтобы поднять выходную мощность преобразователя и не допустить при этом несиметрии напряжений, необходимо поменять значения XL, Rl, Cl, С2, которые отталкиваются от того,что токи в фазах А, В, С должны быть равными при номинальной нагрузке на вал электромотора. В режиме недогрузки электродвигателя несимметрия напряжений фаз не представляет какой либо опасности, в том случае если наибольший из токов фаз не будет превышать номинальный ток электродвигателя. Для пересчета параметров преобразователя на иную мощность используется формула:

Читать еще:  Вибрация двигателя на холостых из за катализатора

С1 = 80РС2 = 40РRl = 140/PXL = 110/PW = 600/ РS = 16Pd = 1,4P

где P — это мощность преобразователя (в киловаттах), а мощность двигателя по паспорту — это является его мощностью на самом валу электродвигателя. В том случае если КПД (т.е. коэффициент полезного действия) электродвигателя вам неизвестен, то в таком случае его можно считать в среднем около 75 — 80%.

Как повысить эффективность электродвигателя

Большинство насосов приводятся в действие с помощью асинхронных электродвигателей, это означает, что двигатели вносят вклад в общую эффективность насосной системы.

Данная статья посвящена исследованию ключевых аспектов эффективности электродвигателя, которые находятся под контролем пользователя. 2/3 всей вырабатываемой электроэнергии, потребляются электродвигателями, которые используются в различном оборудовании на промышленных площадках всего мира.

Электродвигатели развиваются на протяжении последних 150 лет. Не смотря на то, что существует большой выбор из различных конструкций двигателей (например синхронные, асинхронные или постоянного тока), наиболее используемым в промышленности на сегодняшний день является асинхронный электродвигатель переменного тока, т.к. является более надежным. Также асинхронный электродвигатель предпочтительнее при использовании частотного преобразователя. Достаточно высокая эффективность в сочетании с простотой изготовления, высокой надежностью и низкой ценой делает его самым широко-применяемым типом двигателя по всему миру.


Рисунок 1: Асинхронный электродвигатель с короткозамкнутым ротором

На рисунке 1 показана обычная компоновка асинхронного электродвигателя с тремя обмотками статора, которые расположены вокруг сердечника. Обмотка ротора состоит из медных или алюминиевых стержней, торцы которых накоротко замкнуты кольцами. Кольца изолированы от ротора. В подшипниковом узле, как правило, используются шарикоподшипники с консистентной смазкой, за исключением очень больших двигателей. Смазка масляным туманом может значительно увеличить срок службы подшипников. Во всех асинхронных электродвигателях используется трехфазный ток, за исключением самых маленьких промышленных процессов (ниже 2 л.с.). Для запуска фазных двигателей необходимы другие средства, такие как щетки или конденсаторный пуск (использование конденсатора во время пуска).

Проблема эффективности двигателя

При использовании электродвигателя в качестве привода насоса потери энергии и падение давления в результате неэффективности насоса обычно гораздо больше, чем потери энергии связанные с неэффективностью электродвигателя, но они не являются незначительными. Оптимизация эффективности электродвигателя насоса может обеспечить реальную экономию стоимости рабочего цикла на протяжении всего срока службы насоса/электродвигателя. Ключевыми факторами, которые влияют на эффективность асинхронного двигателя являются:

  • относительная нагрузка двигателя (негабаритные двигатели находящиеся под нагрузкой)
  • скорость вращения (число полюсов)
  • размер двигателя (номинальная мощность)
  • класс двигателя: обычный КПД в сравнении с энергоэффективностью в с равнении с высоким КПД

Эффективность электродвигателя при частичной загрузке

Как показано на рисунке 2, эффективность асинхронного электродвигателя изменяется вместе с
относительной нагрузкой на электродвигатель по сравнению с номинальной характеристикой. Вплоть до нагрузки в 50% эффективность большинства электродвигателей остается линейной и для некоторых электродвигателей достигает пика у отметки 75%. Электродвигатели могут работать при нагрузке меньше 50% только в течение короткого промежутка времени и не могут эксплуатироваться при нагрузках меньше 20% от номинальных. Таким образом, когда отрегулированные рабочие колеса или насосы возвращаются к своим кривым «напор-подача», необходимо оценить воздействие относительной нагрузки на электродвигатель.

Рисунок 2: Эффективность электродвигателя для 100-сильных моторов — Обычные кривые характеристик при нормальном диапазоне нагрузок электродвигателя

Скорость вращения

На рисунке 2 также показано влияние скорости вращения на максимально-достижимую эффективность. 4-х полюсный электродвигатель при номинальных 1800 об/мин выходит на самый высокий КДП, а 2-х полюсный при номинальных 3600 об/мин дает низкую эффективность. Таким образом, хотя насосы с номинальной частотой вращения 3600 об/мин могут быть более эффективными (и иметь низкую закупочную стоимость), чем насосы со скоростью вращения 1800 об/мин, электродвигатели последних могут быть более эффективными, плюс эти насосы, как правило, имеют более низкий NPSHR и энергию всасывания, не говоря уже о более длительном сроке службы. Также следует отметить, что номинальная мощность электродвигателя влияет на его эффективность, большие электродвигатели имеют большую эффективность, чем малые.

Скорость вращения асинхронного электродвигателя

Синхронная скорость вращения асинхронного электродвигателя рассчитывается по следующей формуле:
n = 120*f/p
где:
n = скорость вращения в об/мин
f = частота питающей сети (Гц)
p = количество полюсов (min = 2)

Для регулирования частоты вращения электродвигателя без использования внешних механических устройств необходимо регулировать напряжение и частоту подаваемого тока. Некоторые электродвигатели могут быть изготовлены с несколькими обмотками (количество полюсов) для достижения двух или более различных скоростей вращения.

Асинхронные электродвигатели вращаются со скоростью, которая меньше скорости вращения магнитного поля (на 1-3% при полной нагрузке). Разница между фактической и синхронной частотой вращения называется скольжением. Для новых более энергоэффективных электродвигателей скольжение имеет тенденцию уменьшаться в отличие от старых электродвигателей с обычным КПД. Это означает, что при заданной нагрузке энергоэффективные электродвигатели работают немного быстрее.

Рисунок 3. Эффективность при полной и частичной загрузке двигателя с низким и высоким КПД

Электродвигатели с высоким КПД

На рисунке 3 изображен пример возможного повышения эффективности, когда старый электродвигатель с обычной эффективностью заменяется новым, имеющим более высокий КПД. Как упоминалось ранее, электродвигатели с высоким КПД работают с меньшим скольжением, что дает некоторое увеличение скорости вращения, а следовательно напор насоса и производительность становятся несколько больше.

Однако, использование электродвигателей с высоким КПД в некоторых (с изменением подачи) процессах будет не оправданно, из-за большей скорости вращения (и напора насоса), до тех пор пока существующие электродвигатели по-прежнему слабо загружены (работающие с низким КПД). Т.к. входная мощность на валу насоса пропорциональна скорости в кубе, простая замена старого электродвигателя новым с высоким КПД не обязательно приведет к снижению потребления энергии.

С другой стороны, если немного большая подача и напор для насоса — это хорошо, замена старого
электродвигателя с обычным КПД на новый с высоким КПД может быть оправдана.

Коэффициент мощности электродвигателя

Другая проблема, которая входит в игру с характеристиками асинхронного электродвигателя (которая имеет косвенное влияние на энергопотребление) называется «Коэффициент Мощности«. Некоторые
коммунальные предприятия обязывают клиентов платить дополнительные сборы за низкие значения
коэффициентов мощности. Потери в сети происходят за счет того, что при меньшем коэффициенте
мощности требуется большее количество тока, что приводит к серьезным потерям энергии. Как и КПД,
коэффициент мощности электродвигателя также снижается с уменьшением нагрузки на него практически по линейному закону приблизительно до 50% нагрузки.

Определение коэффициента мощности:

Фазовый сдвиг (задержка) синусоидальной волны тока от синусоиды напряжения, который выбарабывает меньшее количество полезной мощности.
Сдвиг, вызванный необходимым током намагничивания двигателя
PF = Pi/KVA
Где:
KVA = VxIx(3) 0.5 /1,000

Нижняя формула показывает, как коэффициент мощности влияет на входную мощность трехфазного
электродвигателя (кВт). Обратите внимание, что чем ниже коэффициент мощности (больший сдвиг фазы ток-напряжение VA), тем меньше входная мощность при данном входном токе и напряжении.
Где:
Pi = VxIxPF(3) 0.5 /1,000

Pi= трехфазный вход кВт
V= среднеквадратичное напряжение (среднее от 3 фаз)
I= среднеквадратичное значение силы тока в амперах (берется от 3 фаз)
PF= коэффициент мощности в виде дроби

Хотя коэффициент мощности не влияет напрямую на КПД электродвигателя, он оказывает влияние на потери в сети, как это упоминалось выше. Однако, есть способы увеличения PF (коэффициента мощности), а именно:

  • покупка электродвигателей с изначально высоким PF
  • не покупайте слишком большие электродвигатели (коэффициент мощности падает вместе с уменьшением
  • нагрузки на электродвигатель)
  • установка компенсирующих конденсаторов параллельно с обмотками электродвигателя
  • увеличить полную загрузку коэффициента мощности до 95% (Max)
  • преобразование в привод с частотным регулированием

Пусковые конденсаторы электродвигателей являются одним из наиболее поппулярных способов увеличения коэффициента мощности и имеют следующий список преимуществ:

  • увеличение PF
  • меньшение реактивного тока от электрооборудования через кабели и пускатели электродвигателейменьшее тепловыделение и потери мощности кВт
  • По мере уменьшения нагрузки на электродвигатель растет возможность экономии, а PF
  • падает ниже 60%-70%. (возможная экономия 10%)
  • Уменьшение сборов за коэффициент мощности
  • Увеличение общей производительности системы
  • Интеллектуальная система управления электродвигателем
  • Частотно-регулируемый электропривод

Более высокое напряжение
Другим способом повышения КПД электродвигателя является повышение рабочего напряжения. Чем выше напряжение, тем ниже ток и, тем самым будут ниже потери в сети. Однако, высокое напряжение приведет к увеличению цены частотно-регулируемого привода и сделает работу более опасной.

Выводы
Таким образом, когда вы пытаетесь сократить энергопотребление насосных систем не забывайте о
КДП электродвигателя и факторах, перечисленных выше, которые на него влияют.

Ссылка на основную публикацию